Активное емкостное сопротивление. Онлайн-калькулятор расчёта реактивного сопротивления

03.05.2019

В цепи постоянного тока конденсатор представляет собой бесконечно большее сопротивление: постоянный ток не проходит через диэлектрик, разделяющий обкладки конденсатора. Цепи переменного тока конденсатор не разрывает: попеременно заряжаясь и разряжаясь, он обеспечивает движение электрических зарядов, т. е. поддерживает переменный ток во внешней цепи. Исходя из электромагнитной теории Максвелла (см. § 105), можно сказать, что переменный ток проводимости замыкается внутри конденсатора током смещения. Таким образом, для переменного тока конденсатор представляет собой конечное сопротивление, называемое емкостным сопротивлением.

Опыт и теория показывают, что сила переменного тока в проводе существенно зависит от формы, которая придана этому проводу. Сила тока будет, наибольшей в случае прямого провода. Если же провод свернут в виде катушки с большим числом витков, то сила тока в нем значительно уменьшится: особенно резкое снижение тока происходит при введении в эту катушку ферромагнитного сердечника. Это означает, что для переменного тока проводник помимо омического сопротивления имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл индуктивного сопротивления состоит в следующем. Под влиянием изменений тока в проводнике, обладающем индуктивностью, возникает электродвижущая сила самоиндукции, препятствующая этим изменениям, т. е. уменьшающая амплитуду тока а следовательно, и эффективный ток Уменьшение эффективного тока в проводнике равносильно увеличению сопротивления проводника, т. е. равносильно появлению дополнительного (индуктивного) сопротивления.

Получим теперь выражения для емкостного и индуктивного сопротивлений.

1. Емкостное сопротивление. Пусть к конденсатору емкостью С (рис. 258) приложено переменное синусоидальное напряжение

Пренебрегая падением напряжения на малом омическом сопротивлении подводящих проводов, будем считать, что напряжение на обкладках конденсатора равно приложенному напряжению:

В любой момент времени заряд конденсатора равен произведению емкости конденсатора С на напряжение (см. § 83):

Если за малый промежуток времени заряд конденсатора изменяется на величину то это означает, что в подводящих проводах идет ток равный

Так как амплитуда этого тока

то окончательно получим

Запишем формулу (37) в виде

Последнее соотношение выражает закон Ома; величина играющая роль сопротивления, представляет собой сопротивление конденсатора для переменного тока, т. е. емкостное сопротивление

Таким образом, емкостное сопротивление обратно пропорционально круговой частоте тока и величине емкости. Физический смысл этой зависимости нетрудно понять. Чем больше емкость конденсатора и чем чаще изменяется направление тока (т. е. чем больше круговая частота тем больший заряд проходит за единицу времени через поперечное сечение подводящих проводов. Следовательно, ). Но сила тока и сопротивление обратно пропорциональны друг другу.

Следовательно, сопротивление

Рассчитаем емкостное сопротивление конденсатора емкостью включенного в цепь переменного тока частотой Гц:

При частоте Гц емкостное сопротивление того же самого конденсатора снизится приблизительно до 3 Ом.

Из сопоставления формул (36) и (38) видно, что изменения тока и напряжения совершаются в различных фазах: фаза тока на больше фазы напряжения. Это означает, что максимум тока наступает на четверть периода раньше, чем максимум напряжения (рис. 259).

Итак, на емксстном сопротивлении ток опережает напряжение на четверть периода (по времени) или на 90° (по фазе).

Физический смысл этого важного явления можно пояснить следующим образом, В начальный момент времени конденсатор еще не заряжен Поэтому даже очень малое внешнее напряжение легко перемещает заряды к пластинам конденсатора, создавая ток (см. рис. 258). По мере зарядки конденсатора напряжение на его обкладках растет, препятствуя дальнейшему притоку зарядов. В связи с этим ток в цепи уменьшается, несмотря на продолжающееся увеличение внешнего напряжения

Следовательно, в начальный момент времени ток имел максимальное значение ( Когда а вместе с ним и достигнут максимума (что произойдет через четверть периода), конденсатор полностью зарядится и ток в цепи прекратится Итак, в начальный момент времени ток в цепи максимален, а напряжение минимально и только еще начинает нарастать; через четверть периода напряжение достигает максимума, а ток уже успевает уменьшиться до нуля. Таким образом, действительно ток опережает напряжение на четверть периода.

