Биполярный транзистор в схеме с общим эмиттером. Усилительный каскад с общим эмиттером

16.08.2019

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры , собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:

(1)

Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб" .

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Дата последнего обновления файла 31.05.2018

Литература:

Вместе со статьей "Схема с общим эмиттером (каскад с общим эмиттером)" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/

В данной статье расскажем про транзистор. Покажем схемы его подключения и расчёт транзисторного каскада с общим эмиттером.

ТРАНЗИСТОР — это полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (Si – кремния, или — германия), содержащего не менее трёх областей с различной - электронной (n ) и дырочной (p ) - проводимостью. Изобретён в 1948 американцами У. Шокли, У. Браттейном и Дж. Бардином. По физической структуре и механизму управления током различают транзисторы биполярные (чаще называют просто транзисторами) и униполярные (чаще называют полевыми транзисторами). В первых, содержащих два, или более электронно-дырочных перехода, носителями заряда служат как электроны, так и дырки, во вторых - либо электроны, либо дырки. Термн «транзистор» нередко используют для обозначения портативных радиовещательных приёмников на полупроводниковых приборах.

Управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.).

Биполярный транзистор

Биполярный транзистор может быть n-p-n и p-n-p проводимости. Не заглядывая во внутренности транзистора, можно отметить разницу проводимостей лишь в полярности подключения в практических схемах источников питания, конденсаторов, диодов, которые входят в состав этих схем. На рисунке справа графически изображены n-p-n и p-n-p транзисторы.

У транзистора три вывода. Если рассматривать транзистор как четырёхполюсник, то у него должно быть два входных и два выходных вывода. Следовательно, какой то из выводов должен быть общим, как для входной, так и для выходной цепи.

Схемы включения транзистора

Схема включения транзистора с общим эмиттером – предназначена для усиления амплитуды входного сигнала по напряжению и по току. При этом входной сигнал, усиливаясь транзистором, инвертируется. Другими словами фаза выходного сигнала поворачивается на 180 градусов. Эта схема, является основной, для усиления сигналов разной амплитуды и формы. Входное сопротивление транзисторного каскада с ОЭ бывает от сотен Ом до единиц килоом, а выходное — от единиц до десятков килоом.

Схема включения транзистора с общим коллектором – предназначена для усиления амплитуды входного сигнала по току. Усиления по напряжению в такой схеме не происходит. Правильнее сказать, коэффициент усиления по напряжению даже меньше единицы. Входной сигнал транзистором не инвертируется.
Входное сопротивление транзисторного каскада с ОК бывает от десятков до сотен килоом, а выходное в пределах сотни ом — единиц килоом. Благодаря тому, что в цепи эмиттера находится, как правило, нагрузочный резистор, схема обладает большим входным сопротивлением. Кроме того, благодаря усилению входного тока, она обладает высокой нагрузочной способностью. Эти свойства схемы с общим коллектором используются для согласования транзисторных каскадов — как «буферный каскад». Так как, входной сигнал, не усиливаясь по амплитуде «повторяется» на выходе, схему включения транзистора с общим коллектором ещё называют Эмиттерный повторитель .

Имеется ещё Схема включения транзистора с общей базой . Эта схема включения в теории есть, но в практике она реализуется очень тяжело. Такая схема включения используется в высокочастотной технике. Особенность её в том, что у неё низкое входное сопротивление, и согласовать такой каскад по входу сложно. Опыт в электронике у меня не малый, но говоря об этой схеме включения транзистора, я извините, ничего не знаю! Пару раз использовал как «чужую» схему, но так и не разбирался. Объясню: по всем физическим законам транзистор управляется его базой, вернее током, протекающим по пути база-эмиттер. Использование входного вывода транзистора — базы на выходе — не возможно. На самом деле базу транзистора через конденсатор «сажают» по высокой частоте на корпус, а на выходе её и не используют. А гальванически, через высокоомный резистор, базу связывают с выходом каскада (подают смещение). Но подавать смещение, по сути можно откуда угодно, хоть от дополнительного источника. Всё равно, попадающий на базу сигнал любой формы гасится через тот же самый конденсатор. Чтобы такой каскад работал, входной вывод — эмиттер через низкоомный резистор «сажают» на корпус, отсюда и низкое входное сопротивление. В общем, схема включения транзистора с общей базой — тема для теоретиков и экспериментаторов. На практике она встречается крайне редко. За свою практику в конструировании схем никогда не сталкивался с необходимостью использования схемы включения транзистора с общей базой. Объясняется это свойствами этой схемы включения: входное сопротивление — от единиц до десятков Ом, а выходное сопротивление — от сотен килоом до единиц мегаом. Такие специфические параметры — редкая потребность.

Биполярный транзистор может работать в ключевом и линейном (усилительном) режимах. Ключевой режим используется в различных схемах управления, логических схемах и др. В ключевом режиме, транзистор может находиться в двух рабочих состояниях – открытом (насыщенном) и закрытом (запертом) состоянии. Линейный (усилительный) режим используется в схемах усиления гармонических сигналов и требует поддержания транзистора в «наполовину» открытом, но не насыщенном состоянии.

Для изучения работы транзистора, мы рассмотрим схему включения транзистора с общим эмиттером, как наиболее важную схему включения.

Схема изображена на рисунке. На схеме VT – собственно транзистор. Резисторы R б1 и R б2 – цепочка смещения транзистора, представляющая собой обыкновенный делитель напряжения. Именно эта цепь обеспечивает смещение транзистора в «рабочую точку» в режиме усиления гармонического сигнала без искажений. Резистор R к – нагрузочный резистор транзисторного каскада, предназначен для подвода к коллектору транзистора электрического тока источника питания и его ограничения в режиме «открытого» транзистора. Резистор R э – резистор обратной связи, по своей сути увеличивает входное сопротивление каскада, при этом, уменьшает усиление входного сигнала. Конденсаторы С выполняют функцию гальванической развязки от влияния внешних цепей.

Чтобы Вам было понятнее, как работает биполярный транзистор, мы проведём аналогию с обычным делителем напряжения (см. рис. ниже). Для начала, резистор R 2 делителя напряжения сделаем управляемым (переменным). Изменяя сопротивление этого резистора, от нуля до «бесконечно» большого значения, мы можем получить на выходе такого делителя напряжение от нуля до значения, подаваемого на его вход. А теперь, представим себе, что резистор R 1 делителя напряжения – это коллекторный резистор транзисторного каскада, а резистор R 2 делителя напряжения – это переход транзистора коллектор-эмиттер. При этом, подавая на базу транзистора управляющее воздействие в виде электрического тока, мы изменяем сопротивление перехода коллектор-эмиттер, тем самым меняем параметры делителя напряжения. Отличие от переменного резистора в том, что транзистор управляется слабым током. Именно так и работает биполярный транзистор. Вышеуказанное изображено на рисунке ниже:

Для работы транзистора в режиме усиления сигнала, без искажения последнего, необходимо обеспечить этот самый рабочий режим. Говорят о смещении базы транзистора. Грамотные специалисты тешат себя правилом: Транзистор управляется током – это аксиома. Но режим смещения транзистора устанавливается напряжением база-эмиттер, а не током – это реальность. И у того, кто не учитывает напряжение смещения, никакой усилитель работать не будет. Поэтому в расчётах его значение должно учитываться.

