Аналоговый и цифровой сигналы. Различия

26.08.2019

Больше направлено на работу с цифровым вещанием. Оно считается более прогрессивным и передовым. Однако, чтобы понять, в чем его преимущество, нужно поглубже изучить терминологию.

Аналоговое телевидение

Аналоговое телевидение строится на основании аналогового сигнала. Он идет непрерывно, что не является показателем качества. Ведь если сигнал , страдает вся картинка и звук. В числе преимуществ аналогового сигнала называют тот факт, что он легко улавливается обычной эфирной . Но несмотря на очевидные его , аналоговый сигнал сегодня считается устаревшим и мало где используется. Минусами аналогового ТВ называют некачественный сигнал, отсутствие безопасного соединения и т.д.

Телевизоры, работающие с аналоговым сигналом, можно встретить в провинции. Цифровое ТВ для небольших городков не выгодно. Да и люди привыкают и не хотят изменять своим традициям.

Кроме того, аналоговый сигнал не может раскрыть весь потенциал современной видеотехники: плазменных и жидкокристаллических телевизоров.

Цифровое телевидение

Кабельное телевидение

Кабельное телевидение своим названием определяет только способ передачи информации, но никак не сигнал. Так, например, подготовленный к передаче цифровой или аналоговый сигнал можно передавать в той или иной среде передаче: через медный кабель, эфир, и т.д.

Поэтому не стоит выделять кабельное ТВ в отдельный вид, ведь оно может быть как цифровым, так и аналоговым.

Перед тем как вы выберете максимально подходящий вам вариант телевидения, обязательно взвесьте все варианты. Оцените имеющуюся у вас в доме технику. Ведь если у вас ламповый , цифровой сигнал будет проблематично, а вот в современных ЖК-телевизорах предусмотрены аналоговые разъемы. Поинтересуйтесь и тем, какие возможности предлагают вам ваши провайдеры телевидения.

Что такое Аналоговое и Цифровое вещание?

Параметры для платежной системы для формирования чеков:

Ставка НДС:

Предмет расчета:

Способ расчета:


(основные понятия аналогового и цифрового вещания)

В последнее время, в информационной сети, стало появляться все больше информации о переходе с аналогового радиовещания на цифровое, в связи с этим, появляется много вопросов по данной тематике, порождаются всевозможные слухи и предположения. В этой статье, я хочу пояснить, в чем различие "аналогового" и "цифрового" вещания, доступным и понятным для простого пользователя языком (по крайней мере, на сколько это возможно).
Для начала, давайте разберемся что это такое "аналоговый" сигнал.

Аналоговый сигнал

Разъяснять как всегда, я буду на простом примере. За пример, возьмем передачу голосовой информации от одного человека к другому.
Во время разговора, наши голосовые связки излучают определенную вибрацию различной тональности (частоты), и громкости (уровня звукового сигнала). Эта вибрация, пройдя некоторое расстояние, попадает в человеческое ухо, воздействуя там, на так называемую слуховую мембрану. Эта мембрана, начинает вибрировать с такой же частотой и силой вибрации какую излучали наши звуковые связки, с одним лишь отличием, что сила вибрации за счет преодоления расстояния, несколько ослабевает.
Так вот, передачу голосовой речи от одного человека к другому, можно смело назвать аналоговой передачей сигнала, и вот почему.
Здесь дело в том, что наши голосовые связки, излучают такую же звуковую вибрацию, какую и воспринимает само человеческое ухо (что говорим, то и слышим), то есть, передаваемый и принимаемый звуковой сигнал, имеет схожую форму импульса, и такой же частотный спектр звуковых вибраций, или по другому сказать, "аналогичной" звуковой вибрации.
Здесь, думаю понятно.

Теперь, рассмотрим более сложный пример. И за этот пример, возьмем упрощенную схему телефонного аппарата, то есть того телефона, которым люди пользовались задолго до появления сотовой связи.
Во время разговора, речевые звуковые вибрации передаются на чувствительную мембрану телефонной трубки (микрофона). Затем, в микрофоне, звуковой сигнал преобразуется в электрические импульсы, и далее поступает по проводам ко второй телефонной трубке, в которой, с помощью электромагнитного преобразователя (динамика или наушника) электрический сигнал преобразуется обратно в звуковой сигнал.
В приведенном выше примере, используется, опять же, "аналоговое" преобразование сигнала. То есть, звуковая вибрация имеет такую же частоту, как и частота электрического импульса в линии связи, а так же, звуковой и электрический импульсы, имеют схожую форму (то есть, аналогичную).
В передаче телевизионного сигнала, сам аналоговый радиотелевизионный сигнал имеет достаточно сложную форму импульса, а так же, достаточно высокую частоту этого импульса, ведь в нем передается на большие расстояния, как звуковая информация, так и видео.