2. Индуктивное сопротивление. Пусть через катушку самоиндукции с индуктивностью идет переменный синусоидальный ток

обусловленный переменным напряжением приложенным к катушке

Пренебрегая падением напряжения на малом омическом сопротивлении подводящих проводов и самой катушки (что вполне допустимо, если катушка изготовлена, например, из толстой медной проволоки), сбудем считать, что приложенное напряжение уравновешивается электродвижущей силой самоиндукции (равно ей по величине и противоположно по направлению):

Тогда, учитывая формулы (40) и (41), можем написать:

Так как амплитуда приложенного напряжения

то окончательно получим

Запишем формулу (42) в виде

Последнее соотношение выражает закон Ома; величина играющая роль сопротивления, представляет собой индуктивное сопротивление катушки самоиндукции:

Таким образом, индуктивное сопротивление пропорционально круговой частоте тока и величине индуктивности. Такого рода зависимость объясняется тем, что, как уже отмечалось в предыдущем параграфе, индуктивное сопротивление обусловлено действием электродвижущей силы самоиндукции, уменьшающей эффективный ток и, следовательно, увеличивающей сопротивление.

Величина же этой электродвижущей силы (и, следовательно, сопротивления) пропорциональна индуктивности катушки и скорости изменения тока, т. е. круговой частоте

Рассчитаем индуктивное сопротивление катушки с индуктивностью включенной в цепь переменного тока с частотой Гц:

При частоте Гц индуктивное сопротивление той же самой катушки возрастает до 31 400 Ом.

Подчеркнем, что омическое сопротивление катушки (с железным сердечником), имеющей индуктивность составляет обычно лишь несколько Ом.

Из сопоставления формул (40) и (43) видно, что изменения тока и напряжения совершаются в различных фазах, причем фаза тока на меньше фазы напряжения. Это означает, что максимум тока наступает на четверть периода (774) позже, чем максимум напряжения (рис. 261).

Итак, на индуктивном сопротивлении ток отстает от напряжения на четверть периода (по времени), или на 90° (по фазе). Сдвиг фаз обусловлен тормозящим действием электродвижущей силы самоиндукции: она препятствует как нарастанию, так и убыванию тока в цепи, поэтому максимум тока наступает позднее, чем максимум напряжения.

Если в цепь переменного тока последовательно включены индуктивное и емкостное сопротивления, то напряжение на индуктивном сопротивлении будет, очевидно, опережать напряжение на емкостном сопротивлении на полпериода (по времени), или на 180° (по фазе).

Как уже упоминалось, и емкостное и индуктивное сопротивления носят общее название реактивного сопротивления. На реактивном сопротивлении электроэнергия не расходуется; этим оно существенно отличается от активного сопротивления. Дело в том, что энергия, периодически потребляемая на создание электрического поля в конденсаторе (во время его зарядки), в том же количестве и с той же периодичностью возвращается в цепь при ликвидации этого поля (во время разрядки конденсатора). Точно так же энергия, периодически потребляемая на создание магнитного поля катушки самоиндукции (во время возрастания тока), в том же количестве и с той же периодичностью возвращается в цепь при ликвидации этого поля (во время убывания тока).

В технике переменного тока вместо реостатов (омического сопротивления), которые всегда нагреваются и бесполезно расходуют энергию, часто применяются дроссели (индуктивное сопротивление). Дроссель представляет собой катушку самоиндукции с железным сердечником. Оказывая значительное сопротивление переменному току, дроссель практически не нагревается и не расходует электроэнергию.