Итак, работа биполярного транзисторного каскада в режиме усиления происходит при определённом напряжении смещения на переходе база-эмиттер. Для кремниевого транзистора значение напряжения смещения лежит в пределах 0,6…0,7 вольт, для германиевого – 0,2…0,3 вольта. Зная об этом понятии, можно не только рассчитывать транзисторные каскады, но и проверять исправность любого транзисторного усилительного каскада. Достаточно мультиметром с высоким внутренним сопротивлением измерить напряжение смещения база-эмиттер транзистора. Если оно не соответствует 0,6…0,7 вольт для кремния, или 0,2…0,3 вольта для германия, тогда ищите неисправность именно здесь – либо неисправен транзистор, либо неисправны цепи смещения или развязки этого транзисторного каскада.

Вышеуказанное, изображено на графике – вольтамперной характеристике (ВАХ).

Большинство из «спецов», посмотрев на представленную ВАХ скажет: Что за ерунда нарисована на центральном графике? Так выходная характеристика транзистора не выглядит! Она представлена на правом графике! Отвечу, там всё правильно, а началось это с электронно-вакуумных ламп. Раньше вольтамперной характеристикой лампы считалось падение напряжения на анодном резисторе. Сейчас, продолжают измерять на коллекторном резисторе, а на графике приписывают буквы, обозначающие падение напряжения на транзисторе, в чём глубоко ошибаются. На левом графике I б – U бэ представлена входная характеристика транзистора. На центральном графике I к – U кэ представлена выходная вольтамперная характеристика транзистора. А на правом графике I R – U R представлен вольтамперный график нагрузочного резистора R к , который обычно выдают за вольтамперную характеристику самого транзистора.

На графике имеет место линейный участок, используемый для линейного усиления входного сигнала, ограниченный точками А и С . Средняя точка – В , является именно той точкой, в которой необходимо содержать транзистор, работающий в усилительном режиме. Этой точке соответствует определённое напряжение смещения, которое при расчётах обычно берут: 0,66 вольт для транзистора из кремния, или 0,26 вольт для транзистора из германия.

По вольтамперной характеристике транзистора мы видим следующее: при отсутствии, или малом напряжении смещения на переходе база-эмиттер транзистора, ток базы и ток коллектора отсутствуют. В этот момент на переходе коллектор-эмиттер падает всё напряжение источника питания. При дальнейшем повышении напряжения смещения база-эмиттер транзистора, транзистор начинает открываться, появляется ток базы и вместе с ним растёт ток коллектора. При достижении «рабочей области» в точке С , транзистор входит в линейный режим, который продолжается до точки А . При этом, падение напряжения на переходе коллектор-эмиттер уменьшается, а на нагрузочном резисторе R к , наоборот увеличивается. Точка В – рабочая точка смещения транзистора, — это такая точка, при которой на переходе коллектор — эмиттер транзистора, как правило, устанавливается падение напряжения равное ровно половине напряжения источника питания. Отрезок АЧХ от точки С , до точки А называют рабочей областью смещения. После точки А , ток базы и следовательно ток коллектора резко возрастают, транзистор полностью открывается — входит в насыщение. В этот момент, на переходе коллектор-эмиттер падает напряжение обусловленное структурой n-p-n переходов, которое приблизительно равно 0,2…1 вольт, в зависимости от типа транзистора. Всё остальное напряжение источника питания падает на сопротивлении нагрузки транзистора – резисторе R к ., который кроме того, ограничивает дальнейший рост тока коллектора.

По нижним «дополнительным» рисункам, мы видим, как изменяется напряжение на выходе транзистора в зависимости от подаваемого на вход сигнала. Выходное напряжение (падение напряжения на коллекторе) транзистора противофазно (на 180 градусов) к входному сигналу.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:

Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);

Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;

В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;

Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h 21 . Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);

Коллекторное (R к ) и эмиттерное (R э ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада R вх =R э *h 21 , а выходное равно R вых =R к . Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора R э ;

Номиналы резисторов R к и R э ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Порядок и пример расчёта транзисторного каскада с ОЭ

Исходные данные:

Питающее напряжение U и.п. =12 В.

Выбираем транзистор, например: Транзистор КТ315Г, для него:

P max =150 мВт; I max =150 мА; h 21 >50.

Принимаем R к =10*R э

Напряжение б-э рабочей точки транзистора принимаем U бэ = 0,66 В

Решение:

1. Определим максимальную статическую мощность, которая будет рассеиваться на транзисторе в моменты прохождения переменного сигнала, через рабочую точку В статического режима транзистора. Она должна составлять значение, на 20 процентов меньше (коэффициент 0,8) максимальной мощности транзистора, указанной в справочнике.

Принимаем P рас.max =0,8*P max =0,8*150 мВт=120 мВт

2. Определим ток коллектора в статическом режиме (без сигнала):

I к0 =P рас.max /U кэ0 =P рас.max /(U и.п. /2) = 120мВт/(12В/2) = 20мА.

3. Учитывая, что на транзисторе в статическом режиме (без сигнала) падает половина напряжения питания, вторая половина напряжения питания будет падать на резисторах:

(R к +R э )=(U и.п. /2)/I к0 = (12В/2)/20мА=6В/20мА = 300 Ом.

Учитывая существующий ряд номиналов резисторов, а также то, что нами выбрано соотношение R к =10*R э , находим значения резисторов:

R к = 270 Ом; R э = 27 Ом.

4. Найдем напряжение на коллекторе транзистора без сигнала.

U к0 =(U кэ0 + I к0 *R э )=(U и.п. — I к0 *R к ) = (12 В — 0,02А * 270 Ом) = 6,6 В.

5. Определим ток базы управления транзистором:

I б =I к /h 21 =/h 21 = / 50 = 0,8 мА.

6. Полный базовый ток определяется напряжением смещения на базе, которое задается делителем напряжения R б1 ,R б2 . Ток резистивного базового делителя должен быть на много больше (в 5-10 раз) тока управления базы I б , чтобы последний не влиял на напряжение смещения. Выбираем ток делителя в 10 раз большим тока управления базы:

R б1 ,R б2 : I дел. =10*I б = 10 * 0,8 мА = 8,0 мА.

Тогда полное сопротивление резисторов

R б1 +R б2 =U и.п. /I дел. = 12 В / 0,008 А = 1500 Ом.

7. Найдём напряжение на эмиттере в режиме покоя (отсутствия сигнала). При расчете транзисторного каскада необходимо учитывать: напряжение база-эмиттер рабочего транзистора не может превысить 0,7 вольта! Напряжение на эмиттере в режиме без входного сигнала примерно равно:

U э =I к0 *R э = 0,02 А * 27 Ом= 0,54 В,

где I к0 — ток покоя транзистора.

8. Определяем напряжение на базе

U б =U э +U бэ =0,54 В+0,66 В=1,2 В

Отсюда, через формулу делителя напряжения находим:

R б2 = (R б1 +R б2 )*U б /U и.п. = 1500 Ом * 1,2 В / 12В = 150 Ом R б1 = (R б1 +R б2 )-R б2 = 1500 Ом — 150 Ом = 1350 Ом = 1,35 кОм.

По резисторному ряду, в связи с тем, что через резистор R б1 течёт ещё и ток базы, выбираем резистор в сторону уменьшения: R б1 =1,3 кОм.