С " аналоговым сигналом ", думаю, разобрались.

Со временем, количество телеканалов увеличилось, так же, на телефонных станциях увеличилось количество абонентов, появился Интернет. Вследствие этого, пропускная способность аналоговой передачи информации перестала удовлетворять современным требованиям. Это касается как наземных, проводных и радиовещательных линий приема-передачи сигнала, так и конечно же спутниковых линий связи.

Теперь, давайте разберемся, что такое "цифровой" сигнал.

Цифровой сигнал

За пример, "цифрового сигнала", возьмем принцип передачи информации с помощью достаточно известной "азбукой Морзе". Для тех, кто не знаком с таким видом передачи текстовой информации, далее я вкратце поясню основной принцип.
Раньше, когда передача сигнала по воздуху (с помощью радиосигнала), еще только развивалась, технические возможности приемо-передающей аппаратуры не позволяли передавать речевой сигнал на большие расстояния. Поэтому, вместо речевой информации использовали текстовую. Так как текст состоит из букв, то эти буквы передавались с помощью коротких и длинных импульсов тонального электрического сигнала.
Такая передача текстовой информации называлась - передача информации с помощью "Азбуки Морзе".
Тональный сигнал, по своим электрическим свойствам, имел большую пропускную способность, чем речевой, и вследствие этого радиус действия приемо-передающей аппаратуры увеличивался.
Единицами информации в такой передаче сигнала, условно назывались "точка" и "тире". Короткий тоновый сигнал означал точку, а длинный тоновый сигнал тире. Здесь, каждая буква алфавита состояла из определенного набора точек и тире. Так например, буква А обозначалась комбинацией ".-" (точка-тире), а буква Б "- ..." (тире-точка-точка-точка), ну и так далее.
То есть, передаваемый текст, кодировался с помощью точек и тире в виде коротких и длинных отрезках тонового сигнала. Если слова "АЗБУКА МОРЗЕ" выразить с помощью точек и тире, то это будет выглядеть так:(удалено)

Цифровой сигнал в сравнении с азбукой морзе

В основу цифрового сигнала, положен очень похожий принцип кодирования информации, только сами единицы информации там уже другие.
Любой цифровой сигнал состоит из так называемого "двоичного кода". Здесь, за единицы информации используются логический 0 (ноль), и логическая 1 (единица).
Если за пример, мы возьмем обычный карманный фонарик, то если включить его, то это как бы будет означать логическую единицу, а если выключим, то логический ноль.
В цифровых электронных микросхемах, за единицы логической 1 и 0, принимают определенный уровень электрического напряжения в вольтах. Так, к примеру, логическая единица будет означать 4,5 вольта, а за логический ноль 0,5 вольт. Естественно для каждого типа цифровых микросхем, значения величины напряжений логического нуля и единицы, разные.
Любая буква алфавита, как и на примере с описанной выше азбукой Морзе, в цифровом виде, будут состоять из определенного количества нулей и единиц, располагающиеся в определенной последовательности, которые в свою очередь, входят в пакеты логических импульсов. Так например, буква А будет одним пакетом импульсов, а буква Б другим пакетом, но в букве Б последовательность нулей и единичек будет уже другой чем в букве А (то есть, различной комбинации расположения нулей и единичек).
В цифровой код, можно закодировать практически любой вид передаваемого электрического сигнала (включая и аналоговый), и не важно, будет это картинка, видео сигнал, аудио сигнал, или текстовая информация, причем можно передавать эти виды сигнала, практически одновременно (в едином цифровом потоке).
Цифровой сигнал, по своим электрическим свойствам (так же как и в примере с тональным сигналом), имеет большую пропускную способность передачи информации, нежели аналоговый сигнал. Так же, цифровой сигнал, можно передавать на большее расстояние, чем аналоговый, причем без снижения качества передаваемого сигнала.