Опыт показывает, что если последовательно с лампочкой соединить конденсатор и подключить их к генератору постоянного напряжения, то лампочка не горит. Это понятно, так как обкладки конденсатора разделены диэлектриком, и цепь оказывается разомкнутой. При подключении конденсатора к источнику постоянного тока возникает кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Но если эту цепь подключить к источнику переменного напряжения, то лампочка горит. Переменный ток представляет собой вынужденные электромагнитные колебания, происходящие под действием переменного электромагнитного поля генератора. При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается, и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор снова заряжается, но знак заряда на его обкладках изменяется на противоположный и т.д. Через диэлектрик, разделяющий обкладки конденсатора, как и в цепи постоянного тока, электрические заряды не проходят. Но по проводам, соединяющим обкладки конденсатора с источником напряжения, течет переменный ток разрядки и зарядки конденсатора. Поэтому лампочка, включенная последовательно с конденсатором, будет гореть непрерывно. Если теперь конденсатор отсоединить, то лампочка горит ярче. Следовательно, конденсатор оказывает переменному току сопротивление, которое называется емкостным сопротивлением .

Рассмотрим цепь (рис. 1), состоящую из конденсатора и подводящих проводов, сопротивление которых пренебрежительно мало, и генератора переменного напряжения.

Пусть напряжение на конденсаторе изменяется по закону \(~U = U_0\sin wt.\) Как известно, заряд на обкладках конденсатора можно определить по формуле \(~q = CU = CU_0\sin wt.\) Сила тока \(~I = q".\) Следовательно,

\(~I = -wCU_0\cos wt = wCU_0\sin(wt+\frac {\pi}2).\)

Отсюда \(~I=I_0\sin (wt +\frac {\pi}2),\)

где \(~I_0=wCU_o\) - амплитудное значение силы тока:

\(~I_0=\frac {U_0}{\frac 1{wC}}; I_0 =\frac {U_0}{X_C},\)

где \(~X_C = \frac 1{wC}.\)

Выразив амплитудные значения через действующие \(~I_0 = \sqrt2 I \) и \(~U_0 = \sqrt2 U,\) получим \(~I= \frac U{X_C}, \) т.е. действующее значение силы тока связано с деиству-Хс ющим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение на участке цепи постоянного тока. Это позволяет рассматривать величину Х с как сопротивление конденсатора переменному току:

\(~X_C = \frac 1{wC}\) - емкостное сопротивление.

В СИ единицей емкостного сопротивления является ом (Ом).

Как видно из полученной выше формулы, если в цепи включено только емкостное сопротивление, колебания силы тока в этой цепи опережают по фазе колебания напряжения на конденсаторе на \(~\frac {\pi}2,\) что изображено на графике и на векторной диаграмме (рис. 2).

Мгновенная мощность

\(~P=IU = I_0\sin (wt +\frac {\pi}2)U_0\sin wt = I_0U_0\sin wt \cos wt =\frac {I_0U_0}2 \sin 2wt,\)

т.е. мощность периодически изменяется с двойной частотой, а среднее значение мощности - за период \(\mathcal h P \mathcal i =0,\) так как \(~\mathcal h \sin 2wt \mathcal i = 0.\) Первую и третью четверти периода, когда конденсатор заряжается, он получает энергию от генератора, а вторую и четвертую четверти периода, когда конденсатор разряжается, он отдает энергию генератору.

Таким образом, так же, как активное сопротивление, емкостное сопротивление ограничивает силу тока в цепи, но в отличие от активного сопротивления на емкостном сопротивлении электрическая энергия не превращается необратимо в другие виды энергии.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 402-404.

Конденсатор оказывает определённое сопротивление переменному току и совершенно не проводит постоянный. Это свойство находит применение в различных областях радиоэлектроники и электротехники. Ёмкостное сопротивление в цепи переменного тока зависит от частоты последнего и ёмкости конденсатора.

Основные понятия

Ёмкостное сопротивление - это величина , которая создаётся конденсатором, включённым в цепь. Сопротивление подводящих проводов должно быть непренебрежимо большим. При подаче переменного тока возникают процессы, обусловленные периодическим зарядом и разрядом конденсатора.