9. Разделительные конденсаторы выбирают исходя из требуемой амплитудно-частотной характеристики (полосы пропускания) каскада. Для нормальной работы транзисторных каскадов на частотах до 1000 Гц необходимо выбирать конденсаторы номиналом не менее 5 мкФ.

На нижних частотах амплитудно-частотная характеристика (АЧХ) каскада зависит от времени перезаряда разделительных конденсаторов через другие элементы каскада, в том числе и элементы соседних каскадов. Ёмкость должна быть такой, чтобы конденсаторы не успевали перезаряжаться. Входное сопротивление транзисторного каскада много больше выходного сопротивления. АЧХ каскада в области нижних частот определяется постоянной времени t н =R вх *C вх , где R вх =R э *h 21 , C вх — разделительная входная емкость каскада. C вых транзисторного каскада, это C вх следующего каскада и рассчитывается она так же. Нижняя частота среза каскада (граничная частота среза АЧХ) f н =1/t н . Для качественного усиления, при конструировании транзисторного каскада необходимо выбирать, чтобы соотношение 1/t н =1/(R вх *C вх )< в 30-100 раз для всех каскадов. При этом чем больше каскадов, тем больше должна быть разница. Каждый каскад со своим конденсатором добавляет свой спад АЧХ. Обычно, достаточно разделительной емкости 5,0 мкФ. Но последний каскад, через Cвых обычно нагружен низкоомным сопротивлением динамических головок, поэтому емкость увеличивают до 500,0-2000,0 мкФ, бывает и больше.

Расчёт ключевого режима транзисторного каскада производится абсолютно так же, как и ранее проведённый расчёт усилительного каскада. Отличие заключается только в том, что ключевой режим предполагает два состояния транзистора в режиме покоя (без сигнала). Он, или закрыт (но не закорочен), или открыт (но не перенасыщен). При этом, рабочие точки «покоя», находятся за пределами точек А и С изображённых на ВАХ. Когда на схеме в состоянии без сигнала транзистор должен быть закрыт, необходимо из ранее изображённой схемы каскада удалить резистор R б1 . Если же требуется, чтобы транзистор в состоянии покоя был открыт, необходимо в схеме каскада увеличить резистор R б2 в 10 раз от расчётного значения, а в отдельных случаях, его можно удалить из схемы.

Схема с общим эмиттером

Схема включения транзистора с общим эмиттером (ОЭ) изображена на рис. 5.1. Входным электродом является база (точнее, входной сигнал U в x приложен к переходу эмиттер – база, т. е. U в x = U БЭ = f Б – f Э, где f Б и f Э – соответственно, потенциалы базы и эмиттера). Выходным электродом является коллектор, т. е. выходное напряжение U вы x равно падению напряжения между коллектором и эмиттером U K Э: U вы x = U КЭ = f K – f Э, где f K – потенциал коллектора.

Рис. 5.1

Таким образом, эмиттер является «общим электродом» и для U в x , и для U вы x , чем и объясняется название схемы. Допустим, что эмиттер заземлен и f Э = 0. В большинстве случаев непосредственное соединение эмиттера с землей применяют редко, но здесь рассматривается именно схема с заземленным эмиттером, так как наличие дополнительных элементов R Э и C Э не изменяет основной принцип работы схемы с ОЭ, но сильно усложняет объяснение.

Емкости C p 1 и С p 2 будем считать в диапазоне частот сигнала короткими замыканиями, а для постоянных питающих напряжений они, естественно, представляют собой разрывы. Впоследствии вклад С p 1 и С p 2 в характеристики схемы и их назначение будут оговорены.

Для объяснения работы схемы используем известное из физики полупроводников явление: p n- переход при подаче на р -полупроводник положи-

тельного потенциала (относительно потенциала n -полупроводника) открывается и через переход течет ток; причем в определенных пределах ток прямо пропорционален разности потенциалов на переходе. К базе транзистора приложено постоянное положительное напряжение, определяемое значением напряжения источника питания Е и соотношением сопротивлений R Б 1 и R Б2 (R Б 1 и R Б2 называют базовым делителем), поэтому f Б всегда превышает f Э и переход эмиттер – база открыт.

Если теперь учесть, что на базу транзистора кроме постоянного положительного напряжения U в x = = E (R Б2 / (R Б1 + R Б2)) поступает также переменный сигнал U в x ≈ (для простоты примем, что U в x ≈ – гармонический сигнал), то в моменты, когда U в x ≈ имеет положительную полярность, p n -переход открывается еще больше и ток через него возрастает, а в моменты, когда U в x ≈ имеет отрицательную полярность (но сохраняется U в x = + U в x ≈ >0), переход частично закрывается и ток уменьшается. Ток через p n -переход эмиттер – база называют током эмиттера I Э. Внутри транзистора он разделяется на небольшой ток базы I Б << I Э и ток коллектора I К ≈ I Э. В свою очередь, ток коллектора I К течет через сопротивление R K и создает на нем напряжение DU R = I K R K . Отсюда очевидно, что потенциал коллектора f K = Е – DU R = Е I K R K зависит от того, насколько открыт переход эмиттер – база, т. е. от U в x .

Для аналитического описания зависимости I К от U БЭ часто используют параметр S = DI K /DU БЭ, который называется крутизной. Единицей измерения крутизны является ампер на вольт [А/В], ее название связано с очень редко встречающимися в справочниках «сквозными» вольт-амперными характеристиками транзисторов. Итак,

U вы x = f K – f Э = Е I K R K = Е S U БЭ R K = Е S R K (U в x = + U в x ≈) =

= Е S R K U в x = – S R K U в x ≈ .

Два первых слагаемых представляют собой постоянное напряжение U вых= , а переменный выходной сигнал равен U вы x ≈ = – S R K U в x ≈ .

Таким образом, в схеме с общим эмиттером при подаче переменного сигнала на базу транзистора обеспечивается формирование на коллекторе такого же переменного сигнала, отличающегося от входного амплитудой и знаком. При прохождении сигнала через схему имеет место сдвиг фазы, равный 180°). Коэффициент передачи схемы по напряжению

K U = | U вы x ≈ /U в x ≈ | = S R K .

Отметим, что использование такого параметра, как крутизна, удобно лишь для объяснения процессов в схеме. В справочниках величина S не приводится, зато обычно имеются входные и выходные вольт-амперные характеристики (зависимости I Б от U БЭ и I К от U КЭ соответственно).

Остановимся еще на некоторых моментах.

Во-первых, следует обсудить функциональное назначение емкостей C p 1 и С p 2 . Эти емкости представляют собой элементарные фильтры высоких частот, обеспечивающие развязку последовательно соединенных схем по постоянному сигналу. Допустим, что усилитель построен по двухкаскадной схеме, т. е. состоит из двух схем с общим эмиттером (выход первой схемы соединен со входом второй). В этом случае, очевидно, надо без потерь передать переменный сигнал с коллектора транзистора первой схемы на базу транзистора второй схемы. Проще всего это можно было бы сделать, соединив электроды двух транзисторов накоротко. Но ведь как напряжение на базе, так и напряжение на коллекторе содержат не только переменные, но и постоянные составляющие, причем разные:

f Б = = U в x = = E (R Б2 / (R Б1 + R Б2));

f K = = U вы x = = Е S R K U в x = .