Какую антенну выбрать?


Какая антенна нужна для приёма цифрового эфирного телевидения?

Для приема эфирного цифрового телевидения, необходима антенна ДМВ диапазона.


Достаточно ли комнатной антенны для качественного приёма?
Качество приема сигнала зависит от удаленности передатчика и его мощности. Чем ближе вы расположены к нему, тем качественнее приём.


Какие модели антенн позволяют принимать цифровое эфирное телевидение? Сколько стоят такие антенны?
В качестве примера:


Aльфа H 311 DVB-T



ASP 8 SUPER DVB-T

Возможно ли получить качественный телесигнал без специальной антенны?
Да, возможно, только в том случае, если Вы находитесь в непосредственной близости от источника сигнала. В таком случае антенна конечно не понадобится, однако все таки надо прикрутить к антенному входу на телевизоре небольшой кусок проволоки, для более точного приема сигнала.

Где и как возможно установить антенну?
В качестве места установки можно выбрать: крашу, стену, оконную раму, балкон. Чаще всего в многоэтажных домах антенны устанавливаются на крыше здания, если рассматривать частные дома, то там не редко используют мачты диаметром 40-50мм, высотой около 5-6 метров, можно и меньше, однако все зависит от места положения антенны относительно передатчика сигнала. Чем качественнее установка, тем лучше прием сигнала, нужно избегать пока.

Где купить антенну для эфирного цифрового телесигнала?
Приобрести антенну можно в гипермаркетах бытовой техники, а также в любом магазине, который занимается продажей эфирного оборудования, на радиорынке. Но, прежде чем совершить покупку, уточните у продавца, принимает ли эта антенна именно ДМВ диапазон.
В чем отличие между активной и пассивной антенной? Какую выбрать?
Отличие заключается в наличии у активной антенны усилителя приема сигнала, работающего от сети. Активная антенна лучше принимает на удалении от передатчика, пассивная наоборот, лучше работает в непосредственной близости от него. Эффективность активной антенны снижается, если вы расположены неподалеку от телевышки, она начинает "захлебываться”. Поэтому в таких ситуациях лучше использовать пассивную антенну.


В чем отличие МВ и ДМВ диапазонов?
Сигналы эфирного телевидения передаются при помощи ультракоротких радиоволн, сокращенно УКВ, в полосе частот от 48 до 862 МГц. Эта полоса частот условно разделена на 5 диапазонов, объединенных в две группы:
- метровый или МВ (VHF), диапазоны I, II, III; (47- 160 МГц)
- дециметровый или ДМВ (UHF), диапазоны IV, V. (470-862 МГц)
В разных странах существуют некоторые различия в распределении телевизионных каналов между диапазонами эфирного телевидения. В стандарте, используемом в странах СНГ, метровый диапазон включает в себя 1-12 каналы, дециметровый 21-60 каналы.

Телеканалы в составе пакета РТРС-1

Состав пакета цифровых телеканалов РТРС-1 соответствует указам Президента России об общероссийских обязательных общедоступных телеканалах: № 715 от 24 июня 2009 г., № 456 от 17 апреля 2012 г., № 167 от 24 апреля 2013 г.

Телеканалы в составе пакета РТРС-2

«Первый развлекательный СТС»

Основные показатели сети цифрового эфирного вещания

Тип сети Синхронная (7 одночастотных зон)
Очередь строительства 2
Количество передающих станций 30
Тип транспортной сети Спутниковая / РРЛ
Итоговый охват населения эфирным телерадиовещанием 98,8%
Количество программ пакета РТРС-1 10 общероссийских обязательных телеканалов, 3 радиопрограммы
Количество программ пакета РТРС-2 10 общероссийских телеканалов
Стандарт вещания ∕ алгоритм сжатия DVB-T2/MPEG-4
Режим работы оборудования DVB-T2 Multiple PLP

Центр консультационной поддержки расположен на первом этаже в 2-х этажном доме в центральной части города рядом с городским садом имени Глинки, сквером памяти Героям и площадью Ленина в непосредственной близости от остановок общественного транспорта, расположенных по ул. Дзержинского.

