Чем опасен дециметровый диапазон волн. ДМВ-терапия: показания и противопоказания

07.04.2019

ДМВ-терапия - лечебная методика, основанная на применении электромагнитных волн дециметрового диапазона. Микротоки глубоко проникают в ткани и органы, влияя на протекающие в них физиологические процессы.

Как действует

В организме поглощенная электромагнитная энергия преобразуется в тепловую. Выделение тепла в облучаемых областях достигает максимума на 10-15 минуте терапии, затем прекращается. Наибольшему нагреванию подвергаются ткани и органы, богатые водой (кровь, лимфа, легкие, мышцы). Их температура может подниматься на 3-4 градуса. В меньшей степени прогреваются кожа и жировые отложения.

Под влиянием тепла в тканях расширяются мелкие сосуды, усиливаются обменные процессы. Снижение сосудистого сопротивления приводит к улучшению кровообращения и благотворно отражается на работе сердечной мышцы. У пациентов повышается сократительная активность миокарда, усиливается кровоснабжение всех, в том числе ишемизированных, участков сердца. Немного снижается артериальное давление.

Прогревание мышц способствует устранению спастических состояний. Происходит высвобождение зажатых спазмированными волокнами сосудов и нервов. Такой эффект проявляется ослаблением болевых синдромов и восстановлением нормальной работы органов.

Вследствие расширения бронхов более глубоким становится дыхание. Облегчается состояние больных с бронхиальной астмой, купируется астматический статус.

Установлено, что под влиянием дециметровых волн также усиливаются функции эндокринных желез. В первую очередь это касается надпочечников и щитовидной железы. В надпочечниках повышается образование глюкокортикоидов, блокирующих развитие в организме воспалительных процессов. Деятельность щитовидной железы может усиливаться или подавляться в зависимости от исходного состояния органа.

В целом прохождение курса ДМВ-терапии позволяет пациентам избавиться от болевых ощущений, улучшить общее самочувствие и восстановить нарушенную вследствие заболевания функциональную активность.

Показания и противопоказания


ДМВ-терапия поможет уменьшить боль в спине или суставах.

Основаниями для назначения процедур могут служить:

  • корешковые синдромы;
  • артрозы;
  • артриты (в том числе ревматоидный);
  • бронхиальная астма (вне стадии обострения);
  • хроническая или острая пневмония;
  • состояния после инфаркта миокарда (к лечению приступают не ранее, чем через 30 дней после приступа);
  • стенокардия напряжения 1 степени;
  • порок митрального клапана сердца;
  • атеросклероз;
  • язвенная болезнь пищеварительного тракта;
  • воспалительные заболевания ЖКТ (гастрит, дуоденит, колит и др.);
  • почечные или печеночные колики;
  • спазмы мочеточников;
  • почечная или печеночная недостаточность;
  • дыхательная недостаточность;
  • болезнь Рейно;
  • искривления позвоночника;
  • климактерические расстройства;
  • вегетососудистая дистония;
  • фурункулез;
  • паркинсонизм.

Противопоказано ДМВ-лечение при следующих состояниях:

  • нарушения свертываемости крови;
  • онкологические заболевания;
  • кровотечения;
  • открытая форма туберкулеза;
  • наличие кардиостимулятора;
  • эпилепсия;
  • стеноз желудочного клапана (при язвенной болезни);
  • тиретоксикоз;
  • стенокардия покоя;
  • артериальная гипертония выше 2 степени;
  • ишемическая болезнь 2-3 степени.

При беременности запрещены воздействия на область живота.

Порядок проведения процедур

Процедура проводится в положении лежа или сидя. Перед ее началом больного просят снять с себя все металлические украшения. Оголяют только ту область, которая подлежит электромагнитному облучению.

ДМВ-излучатели прижимают непосредственно к коже (контактная методика) или располагают на расстоянии 3-4 см от тела (дистантная методика). При полостной методике излучатель стерилизуют и вводят в прямую кишку или влагалище.

Процедуру дозируют по выходной мощности микротоков и ощущениям больного. При контактной и полостной методике мощность не должна превышать 10 Вт, при дистантной - 20 Вт. Пациент должен чувствовать только умеренное тепло. При возникновении неприятных ощущений потоки энергии снижают.

Процедура длится 8-15 минут. После ее завершения больного просят отдохнуть еще 20 минут. Сеансы проводятся ежедневно или через день. На курс назначают 5-12 процедур. Повторную терапию рекомендуют не ранее, чем через 2 месяца.

Облучение дециметровыми волнами хорошо сочетается с , и . Совмещение методик позволяет повысить эффективность лечения и продлить период ремиссии заболевания.

Электромагнитные волны, используемые для радио- и телевещания, модулируются сигналами передаваемых программ. При радиовещании эти сигналы состоят из звуков, а при телевещании – из звуков и изображений. Радиостанции по методу модуляции обычно делят на АМ и ЧМ, но тип передаваемого программного материала от метода модуляции не зависит.