Элементом, который пропускает переменный ток, но не пропускает постоянный, является емкость. Именно «разделительная» емкость С p , установленная между двумя каскадами, обеспечивает прохождение переменного сигнала и «развязку» каскадов по постоянному току.

В схеме рис. 5.1 эмиттер заземлен. Обычно это не так: схема с общим эмиттером содержит в цепи эмиттера сопротивление R Э и блокировочный конденсатор С Э. Назначение резистора – обеспечивать термостабилизацию параметров схемы. Дело в том, что при повышении температуры в полупроводниках возрастает подвижность носителей зарядов и их концентрация, в результате чего возрастает ток эмиттера, а значит и ток коллектора. Чтобы вернуть токи в исходное (до нагрева) состояние, надо частично закрыть переход эмиттер-база, а для этого увеличить f Э при неизменном f Б. Если эмиттер заземлен, то изменить f Э невозможно, а если имеется сопротивление R Э – задача решается очень легко: f Э = I Э R Э, поэтому с ростом I Э обеспечивается нужный эффект увеличения потенциала эмиттера. К сожалению, наличие R Э вызовет минимизацию изменений тока I Э не только на инфранизких частотах температурного дрейфа, но и на частотах сигнала, усиление схемы резко снизится. Поэтому необходимо зашунтировать R Э на частотах сигнала, применив для этой цели блокировочный конденсатор. На частотах температурного дрейфа С Э представляет собой большое сопротивление и не влияет на механизм термостабилизации; с возрастанием f превращается в короткое замыкание.

Теперь оговорим, какими параметрами обладает схема с ОЭ.

1. Коэффициент передачи (усиления) по напряжению K U = SR K обычно достигает единиц-десятков раз.

Рис. 5.2

2. Амплитудная характеристика (АХ) – зависимость U вы x ≈ от U в x ≈ (рис. 5.2). Линейный участок АХ имеет наклон α, связанный с коэффициентом передачи соотношением K U = tg α. При малых уровнях входного сигнала U вы x ≈ определяется уровнем шума U ш, при очень больших (U в x > > U лин m ax) – примерно равен уровню коллекторного питания.

3. Коэффициент передачи по току K I равен отношению выходного тока ко входному. Выходным электродом является коллектор, входным – база, поэтому К I = I K /I Б. Но I Б << I Э, а I К = I Э, отсюда K I >> 1.

4. Коэффициент передачи по мощности K P = K U K I , как следствие, весьма значителен.

5. Сдвиг фаз в схеме равен 180°.

6. Входное сопротивление R в x схемы определяется параллельным соединением сопротивлений R Б1 , R Б2 и эквивалентного сопротивления р n -перехода эмиттер – база: r БЭ = I Б /U БЭ.Обычно значения R Б1 и R Б2 , необходимые для работы схемы, а также r БЭ составляют килоомы – десятки килоом, поэтому и входное сопротивление равно килоомам.

7. Выходное сопротивление ненагруженной схемы R вы x определяется в первую очередь значением сопротивления R K (сотни ом – единицы килоом), а также эквивалентным сопротивлением транзистора r КЭ = I К /U КЭ (обычно порядок r КЭ – килоомы).

8. Амплитудно-частотная характеристика K U = K U (f ), где f – частота (рис. 5.3). АЧХ имеет на средних частотах равномерный участок, параллельный оси частот. На низких частотах, где емкости C p 1 и С p 2 еще не являются короткими замыканиями и часть сигнала падает на них, АЧХ имеет спад. Дополнительной причиной спада АЧХ на низких частотах является наличие R Э,

Низкочастотная коррекция (НЧК) осуществляется разделением коллекторного сопротивления (рис. 5.4) на два: R K 1 и R K 2 . Средняя точка делителя через емкость C ф соединяется с землей. На низких частотах C ф представляет собой большое сопротивление, и ее можно не учитывать при определении коэффициента усиления схемы, который определяется как K U = S (R K 1 + R K 2). На средних и высоких частотах C ф превращается в короткое замыкание и шунтирует R K 2 , поэтому коэффициент усиления снижается и равен K U = SR K 1 .

C ф выполняет также функцию фильтра, не допускающего переменный сигнал в источник питания (именно поэтому он помечен индексом «ф»).

Высокочастотная коррекция осуществляется двумя различными способами. Во-первых, последовательно с R K ставят индуктивность L (рис. 5.5) – такой способ называется индуктивной высокочастотной коррекцией (ИВЧК). В этом случае при любом значении индуктивности коэффициент усиления схемы возрастает с ростом частоты, так как

K U = S =

= S .

Рис. 5.5

Рис. 5.6

Второй способ высокочастотной коррекции – эмиттерная (ЭВЧК) не предусматривает введение в схему дополнительных элементов, а лишь существенное уменьшение значения емкости C Э. Независимо от своего значения эта емкость не шунтирует R Э на инфранизких частотах температурного дрейфа, поэтому механизм термостабилизации не нарушается. Но маленькая C Э (при малых значениях ее уже не принято называть блокировочной) не шунтирует R Э и на низких и средних частотах сигнала, при этом K U снижается.

Только на высоких частотах C Э закорачивает эмиттерное сопротивление и коэффициент усиления начинает возрастать – как раз тогда, когда в силу других причин он снижается. ЭВЧК из-за отсутствия индуктивности находит все более широкое применение, хотя обладает существенным недостатком – уменьшением K U усилителя на низких и средних частотах.

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера , на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратно й связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту . Тут все понятно 😉 А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания ) – уменьшилось напряжение .

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо) Поэтому необходимо создать смещение . Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу 😉 Если резисторы и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы)

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами 😉 Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя , но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

Транзисторы подразделяются на биполярные и полевые. Каждый из этих типов имеет свой принцип работы и конструктивное исполнение, однако, общим для них является наличие полупроводниковых p-n структур.

Условные графические обозначения (УГО) транзисторов приведены в таблице:


Тип прибора Условное графическое обозначение
(УГО)
Биполярные Биполярный p-n-p типа
Биполярный n-p-n типа
Полевые С управляющим
p-n переходом
С каналом p-типа
С каналом n-типа
С изолированным
затвором
МОП транзисторы
С встроенным
каналом
Встроенный канал
p-типа
Встроенный канал
n-типа
С индуцированным
каналом
Индуцированный канал
p-типа
Индуцированный канал
n-типа

Биполярные транзисторы

Определение "биполярный" указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов - электроны и дырки.

Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным.

Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора.

  • Э - эмиттер,
  • Б - база,
  • К - коллектор,
  • ЭП - эмиттерный переход,
  • КП - коллекторный переход,
  • W - толщина базы.

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

  1. Режим отсечки – оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток
  2. Режим насыщения – оба p-n перехода открыты
  3. Активный режим – один из p-n переходов открыт, а другой закрыт

В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме. Этот режим является основным. Если на эмиттерном переходе напряжение прямое, а на коллекторном – обратное, то включение транзистора считают нормальным, при противоположной полярности – инверсным.

В нормальном режиме коллекторный p-n переход закрыт, эмиттерный – открыт. Ток коллектора пропорционален току базы.

Движение носителей заряда в транзисторе n-p-n типа показано на рисунке:

При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ . Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.

Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб . Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк .

Связь между приращениями эмиттерного и коллекторного токов характеризуется коэффициентом передачи тока

Как следует из качественного рассмотрения процессов, происходящих в биполярном транзисторе, коэффициент передачи тока всегда меньше единицы. Для современных биполярных транзисторов α = 0,9 ÷ 0,95

При Iэ ≠ 0 ток коллектора транзистора равен:

В рассмотренной схеме включения базовый электрод является общим для эмиттерной и коллекторной цепей. Такую схему включения биполярного транзистора называют схемой с общей базой, при этом эмиттерную цепь называют входной, а коллекторную – выходной. Однако такую схему включения биполярного транзистора применяют очень редко.

Три схемы включения биполярного транзистора

Различают схему включения с общей базой, общим эмиттером, общим коллектором. Схемы для p-n-p транзистора показаны на рисунках а, б, в:

В схеме с общей базой (рис. а) электрод база является общим для входной и выходной цепи, в схеме с общим эмиттером (рис. б) общим является эмиттер, в схеме с общим коллектором (рис. в) общим является коллектор.

На рисунке показаны: Е1 – питание входной цепи, Е2 – питание выходной цепи, Uвх – источник усиливаемого сигнала.

В качестве основной принята схема включения, в которой общим электродом для входной и выходной цепи является эмиттер (схема включения биполярного транзистора с общим эмиттером). Для такой схемы входной контур проходит через переход база-эмиттер и в нем возникает ток базы:

Малое значение тока базы во входном контуре обусловило широкое применение схемы с общим эмиттером.

Биполярный транзистор в схеме с общим эмиттером (ОЭ)

В транзисторе, включенном по схеме ОЭ, зависимость между током и напряжением во входной цепи транзистора Iб = f1 (Uбэ ) называют входной или базовой вольт-амперной характеристикой (ВАХ) транзистора. Зависимость тока коллектора от напряжения между коллектором и эмиттером при фиксированных значениях тока базы Iк = f2 (Uкэ ), Iб – const называют семейством выходных (коллекторных) характеристик транзистора.

Входная и выходная ВАХ биполярного транзистора средней мощности типа n-p-n приведены на рисунке:

Как видно из рисунка, входная характеристика практически не зависит от напряжения Uкэ . Выходные характеристики приблизительно равноудалены друг от друга и почти прямолинейны в широком диапазоне изменения напряжения Uкэ .

Зависимость Iб = f(Uбэ ) представляет собой экспоненциальную зависимость, характерную для тока прямосмещённого p-n перехода. Поскольку ток базы – рекомбинационный, то его Iб величина в β раз меньше, чем инжектированный ток эмиттера Iэ . При росте коллекторного напряжения Uк входная характеристика смещается в область больших напряжений Uб . Это связано с тем, что вследствие модуляции ширины базы (эффект Эрли) уменьшается доля рекомбинационного тока в базе биполярного транзистора. Напряжение Uбэ не превышает 0,6…0,8 В. Превышение этого значения приведет к резкому увеличению тока, протекающего через открытый эмиттерный переход.

Зависимость Iк = f(Uкэ ) показывает, что ток коллектора прямопропорционален току базы: Iк = B · Iб

Параметры биполярного транзистора

Представление транзистора в малосигнальном режиме работы четырехполюсником

В малосигнальном режиме работы транзистор может быть представлен четырехполюсником. Когда напряжения u1 , u2 и токи i1 , i2 изменяются по синусоидальному закону, связь между напряжениями и токами устанавливается при помощи Z, Y, h параметров.

Потенциалы 1", 2", 3 одинаковы. Транзистор удобно описывать, используя h-параметры.

Электрическое состояние транзистора, включенного по схеме с общим эмиттером, характеризуется четырьмя величинами: Iб , Uбэ , Iк и Uкэ . Две из этих величин можно считать независимыми, а две другие могут быть выражены через них. Из практических соображений в качестве независимых удобно выбирать величины Iб и Uкэ . Тогда Uбэ = f1 (Iб , Uкэ ) и Iк = f2 (Iб , Uкэ ).

В усилительных устройствах входными сигналами являются приращения входных напряжений и токов. В пределах линейной части характеристик для приращений Uбэ и Iк справедливы равенства:

Физический смысл параметров:

Для схемы с ОЭ коэффициенты записываются с индексом Э: h11э , h12э , h21э , h22э .

В паспортных данных указывают h21э = β , h21б = α. Эти параметры характеризуют качество транзистора. Для увеличения значения h21 нужно либо уменьшить ширину базы W, либо увеличить диффузионную длину, что достаточно трудно.

Составные транзисторы

Для увеличения значения h21 соединяют биполярные транзисторы по схеме Дарлингтона:

В составном транзисторе, имеющем характеристики, как одного, база VT1 соединена с эмиттером VT2 и ΔIэ2 = ΔIб1 . Коллекторы обоих транзисторов соединены и этот вывод является выводом составного транзистора. База VT2 играет роль базы составного транзистора ΔIб = ΔIб2 , а эмиттер VT1 – роль эмиттера составного транзистора ΔIэ = ΔI1 .

Получим выражение для коэффициента усиления по току β для схемы Дарлингтона. Выразим связь между изменением тока базы dIб и вызванным вследствие этого изменением тока коллектора dIк составного транзистора следующим образом:

Поскольку для биполярных транзисторов коэффициент усиления по току обычно составляет несколько десятков (β1 , β2 >> 1), то суммарный коэффициент усиления составного транзистора будет определяться произведением коэффициентов усиления каждого из транзисторов βΣ = β1 · β2 и может быть достаточно большим по величине.

Отметим особенности режима работы таких транзисторов. Поскольку эмиттерный ток VT2 Iэ2 является базовым током VT1 dIб1 , то, следовательно, транзистор VT2 должен работать в микромощном режиме, а транзистор VT1 – в режиме большой инжекции, их эмиттерные токи отличаются на 1-2 порядка. При таком неоптимальном выборе рабочих характеристик биполярных транзисторов VT1 и VT2 не удается в каждом из них достичь высоких значений усиления по току. Тем не менее даже при значениях коэффициентов усиления β1 , β2 ≈ 30 суммарный коэффициент усиления βΣ составит βΣ ≈ 1000.

Высокие значения коэффициента усиления в составных транзисторах реализуются только в статистическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ, наоборот, и граничная частота усиления по току, и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 , VT2 в отдельности.

Частотные свойства биполярных транзисторов

Процесс распространения инжектированных в базу неосновных носителей заряда от эмиттерного до коллекторного перехода идет диффузионным путем. Этот процесс достаточно медленный, и инжектированные из эмиттера носители достигнут коллектора не ранее чем за время диффузии носителей через базу. Такое запаздывание приведет к сдвигу фаз между током Iэ и током Iк . При низких частотах фазы токов Iэ , Iк и Iб совпадают.

Частота входного сигнала, при которой модуль коэффициента усиления уменьшается в раз по сравнению со статическим значением β0 , называется предельной частотой усиления по току биполярного транзистора в схеме с общим эмиттером

Fβ – предельная частота (частота среза)
fгр – граничная частота (частота единичного усиления)

Полевые транзисторы

Полевые, или униполярные, транзисторы в качестве основного физического принципа используют эффект поля. В отличие от биполярных транзисторов, у которых оба типа носителей, как основные, так и неосновные, являются ответственными за транзисторный эффект, в полевых транзисторах для реализации транзисторного эффекта применяется только один тип носителей. По этой причине полевые транзисторы называют униполярными. В зависимости от условий реализации эффекта поля полевые транзисторы делятся на два класса: полевые транзисторы с изолированным затвором и полевые транзисторы с управляющим p-n переходом.