Объекты тестового цифрового вещания пакета РТРС-1

Район Номер ТВК Мощность передатчика, кВт Статус вещания
Рославльский Рославль 31 554 2,00 вещает
Кардымовский Смогири 39 618 5,00 вещает
Смоленск 39 618 1,00 вещает
Сафоновский Игнатково 23 490 0,50 вещает
Темкинский Темкино 58 770 0,50 вещает
Сафоновский Терентеево 23 490 0,25 вещает
Угранский Угра 29 538 0,25 вещает
Гагаринский Акатово 58 770 2,00
Дорогобужский Дорогобуж 29 538 0,50
Демидовский Дубровка 58 770 1,00
Демидовский Михайловское 58 770 1,00
Велижский Патики 58 770 2,00
Духовщинский Пречистое 58 770 1,00
Хиславичский Хиславичи 31 554 0,25
Холм-Жирковский Холм-Жирковский 23 490 2,00
Вяземский Дебрево 29 538 0,25 вещает
Гагаринский Карманово 39 618 0,25 вещает
Угранский Красное 58 770 0,50 вещает
Краснинский Красный 39 618 0,25 вещает
Угранский Мытишино 29 538 0,50 вещает
Монастырщинский Новомихайловское 31 554 0,50 вещает
Ельнинский Погорное 29 538 0,50 вещает
Починковский Починок 31 554 0,50 вещает
Темкинский Рязаново 58 770 0,10 вещает
Рославльский Савеево 31 554 0,50
Вяземский Селеево 58 770 2,00
Шумячский Студенец 31 554 0,50 вещает
Сычёвский Сычевка 39 618 0,50 вещает
Новодугинский Торбеево 58 770 0,50
Руднянский Шеровичи 39 618 0,50

Объекты тестового цифрового вещания пакета РТРС-2

Район Пункт установки объекта цифрового вещания Номер ТВК Центральная частота вещания, МГц Мощность передатчика, кВт Статус вещания
Рославльский Рославль 51 714 2,00 вещает
Кардымовский Смогири 46 674 5,00
Смоленск 46 674 1,00 вещает
Сафоновский Игнатково 25 506 0,50
Темкинский Темкино 31 554 0,50
Сафоновский Терентеево 25 506 0,25
Угранский Угра 32 562 0,25
Гагаринский Акатово 31 554 2,00
Дорогобужский Дорогобуж 32 562 0,50
Демидовский Дубровка 26 514 1,00
Демидовский Михайловское 26 514 1,00
Велижский Патики 26 514 2,00
Духовщинский Пречистое 26 514 1,00
Хиславичский Хиславичи 51 714 0,25
Холм-Жирковский Холм-Жирковский 25 506 2,00
Вяземский Дебрево 32 562 0,25
Гагаринский Карманово 44 658 0,25
Угранский Красное 31 554 0,50
Краснинский Красный 46 674 0,25
Угранский Мытишино 32 562 0,50
Монастырщинский Новомихайловское 51 714 0,50
Ельнинский Погорное 32 562 0,50
Починковский Починок 51 714 0,50
Темкинский Рязаново 31 554 0,10
Рославльский Савеево 51 714 0,50
Вяземский Селеево 31 554 2,00
Шумячский Студенец 51 714 0,50
Сычёвский Сычевка 44 658 0,50
Новодугинский Торбеево 31 554 0,50
Руднянский Шеровичи 46 674 0,50

Человек ежедневно разговаривает по телефону, смотрит передачи различных телеканалов, слушает музыку, бороздит по просторам интернета. Все средства связи и иная информационная среда основываются на передаче сигналов различных типов. Многие задаются вопросами о том, чем отличается аналоговая информация от других видов данных, что такое цифровой сигнал. Ответ на них можно получить, разобравшись в определении различных электросигналов, изучив их принципиальное отличие между собой.

Аналоговый сигнал

Аналоговый сигнал (континуальный) – естественный инфосигнал, имеющий некоторое число параметров, которые описываются временной функцией и беспрерывным множеством всевозможных значений.

Человеческие органы чувств улавливают всю информацию из окружающей среды в аналоговом виде. Например, если человек видит рядом проезжающий грузовик, то его движение наблюдается и изменяется непрерывно. Если бы мозг получал информацию о передвижении автотранспорта раз в 15 секунд, то люди всегда бы попадали под его колеса. Человек оценивает расстояние моментально, и в каждый временной момент оно определено и различно.