Период разбивается на четыре четверти. В течение первой четверти напряжение растёт. В этот момент по цепи проходит зарядный ток, сила которого будет уменьшаться, достигнув нуля, когда электродвижущая сила достигнет положительного максимума. Конденсатор полностью заряжен. После этого начнётся спад напряжения. Конденсатор будет разряжаться через подключённую к нему нагрузку. По цепи потечёт ток.

К концу полупериода величина напряжения будет равна нулю, а сила тока будет наибольшей. Разрядка завершена. В начале третьей четверти электродвижущая сила будет возрастать, изменив своё направление. Вновь начнётся процесс заряда. Направление зарядного тока в третью четверть будет таким же, как и в предыдущую. По мере зарядки конденсатора эта величина будет убывать. К концу третьей четверти процесс зарядки будет завершён.

Электродвижущая сила достигнет своего наибольшего отрицательного значения. А на той обкладке, на которой в течение первого полупериода был положительный заряд, теперь будет отрицательный. Во время четвёртой четверти значение электродвижущей силы снова будет стремиться к нулю. Конденсатор будет разряжаться. Соответственно, в цепи появится постепенно нарастающий ток. Процесс повторяется. Таким образом, фаза переменного тока в конденсаторной цепи опережает фазу напряжения на 90 градусов.

Формула сопротивления

Формула ёмкостного сопротивления выводится следующим образом:

Чтобы получить значение ёмкостного сопротивления в омах, следует разделить единицу на число, полученное после умножения угловой частоты на ёмкость. Из этой формулы вытекает, что чем больше ёмкость конденсатора или частота переменного тока, тем меньше его сопротивление.

Когда частота будет равна нулю (постоянный ток), ёмкостное сопротивление станет бесконечно большим. Конденсатор очень большой ёмкости будет проводить ток в широком диапазоне частот.

Применение на практике

Свойства конденсатора используются при конструировании различных фильтров. Действие ёмкостного сопротивления в этом случае зависит от способа подключения детали:

  • Если он присоединён параллельно нагрузке, то получится фильтр, задерживающий высокие частоты. С их ростом падает сопротивление конденсатора. Соответственно, нагрузка на высоких частотах шунтируется сильнее, чем на низких.
  • Если деталь подключена последовательно с нагрузкой, то получится фильтр, задерживающий низкие частоты. Эта схема также не пропускает постоянное напряжение.

Ещё одна область применения - отделение переменной составляющей от постоянной. Например, в оконечных каскадах усилителей звуковой частоты. Чем выше ёмкость, тем более низкую частоту способен воспроизвести подключённый громкоговоритель.

Благодаря своим свойствам конденсаторы используются в тех случаях, когда необходимо передать и постоянный, и переменный ток по одним и тем же проводам. Источник постоянного напряжения подключается к общему проводу и второму выводу ёмкости , через которую присоединяется источник переменного напряжения. На другой стороне происходит разделение: потребитель переменного подключается через конденсатор той же ёмкости, а потребитель постоянного - напрямую, до выводов детали.

Распространённый пример подобного использования - это телевизионная наружная антенна с усилителем. Сам телевизор или подключаемое к кабелю устройство, называемое «инжектором», подаёт напряжение питания. В антенном усилителе происходит разделение и фильтрация сигналов. Таким образом, ёмкостное сопротивление конденсатора находит широкое применение . Фильтры обеспечивают задержку одних сигналов и прохождение - других.

Благодаря этому свойству, можно передавать сразу и переменное, и постоянное напряжение, что имеет немаловажное значение при построении некоторых линий связи.

Определение 1

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

Рисунок 1.

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

где $U$ -- напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

где коэффициент $R$ -- называется активным сопротивлением . Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Ёмкостное сопротивление

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Рисунок 2.

Мы можем использовать следующие соотношения:

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac{\pi }{2}.$ Амплитуда напряжения на емкости равна:

Величину $X_C=\frac{1}{\omega C}$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Индуктивное сопротивление

Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.

Рисунок 3.

Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:

По условию $R=0. \mathcal E$ самоиндукции можно выразить как:

Из выражений (8), (9) следует, что:

Амплитуда напряжения в данном случае равна:

где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).