Полевые транзисторы с управляющим p-n переходом

Схематически полевой транзистор с управляющим p-n переходом можно представить в виде пластины, к торцам которой подключены электроды, исток и сток. На рис. показана структура и схема включения полевого транзистора с каналом n-типа:

В транзисторе с n-каналом основными носителями заряда в канале являются электроны, которые движутся вдоль канала от истока с низким потенциалом к стоку с более высоким потенциалом, образуя ток стока Ic . Между затвором и истоком приложено напряжение, запирающее p-n переход, образованный n-областью канала и p-областью затвора.

При подаче запирающего напряжения на p-n-переход Uзи на границах канала возникает равномерный слой, обедненный носителями заряда и обладающий высоким удельным сопротивлением. Это приводит к уменьшению проводящей ширины канала.

Изменяя величину этого напряжения, можно изменить сечение канала и, следовательно, изменять величину электрического сопротивления канала. Для полевого n-канального транзистора потенциал стока положителен по отношению к потенциалу истока. При заземленном затворе от стока к истоку протекает ток. Поэтому для прекращения тока на затвор нужно подать обратное напряжение в несколько вольт.

Значение напряжения Uзи , при котором ток через канал становится практически равен нулю, называется напряжением отсечки Uзап

Таким образом, полевой транзистор с затвором в виде p-n-перехода представляет собой сопротивление, величина которого регулируется внешним напряжением.

Полевой транзистор характеризуется следующей ВАХ:

Здесь зависимости тока стока Iс от напряжения при постоянном напряжении на затворе Uзи определяют выходные, или стоковые, характеристики полевого транзистора. На начальном участке характеристик Uси + |Uзи | < Uзап ток стока Iс возрастает с увеличением Uси . При повышении напряжения сток - исток до Uси = Uзап - |Uзи | происходит перекрытие канала и дальнейший рост тока Iс прекращается (участок насыщения). Отрицательное напряжение Uзи между затвором и истоком смещает момент перекрытия канала в сторону меньших значений напряжения Uси и тока стока Iс . Участок насыщения является рабочей областью выходных характеристик полевого транзистора. Дальнейшее увеличение напряжения Uси приводит к пробою р-n-перехода между затвором и каналом и выводит транзистор из строя.

На ВАХ Iс = f(Uзи ) показано напряжение Uзап . Так как Uзи ≤ 0 p-n-переход закрыт и ток затвора очень мал, порядка 10-8 …10-9 А , поэтому к основным преимуществам полевого транзистора, по сравнению с биполярным, относится высокое входное сопротивление, порядка 1010 …1013 Ом . Кроме того, они отличаются малыми шумами и технологичностью изготовления.

Практическое применение имеют две основные схемы включения. Схема с общим истоком (рис. а) и схема с общим стоком (рис. б) , которые показаны на рисунке:

Полевые транзисторы с изолированным затвором
(МДП-транзисторы)

Термин "МДП-транзистор" используется для обозначения полевых транзисторов, в которых управляющий электрод – затвор – отделен от активной области полевого транзистора диэлектрической прослойкой – изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник (М-Д-П).

Технология МДП-транзистора с встроенным затвором приведена на рисунке:

Исходный полупроводник, на котором изготовлен МДП-транзистор, называется подложкой (вывод П). Две сильнолегированные области n+ называется истоком (И) и стоком (С). Область подложки под затвором (З) называется встроенным каналом (n-канал).

Физической основой работы полевого транзистора со структурой металл-диэлектрик-полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод-затвор. В зависимости от знака и величины приложенного напряжения могут быть два состояния области пространственного заряда (ОПЗ) в канале – обогащение, обеднение.

Режиму обеднения соответствует отрицательное напряжение Uзи , при котором концентрация электронов в канале уменьшается, что приводит к уменьшению тока стока. Режиму обогащения соответствует положительное напряжение Uзи и увеличение тока стока.

ВАХ представлена на рисунке:

Топология МДП-транзистора с индуцированным (наведенным) каналом р-типа приведена на рисунке:

При Uзи = 0 канал отсутствует и Ic = 0. Транзистор может работать только в режиме обогащения Uзи < 0. Если отрицательное напряжение Uзи превысит пороговое Uзи.пор , то происходит формирование инверсионного канала. Изменяя величину напряжения на затворе Uзи в области выше порогового Uзи.пор , можно менять концентрацию свободных носителей в инверсионном канале и сопротивление канала. Источник напряжения в стоковой цепи Uси вызовет ток стока Iс .

ВАХ представлена на рисунке:

В МДП-транзисторах затвор отделен от полупроводника слоем окисла SiO2 . Поэтому входное сопротивление таких транзисторов порядка 1013 …1015 Ом.

К основным параметрам полевых транзисторов относятся:

  • Крутизна характеристики при Uсп = const, Uпи = const. Типичные значения параметра (0,1...500) мА/В;
  • Крутизна характеристики по подложке при Uсп = const, Uзи = const. Типичные значения параметра (0.1...1) мА/В;
  • Начальный ток стока Iс.нач. – ток стока при нулевом значении напряжения Uзи . Типичные значения параметра: (0,2...600) мА – для транзисторов с управляющим каналом p-n переходом; (0,1...100) мА – для транзисторов со встроенным каналом; (0,01...0,5) мкА – для транзисторов с индуцированным каналом;
  • Напряжение отсечки Uзи.отс. . Типичные значения (0,2...10) В; пороговое напряжение Uп . Типичные значения (1...6) В;
  • Сопротивление сток-исток в открытом состоянии. Типичные значения (2..300) Ом
  • Дифференциальное сопротивление (внутреннее): при Uзи = const;
  • Статистический коэффициент усиления: μ = S · ri
  • Тиристоры

    Тиристор является полупроводниковым прибором с тремя и более электронно-дырочными p-n-переходами. Они, в основном, применяются в качестве электронных ключей. В зависимости от числа внешних выводов они подразделяются на тиристоры с двумя внешними выводами – динисторы и тиристоры с тремя выводами – тринисторы. Для обозначения тиристоров принят буквенный символ VS.

    Устройство и принцип работы динистора

    Структура, УГО и ВАХ динистора приведены на рисунке:

    Внешняя p-область называется анодом (А), внешняя n-область называется катодом (К). Три p-n перехода обозначены цифрами 1, 2, 3. Структура динистора 4-х-слойная – p-n-p-n.

    Питающие напряжение Е подаётся на динистор таким образом, что 1 из 3 переходы открыты и их сопротивления незначительны, а переход 2 закрыт и все питающие напряжение Uпр приложено к нему. Через динистор протекает небольшой обратный ток, нагрузка R отключена от источника тока питания Е.

    При достижении критического напряжения, равному напряжению включения Uвкл переход 2 открывается, при этом все три перехода 1, 2, 3 будут находится в открытом (включенном) состоянии. Сопротивления динистора падает до десятых долей Ома.