Большинство вещательных передач рассчитано на широкие массы населения в конкретной зоне обслуживания страны, где расположена передающая станция; другие станции обеспечивают вещание через государственные границы. Станции, предназначенные для международного вещания, обычно размещают в приграничных зонах; они вещают на высоких уровнях мощности или с ретрансляцией через спутник. См . СПУТНИК СВЯЗИ .

Некоторые телевизионные программы предназначаются только для подписавшихся на них абонентов. Подобные программы передаются по кабельным сетям или по наземным линиям микроволнового диапазона, а также с использованием кодирования; такое вещание называют адресным. См . СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН .

Упомянутые выше системы вещания являются односторонними; в них не предусмотрены возможности для того, чтобы слушатель или зритель мог сообщить свое мнение. Большинство систем радиосвязи, напротив, относятся к числу двусторонних, т.е. рассчитаны на обмен сообщениями. См . РАЦИЯ ДЛЯ ПЕРСОНАЛЬНОЙ И СЛУЖЕБНОЙ РАДИОСВЯЗИ .

Частотный спектр вещания.

В соответствии с международными соглашениями для наземного вещания выделено несколько частотных диапазонов. Их распределение показано на рис. 1.

СОГЛАШЕНИЯ И ДОГОВОРА

Международный союз электросвязи ITU разделил земную поверхность на три географических региона (Регион 1 – Европа и Африка; Регион 2 – Новый Свет и Регион 3 – Азия и Австралия). Соглашения, действующие внутри каждого из регионов, касаются распределения и применений частотных полос. Существуют также двусторонние и многосторонние соглашения между соседними странами. Для обсуждения договоров и соглашений периодически проводятся радиоконференции. К числу задач, обычно включаемых в программу радиоконференций, относятся совершенствование распределения спектра частот, выделение частот для нужд новых или усовершенствованных технологий и предоставление услуг. Техническими критериями определяются уровни сигналов, качество и области охвата, а также защита от чрезмерных помех. Процедуры заблаговременного уведомления облегчают процесс гармоничного развития вещания в регионах. При проведении переговоров важное значение обычно имеют политические, военные и коммерческие факторы из-за существующей конкурентной борьбы за частотный спектр, рынки сбыта и т.п.

Географическая зона обслуживания, которая выносится на обсуждение, определяется диапазоном рассматриваемых частот, услугами и расстояниями. Так, например, при обсуждении соглашения по спутниковой связи необходимо участие всех заинтересованных стран мира, тогда как для принятия соглашений о наземном ЧМ- или телевизионном вещании достаточно бывает участия соседних стран. Каждая страна регламентирует внутреннее вещание в соответствии со своими законами и установлениями.

АМ-вещание.

Вещание с амплитудной модуляцией в Регионе 2 осуществляется в соответствии с соглашением о вещании на средних волнах в Новом Свете. По этому соглашению АМ-диапазон лежит между 525 и 1705 кГц, а расстояние между каналами составляет 10 кГц. Передачи на частотах 530 кГц (выделенные для класса C ) ограничены в ночное время уровнем мощности 0,25 кВт, а в дневное – уровнем 1 кВт, чтобы защитить от помех частоту 500 кГц, используемую для передачи международных сигналов бедствия на море. На частотах выше 1600 кГц работает незначительное число станций, что отчасти объясняется тем, что многие приемники не предназначены для работы на таких частотах. Кроме того, большинство вещательных компаний неохотно использует этот участок диапазона из-за присущих ему плохих характеристик распространения.

В Регионе 1 минимальное разнесение каналов по частоте обычно составляет 9 кГц.

Короткие волны.

С окончанием холодной войны в 1990–1991 прекратилось глушение передач, направленных на территории бывшего Советского Союза. Эта перемена уменьшила потребность в выделении дополнительных частотных полос и в частой смене частот, на которых работали радио «Би-Би-Си», «Свободная Европа», «Голос Америки», «Немецкая волна» и другие станции.

ЧМ-радиовещание.

Разнесение каналов в Северной Америке составляет 200 кГц, в Европе 150 кГц. Эффективные мощности излучения обычно много меньше 100 кВт.

Во многих странах действуют нелегальные радиостанции. В Италии, чтобы провести лицензирование и регламентировать работу таких станций, власти выделили много ЧМ-каналов по запросам, что привело к увеличению помех.

Телевещание в метровом и дециметровом диапазонах.

Разнос каналов в этих диапазонах составляет 6 МГц. В Северной Америке цветное телевидение модулируется в соответствии со стандартами NTSC. В большей части стран Региона 1 применяется система PAL. На территории стран СНГ используется SECAM, а в Японии – NTSC. Эти три системы несовместимы; основные различия между ними связаны с процессами модуляции, применяемыми для кодирования и передачи информации о цветности. В настоящее время международными соглашениями предусматривается использование стандартных методов конвертирования.

РАСПРОСТРАНЕНИЕ СИГНАЛОВ

АМ.

Сигналы диапазона средних волн распространяются в дневное и ночное время земной (поверхностной) волной, а ночью – также и ионосферной (пространственной) волной.