То же самое происходит и с иной информацией – люди слышат звук и оценивают его громкость, дают оценку качеству видеосигнала и тому подобное. Соответственно, все виды данных имеют аналоговую природу и постоянно изменяются.

На заметку. Аналоговый и цифровой сигнал учувствует в передаче речи собеседников, которые общаются по телефону, сеть интернет работает на основе обмена этих каналов сигналов по сетевому кабелю. Такого рода сигналы имеют электрическую природу.

Аналоговый сигнал описывается математической временной функцией, похожей на синусоиду. Если совершить замеры, к примеру, температуры воды, периодически нагревая и охлаждая ее, то на графике функции будет отображена беспрерывная линия, которая отражает ее значение в каждый временной промежуток.

Во избежание помех такие сигналы требуется усиливать посредством специальных средств и приборов. Если уровень помех сигнала высокий, то и усилить его нужно сильнее. Этот процесс сопровождается большими затратами энергии. Усиленный радиосигнал, например, нередко сам может стать помехой для иных каналов связи.

Интересно знать. Аналоговые сигналы ранее применялись в любых видах связи. Однако сейчас он повсеместно вытесняется или уже вытеснен (мобильная связь и интернет) более совершенными цифровыми сигналами.

Аналоговое и цифровое телевидение пока сосуществуют вместе, но цифровой тип телерадиовещания с большой скоростью сменяет аналоговый способ передачи данных из-за своих существенных преимуществ.

Для описания этого типа инфосигнала применяются три основных параметра:

  • частота;
  • протяженность волны;
  • амплитуда.

Недостатки аналогового сигнала

Аналоговый сигнал имеют нижеследующие свойства, в которых прослеживается их разница от цифрового варианта:

  1. Этот вид сигналов характеризуется избыточностью. То есть аналоговая информация в них не отфильтрована – несут много лишних информационных данных. Однако пропустить информацию через фильтр возможно, зная дополнительные параметры и природу сигнала, например, частотным методом;
  2. Безопасность. Он практически полностью беспомощен перед неавторизированными вторжениями извне;
  3. Абсолютная беспомощность перед разнородными помехами. Если на канал передачи данных наложена любая помеха, то она будет в неизменном виде передана сигнальным приемником;
  4. Отсутствие конкретной дифференциации уровней дискретизации – качество и количество передаваемой информации ничем не ограничивается.

Вышеприведенные свойства являются недостатками аналогового способа передачи данных, на основании которых можно считать его полностью себя изжившим.

Цифровой и дискретный сигналы

Цифровые сигналы – искусственные инфосигналы, представленные в виде очередных цифровых значений, которые описывают конкретные параметры предаваемой информации.

Для информации. Сейчас преимущественно применяется простой в кодировании битовый поток – двоичный цифровой сигнал. Именно такой тип может использоваться в двоичной электронике.

Различие цифрового типа передачи данных от аналогового варианта состоит в том, что такой сигнал имеет конкретное число значений. В случае с битовым потоком их два: «0» и «1».

Переход от нулевого значения к максимальному в цифровом сигнале производится резко, что позволяет принимающему оборудованию более четко считывать его. При появлении определенных шумов и помех приемнику будет легче декодировать цифровой электросигнал, чем при аналоговой информационной передаче.

Однако цифровые сигналы отличаются от аналогового варианта одним недостатком: при высоком уровне помех их восстановить невозможно, а из континуального сигнала присутствует возможность извлечения информации. Примером этому может послужить разговор по телефону двух человек, в процессе которого могут пропадать целые слова и даже словосочетания одного из собеседников.

Этот эффект в цифровой среде называется эффектом обрыва, который можно локализовать уменьшением протяженности линии связи или установкой повторителя, какой полностью копирует изначальный вид сигнала и передает его дальше.

Аналоговая информация может передаваться по цифровым каналам, пройдя процесс оцифровки специальными устройствами. Такой процесс именуется аналогово-цифровым преобразованием (АЦП). Данный процесс может быть и обратным – цифро-аналоговое преобразование (ЦАП). Примером устройства ЦАП может послужить приемник цифрового ТВ.