    Напряжение включения составляет величину нескольких сотен вольт. Динистор открывается, и через него протекают значительные по величине токи. Падение напряжения на динисторе в открытом состояние составляет 1-2 вольта и мало зависит от величины протекающего тока, величина которого равна τa ≈ E / R, а UR ≈ E, т.е. нагрузка подключена к источнику питания Е. Напряжение на динисторе, соответствующее предельно допустимую точку Iоткр.max , называется напряжением открытого состояния Uокр . Предельный допустимый ток составляет величины от сотен мА до сотен А. Динистор находится в открытом состоянии, пока протекающий через него ток не станет меньше тока удержания Iуд . Динистор закрывается при уменьшении внешнего напряжения до величины порядка 1В или при перемене полярности внешнего источника. Поэтому такой прибор используется в цепях переходного тока. Точки В и Г соответствуют граничным значениям токов и напряжений динистора. Время восстановления сопротивления перехода 2 после снятия питающего напряжения составляет порядка 10-30 мкс.

    Динисторы по своему принципу – приборы ключевого действия. Во включенном состоянии (участок БВ) он подобен замкнутому ключу, а в выключенном (участок ОГ) - разомкнутому ключу.

    Устройство и принцип работы тиристора (тринистора)

    Тринистор является управляемым прибором. Он содержит управляющий электрод (УЭ), подключаемый к полупроводнику р-типа или полупроводнику n-типа среднего перехода 2.

    Структура, УГО и ВАХ тринистора (обычно называют тиристором) приведены на рисунке:

    Напряжение Uвыкл , при котором начинается лавинообразное нарастание тока, может быть снижено введением неосновных носителей заряда в любой из слоев, прилегающих к переходу 2. В какой мере снижается Uвкл показано на ВАХ. Важным параметром является отпирающий ток управления Iу.от , который обеспечивает переключение тиристора в открытое состояние при напряжениях, меньших напряжения Uвкл . На рисунке показаны три значения напряжение включения UI вкл < Un вкл < Um вкл соответствует трем значениям управляющего тока UI у.от > Un у.от > Um у.от .

    Рассмотрим простейшую схему с тиристором, нагруженным на резисторную нагрузку Rн


    • Iа – ток анода (силовой ток в цепи анод-катод тиристора);
    • Uак – напряжение между анодом и катодом;
    • Iу – ток управляющего электрода (в реальных схемах используют импульсы тока);
    • Uук – напряжение между управляющим электродом и катодом;
    • Uпит – напряжение питания.

    Для перевода тиристора в открытое состояние не управляющий электрод подается от схемы формирования импульсов кратковременный (порядка нескольких микросекунд) управляющий импульс.

    Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.

    Для выключения тиристора на практике на него подают обратное напряжение Uак < 0 и поддерживают это напряжение в течении времени, большего так называемого времени выключения tвыкл . Оно обычно составляет единицы или десятки микросекунд.

    Устройство и принцип работы симистора

    Широко используется так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно. Симметричные тринисторы являются управляемым прибором с симметричной вольт-амперной характеристикой. Для получения симметричной характеристики используются двухсторонние полупроводниковые структуры типа p-n-p-n-p.

    Структура симистора, его УГО и ВАХ приведены на рисунке:

    Симистор (триак) содержит два тиристора p1-n1-p2-n2 и p2-n2-p1-n4, включенных встречно-параллельно. Симистор содержит 5 переходов П1-П2-П3-П4-П5. При отсутствии управляющего электрона УЭ симистор называется диаком.

    При положительной полярности на электроде Э1 осуществляется тиристорный эффект в p1-n1-p2-n2, а при противоположной полярности в p2-n1-p1-n4.

    При подачи управляющего напряжения на УЭ в зависимости от его полярности и величины изменяется напряжение переключателя Uвкл

    Тиристоры (динисторы, тринисторы, симисторы) являются основными элементами в силовых устройствах электроники. Существует тиристоры, для которых напряжение переключения больше, чем 1 кВ, а максимально допустимый ток больше, чем 1 кА

    Электронные ключи

    Для повышения коэффициента полезного действия устройств силовой электроники широко используется импульсный режим работы диодов, транзисторов и тиристоров. Импульсный режим характерен резкими изменениями токов и напряжений. В импульсном режиме диоды, транзисторы и тиристоры используются как ключи.

    При помощи электронных ключей выполняется коммутация электронных схем: подключение/отключение схемы к/от источникам(-ов) электрической энергии или сигнала, подключение или отключение элементов схем, изменение параметров элементов схем, изменение вида воздействующего источника сигнала.

    УГО идеальных ключей показаны на рисунке:

    Ключи, работающие на замыкание и размыкание соответственно.


    Ключевой режим характеризуется двумя состояниями: "включено"/"выключено".

    Идеальные ключи характеризуются мгновенным изменением сопротивления, которое может принимать значение 0 или ∞. Падение напряжения на идеальном замкнутом ключе равно 0. При разомкнутом ключе ток равен 0.

    Реальные ключи также характеризуются двумя крайними значениями сопротивления Rmax и Rmin . Переход от одного значения сопротивления к другому в реальных ключах происходит за конечное время. Падение напряжения на реальном замкнутом ключе не равно нулю.

    Ключи подразделяются на ключи, используемые в маломощных схемах, и ключи, используемые в силовых схемах. Каждый из этих классов имеет свои характеристики.

    Ключи, используемые в маломощных схемах, характеризуются:

  1. Сопротивлениями ключа в открытом и закрытом состояниях;
  2. Быстродействием – временем перехода ключа из одного состояния в другое;
  3. Падением напряжения на замкнутом ключе и током утечки разомкнутого ключа;
  4. Помехоустойчивостью – способностью ключа оставаться в одном из состояний при воздействии помех;
  5. Чувствительностью ключа – величиной управляющего сигнала, переводящего ключ из одного состояния в другое;
  6. Пороговым напряжением – значением управляющего напряжения, в окрестности которого происходит резкое изменение сопротивления электронного ключа.

Диодные электронные ключи

Простейший тип электронных ключей – диодные ключи. Схема диодного ключа, статическая передаточная характеристика, ВАХ и зависимость дифференциального сопротивления от напряжения на диоде показаны на рисунке:


Принцип работы диодного электронного ключа основан на изменении величины дифференциального сопротивления полупроводникового диода в окрестностях порогового значения напряжения на диоде Uпор . На рисунке "в" показана вольт-амперная характеристика полупроводникового диода, на которой показано значение Uпор . Это значение находится на пересечении оси напряжений с касательной, проведенной к восходящему участнику вольт-амперной характеристики.

На рисунке "г" показана зависимость дифференциального сопротивления от напряжения на диоде. Из рисунка следует, что в окрестности порогового напряжения 0,3 В происходит резкое изменение дифференциального сопротивления диода с крайними значениями 900 и 35 Ом (Rmin = 35 Ом, Rmax = 900 Ом).

В состоянии "включено" диод открыт и , Uвых ≈ Uвх .

В состоянии "выключено" диод закрыт и , Uвых ≈ Uвх · Rн / Rmax <

С целью уменьшения времени переключения используемые диоды с малой емкостью перехода порядка 0,5-2 пФ, при этом обеспечивается время выключения порядка 0,5-0,05 мкс.

Диодные ключи не позволяют электрически разделить управляющею и управляемую цепи, что часто требуется в практических схемах.

Транзисторные ключи

В основе большинства схем, используемых в вычислительных машинах, устройствах телеуправления, системах автоматического управления и т.п., лежат транзисторные ключи.