Закон Ома для цепей переменного тока

Определение 2

Выражение вида:

называют полным электросопротивлением , или импедансом , иногда называют законом Ома для переменного тока . Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.

Пример 1

Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $\nu$.

Решение:

Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.

Амплитудное значение силы тока выражается «законом Ома для переменного тока» :

оно связано с действующим значением силы тока как:

В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:

Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:

где $\omega =2\pi \nu .$

Ответ: $I=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$

Пример 2

Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).

Решение:

Напряжение на активном сопротивлении ($U_R$) равно:

Напряжение на конденсаторе ($U_C$) определяется как:

Ответ: $U_L=2\pi \nu L\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\ U_R=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},U_C=\frac{1}{C2\pi \nu }\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента — , который, как говорят, обладает активным сопротивлением . Еще иногда его называют омическим . Как нам говорит вики-словарь, «активный — это деятельный, энергичный, проявляющий инициативу». Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора ? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится


А также :


С помощью него мы будем смотреть напряжение и силу тока .

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта .

Кто не помнит — напомню. Имеем обыкновенный резистор:

Что будет, если через него прогнать электрический ток ?


На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах


И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи : I=U/R . Отсюда U=IR . Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока;-)

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому, наша схема примет вот такой вид:

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма — это напряжение с генератора U ген , а желтая осциллограмма — это напряжение с шунта U ш , в нашем случае — сила тока. Смотрим, что у нас получилось:

Частота 28 Герц:


Частота 285 Герц:


Частота 30 Килогерц:


Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:



Как мы видим, сила тока полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно , то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Смотрим осциллограммы:


Как вы видите, конденсатор обладает сопротивлением, так как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T — это


Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:


Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока


Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.


100 Герц


200 Герц


Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

где

Х с — реактивное сопротивление конденсатора, Ом

F — частота, Гц

С — емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:


Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Видите разницу? На катушке индуктивности ток отстает от напряжения на 90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током, ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.


Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Все с точностью наоборот! Можно даже сказать, что катушка — это полная противоположность конденсатору;-)

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц


34 Килогерца


17 Килогерц


10 Килогерц


Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

где

Х L — сопротивление катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность

где

Х L — реактивное сопротивление катушки, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

L — индуктивность, Генри

Почему не сгорает первичная обмотка трансформатора

Ну и теперь главный вопрос, который часто задают в личке: «Почему когда я меряю первичную обмотку трансформатора, у меня выдает от 10 Ом и больше в зависимости от трансформатора. На трансформаторных сварочных аппаратах вообще пару Ом! Ведь первичная обмотка трансформатора цепляется к 220 Вольтам! Почему не сгорает обмотка, ведь сопротивление обмотки всего то десятки или сотни Ом, и может случится !

А ведь и вправду, мощность равна как напряжение помноженное на ток P=IU . То есть через пару секунд от первичной обмотки трансформатора должен остаться уголек.

Дело все в том, что парные обмотки трансформатора представляют из себя катушку индуктивности с какой-то индуктивностью. Получается, что реальное сопротивление обмотки будет выражаться через формулу

поставьте сюда индуктивность, которая в трансформаторах составляет от единицы Генри и получим что-то типа от 300 и более Ом. Но это еще цветочки, ягодки впереди;-)

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или П/2 .


Мощность в цепи с реактивными радиоэлементами

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность — это сила тока помноженное на напряжение, то есть P=IU . Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2 . Здесь ток со знаком «плюс», а напряжение со знаком «минус». В итоге плюс на минус дает минус. Получается мощность со знаком «минус». А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Не знаю, какое было у вас детство, но я когда был салабоном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем «плющить» пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно — это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо — это уже другая история для полноценной статьи.

В третий промежуток времени t3 и ток и напряжение у нас со знаком «минус». Минус на минус — это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4 , снова ее отдает, так как плюс на минус дает минус.

В результате за весь период у нас суммарное потребление энергии равно чему?


Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:


где

R L — это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи. Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L — собственно сама индуктивность катушки

С — межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:


где

r — сопротивление диэлектрика и корпуса между обкладками

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (ESL) — эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Сопротивление конденсатора вычисляется по формуле:

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.