Цифровые системы также отличает возможность шифрования и кодирования данных, которая стала важной причиной оцифровывания мобильной связи и сети интернет.

Дискретный сигнал

Существует и третий тип информации – дискретная. Сигнал такого рода является прерывистым и меняется за момент времени, принимая любое из возможных (предписанных заранее) значений.

Дискретная передача информации характеризуется тем, что изменения происходят по трем сценариям:

  1. Электросигнал меняется только по времени, оставаясь непрерывным (неизменным) по величине;
  2. Он изменяется только по уровню величины, оставаясь непрерывным по временному параметру;
  3. Также он может изменяться одномоментно и по величине, и по времени.

Дискретность нашла применение при пакетной передаче большого объема данных в вычислительных системах.

Чем отличается спутниковое телевидение от кабельного, цифровое от аналогового и как выбрать тип вещания– попробуем разобраться в тонкостях данного вопроса.

Для начала, рассмотрим типы вещания. Их всего три:

— эфирное вещание. В этом случае трансляция каналов производится с помощью телевизионных вышек. Чтобы принимать данный тип вещания необходимо иметь антенну для приема сигнала.

— кабельное вещание. Его доставляют до потребителя компании — кабельные операторы. В данном случае сигнал передается по кабелю, который должны провести в вашу квартиру специалисты, если вы к ним обратитесь, конечно.

— спутниковое вещание. Спутники, распределенные над экватором Земли на высоте 36 тыс. км осуществляют трансляцию каналов. Чтобы принять сигнал со спутников нужно обзавестись антеннами – «тарелками», направленными на них.

Эфирное и кабельное телевидение бывает двух видов – аналоговое и цифровое. Они отличаются способом передачи сигнала. Аналоговый сигнал по качеству изображения и звука значительно уступает цифровому, в котором, кстати, еще и возрастает количество транслируемых каналов. В связи с однозначным преимуществом, последний набирает все большую популярность. В случае со спутниковым телевидением, «цифра» полностью вытеснила аналоговое вещание.

Для того, чтобы работать с цифровым сигналом, модель телевизора должна быть подходящей. В том случае, если это не так, можно воспользоваться ресивером. Это устройство преобразует цифровой сигнал в другой формат, понятный данной технике.

Важно знать, что форматы цифрового вещания для эфира, кабельной сети и для спутников будут совершенно разными. Европейские стандарты выглядят так:

  • DVB-T – эфирное вещание
  • DVB-C — кабельное вещание
  • DVB-S и DVB-S2 — спутниковые стандарты вещания. Последний более современный и перспективный.

По каким критериям выбирать модель вещания?

Абонентская плата. На сегодняшний день таковая предусматривается кабельным и спутниковым TV, эфирное примкнет к ним сразу же после перехода с аналогового вещания на цифровое. У спутниковых операторов размер абонентской платы зависит от количества телеканалов и их тематики. Постепенно такой подход внедряется у операторов кабельного телевидения, а в будущем наверняка распространится на эфирную модель.

Необходимое оборудование. Каждый тип доставки сигнала требует определенного технического оснащения – антенну для приема и телевизор или TV-тюнер, поддерживающий нужный тип вещания. Цены на данные устройства различаются – этот момент тоже нужно учитывать при выборе.

Условия приема. Чтобы сигнал передавался без помех, нужно учитывать особенности типа вещания и условия его приема. То есть, если вы будете смотреть телевизор на даче далеко за городом, то лучшим вариантом будет спутниковое TV. Если живете в городе на одном из последних этажей высотного дома, то вы можете спокойно выбирать эфирное вещание.

В случае, если ваш дом, наоборот, малоэтажный, то подойдет способ передачи сигнала по кабелям (если ваш дом подключен к кабельному телевидению).

Ваши предпочтения. Кому-то хватает несколько общественных каналов, а кто-то хочет иметь доступ к широкому их разнообразию. У каждого оператора спутникового и кабельного телевидения набор предлагаемых площадок отличается, поэтому стоит ориентироваться на свои интересы.

Бытует мнение, что спутниковое телевидение качественней остальных, но подобное утверждение спорно. Если вещание цифровое, то, вне зависимости от способа передачи сигнала, изображение может иметь весьма высокую четкость.

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.

На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.

Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.

Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.

Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.

На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.

В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.