Схемах ключа на биполярном транзисторе и ВАХ показаны на рисунке:

Первое состояние «выключено» (транзистор закрыт) определяется точкой А1 на выходных характеристиках транзистора; его называют режимом отсечки. В режиме отсечки ток базы Iб = 0, коллекторный ток Iк1 равен начальному коллекторному току, а коллекторное напряжение Uк = Uк1 ≈ Ек . Режим отсечки реализуется при Uвх = 0 или при отрицательных потенциалах базы. В этом состоянии сопротивление ключа достигает максимального значения: Rmax = , где RT - сопротивление транзистора в закрытом состоянии, более 1 МОм.

Второе состояние «включено» (транзистор открыт) определяется точкой А2 на ВАХ и называется режимом насыщения. Из режима отсечки (А1) в режиме насыщения (А2) транзистор переводится положительным входным напряжением Uвх . При этом напряжение Uвых принимает минимальное значение Uк2 = Uк.э.нас порядка 0,2-1,0 B, ток коллектора Iк2 = Iк.нас ≈ Ек /Rк . Ток базы в режиме насыщения определяется из условия: Iб > Iб.нас = Iк.нас / h21 .

Входное напряжение, необходимое для перевода транзистора в открытое состояние, определяется из условия: Uвх > Iб.нас · Rб + Uк.э.нас

Хорошая помехозащищенность и малая мощность, рассеиваемая в транзисторе, объясняется тем, что транзистор большую часть времени либо насыщен (А2), либо закрыт (А1), а время перехода из одного состояния в другое составляет малую часть от длительности этих состояний. Время переключения ключей на биполярных транзисторах определяется барьерными емкостями р-n-переходов и процессами накопления и рассасывания неосновных носителей заряда в базе.

Для повышения быстродействия и входного сопротивления применяются ключи на полевых транзисторах.

Схемы ключей на полевых транзисторах с управляющим p-n-переходом и с индуцированным каналом с общим истоком и общим стоком показаны на рисунке:

Для любого ключа на полевом транзисторе Rн > 10-100 кОм.

Управляющий сигнал Uвх на затворе порядка 10-15 В. Сопротивление полевого транзистора в закрытом состоянии велико, порядка 108 -109 Ом.

Сопротивление полевого транзистора в открытом состоянии может составлять 7-30 Ом. Сопротивление полевого транзистора по цепи управления может составлять 108 -109 Ом. (схемы "а" и "б") и 1012 -1014 Ом (схемы "в" и "г").

Силовые (мощные) полупроводниковые приборы

Мощные полупроводниковые приборы находят применение в энергетической электронике, наиболее интенсивно развивающейся и перспективной области техники. Они предназначены для управления токами в десятки, сотни ампер, напряжениями в десятки, сотни вольт.

К мощным полупроводниковым приборам относятся тиристоры (динисторы, тринисторы, симисторы), транзисторы (биполярные и полевые) и биполярные статически индуцированные транзисторы (IGBT). Они используются в качестве электронных ключей, выполняющих коммутацию электронных схем. Их характеристики стараются приблизить к характеристикам идеальных ключей.

По принципу действия, характеристикам и параметрам мощные транзисторы подобны маломощным, однако имеются определенные особенности.

Силовые полевые транзисторы

В настоящее время полевой транзистор является одним из наиболее перспективных силовых приборов. Наиболее широко используются транзисторы с изолированным затвором и индуцированным каналом. Для уменьшения сопротивления канала уменьшают его длину. Для увеличения тока стока в транзисторе выполняют сотни и тысячи каналов, причем каналы соединяют параллельно. Вероятность саморазогрева полевого транзистора мала, т.к. сопротивление канала увеличивается при увеличении температуры.

Силовые полевые транзисторы имеют вертикальную структуру. Каналы могут располагаться как вертикально, так и горизонтально.

ДМДП-транзистор

Этот транзистор МДП-типа, изготовленный методом двойной диффузии, имеет горизонтальный канал. На рисунке показан элемент структуры, содержащий канал.

VМДП-транзистор

Этот V-образный МДП-транзистор имеет вертикальный канал. На рисунке показан один элемент структуры, содержащий два канала.

Легко заметить, что структуры VМДП-транзистора и ДМДП-транзистора подобны.

IGBT-транзистор

IGBT – гибридный полупроводниковый прибор. В нем совмещены два способа управления электрическим током, один из которых характерен для полевых транзисторов (управление электрическим полем), а второй – для биполярных (управление инжекцией носителей электричества).

Обычно в IGBT используется структура МДП-транзистора с индуцированным каналом n-типа. Структура этого транзистора отличается от структуры ДМДП-транзистора дополнительным слоем полупроводника р-типа.

Обратим внимание на то, что для обозначения электродов IGBT принято использовать термины "эмиттер", "коллектор" и "затвор".

Добавления слоя р-типа приводит к образованию второй структуры биполярного транзистора (типа p-n-p). Таким образом, в IGBT имеется две биполярные структуры – типа n-p-n и типа p-n-p.

УГО и схема выключения IGBT показаны на рисунке:

Типичный вид выходных характеристик показаны на рисунке:

SIT-транзистор

SIT – полевой транзистор с управляющим p-n переходом со статической индукцией. Является многоканальным и имеет вертикальную структуру. Схематическое изображение SIT и схема включения с общим истоком показаны на рисунке:

Области полупроводника р-типа имеют форму цилиндров, диаметр которых составляет единицы микрометров и более. Эта система цилиндров играет роль затвора. Каждый цилиндр подсоединен к электроду затвора (на рисунке "а" электрод затвора условно не показан).

Пунктиром обозначены области p-n-переходов. Реальное число каналов может составлять тысячи. Обычно SIT используется в схемах с общим истоком.

Каждый из рассмотренных приборов имеет свою область применения. Ключи на тиристорах применяются в устройствах, работающих на низких частотах (килогерцы и ниже). Основным недостатком таких ключей являются низкое быстродействие.

Основной областью применения тиристоров являются низкочастотные устройства с большой коммутируемой мощностью вплоть до нескольких мегаватт, не предъявляющих серьезных требований к быстродействию.

Мощные биполярные транзисторы применяются в качестве высоковольтных ключей в устройствах с частотой коммутации или преобразования, находящейся в диапазоне 10-100 кГц, при уровне выходной мощности от единиц Вт до нескольких кВт. Оптимальный диапазон коммутируемых напряжений 200-2000 В.

Полевые транзисторы (MOSFET) применяются в качестве электронных ключей для коммутации низковольтных высокочастотных устройств. Оптимальные значения коммутируемых напряжений не превышают 200 В (максимальное значение до 1000 В), при этом частота коммутации может находится в пределах от единиц кГц до 105 кГц. Диапазон коммутируемых токов составляет 1,5-100 А. Положительным свойствами этого прибора является управляемость напряжением, а не током, и меньшая зависимость от температуры по сравнению с другими приборами.

Биполярные транзисторы с изолированным затвором (IGBT) применяются на частотах менее 20 кГц (некоторые типы приборов применяются на частотах более 100 кГц) при коммутируемых мощностях выше 1 кВт. Коммутируемые напряжения не ниже 300-400 В.Оптимальные значения коммутируемых напряжений свыше 2000 В. IGBT и MOSFET требуют для полного включения напряжения не выше 12-15 В, для закрытия приборов не требуется подавать отрицательное напряжение. Они характеризуются высокими скоростями переключения.

Материал для подготовки к аттестации