Токи, создаваемые горизонтально распространяющимся излучением (поверхностной волной), обычно проникают на глубину до 15 м ниже поверхности земли на частоте 530 кГц и на 1,5 м на частоте 1700 кГц. Если бы верхний слой почвы был идеальным проводником, то затухание сигнала независимо от его частоты было пропорционально пройденному им расстоянию. Морская вода и плодородные земли степей дают близкое к этому затухание сигналов, но вообще земля никогда не ведет себя как идеальный проводник. Затухание увеличивается с частотой и, как правило, на частоте 1700 кГц намного больше, чем на 530 кГц.

Электропроводность измеряется в ммо/м (мОм -1 Чм -1) или в миллисименс/м (мСм/м). Электропроводность, равная 1 ммо/м, считается низкой, 6 ммо/м – средней, а 40 ммо/м – высокой.

При приеме ионосферной волны (в вечерние, ночные и утренние часы) радиоволны вещательного диапазона отражаются по направлению к Земле нестабильным ионизованным слоем E , находящимся на высоте около 100 км над поверхностью Земли. Изменения в условиях отражения вызывают флуктуации, или замирания, меняющиеся во времени. Отраженные пространственные волны возвращаются к Земле на удалении от передатчика 80–1600 км. Однако дальность их распространения может превышать несколько тысяч километров из-за многократных отражений от земли и ионосферы. Сильные замирания возникают, когда сигналы поверхностной и пространственной волн, принимаемые одновременно, сравнимы по амплитуде, но противоположны по фазе, в результате чего происходит их частичное или полное взаимогашение. Этот эффект иллюстрирует рис. 2.

Короткие волны.

Механизм распространения пространственных волн обычно превалирует в коротковолновом диапазоне (3–30 МГц). При этом сигналы различных частот отражаются разными слоями ионосферы по-разному. Уровень принимаемого сигнала зависит от условий его распространения, в том числе от числа отражений, солнечной активности, показателя преломления среды, а также от суточных и сезонных изменений. Эти факторы оказывают решающее влияние на выбор оптимальных рабочих частот. На многих высокочастотных (коротковолновых) станциях в зависимости от времени суток используют разные частоты; их выбирают также с учетом расположения зоны, на которую направлена передача.

Метровый и дециметровый диапазоны.

ЧМ- и ТВ-станции вещания работают на метровых и дециметровых волнах. Передачи на таких частотах не подвержены воздействию статических помех и флуктуациям амплитуды из-за отражений сигналов, а также относительно свободны от замираний. Распространение сигнала происходит преимущественно по линии визирования. Расстояние до радиогоризонта примерно такое же, как до оптического горизонта; далее изменения сигнала увеличиваются из-за касания земли и других потерь. Однако прием обычно бывает удовлетворительным на расстояниях до ~160 км при благоприятном расположении вещательной станции (на возвышенности в сельской или пригородной зоне). Пересеченная местность, деревья и здания вызывают флуктуации сигнала, увеличивающиеся с частотой.

Многочисленные исследования, проводившиеся Канадской вещательной корпорацией и другими организациями, показали, что передающая антенна с круговой поляризацией обычно увеличивает трудности, связанные с многолучевым распространением, особенно в холмистой местности. Единственно, в чем она дает преимущество, – это двукратное увеличение уровня сигнала, принимаемого на гибкие вертикально-штыревые антенны легковых автомобилей. Большие водные бассейны и плоская равнинная местность также отражают сигналы метровых и дециметровых волн. Температурная инверсия и расслаивание атмосферы могут вызывать временное появление направленных потоков (повторная рефракция) над водой и значительно увеличивать (в том числе нежелаемые) сигналы станций, находящихся на удалении в 160–320 км. При других обстоятельствах взаимное гашение сигналов может привести к понижению их уровня.

В результате тропосферного рассеяния сигналы диапазона метровых волн могут распространяться на расстояния, превышающие 1600 км. ТВ-станции, вещающие на «нижних» каналах 2, 3 и 4, особенно подвержены таким сверхдальним скачкам сигналов.

По всем этим причинам выбор частоты вещания, места расположения станции, ее высоты и типа антенны имеет важное значение при проектировании вещательных станций.

ЗОНЫ УВЕРЕННОГО ПРИЕМА

АМ-радиовещание на средних волнах.

Географическая зона, в пределах которой вещательная станция обеспечивает уверенный прием, обычно делится на две части. Для станций АМ-вещания на средних волнах основная зона охвата обслуживается поверхностной волной, создающей поле достаточной интенсивности, чтобы преодолеть фоновый шум и обеспечить приемлемое качество в дневное и ночное время. Кроме того, имеется зона, обслуживаемая пространственными волнами в ночное время.

Напряженность поля.

Напряженность поля, или уровень сигнала, получаемого в каком-то определенном месте, зависит от передаваемой мощности, коэффициента усиления антенны, рабочей частоты, расстояния от передатчика, электропроводности почвы и, возможно, от дополнительного усиления водной поверхностью и другими факторами. Напряженность поля обычно выражается в милливольтах на метр (мВ/м) или в микровольтах на метр (мкВ/м). Сигнал интенсивности 1 мВ/м на небольшой штыревой (гибкой) или ферритовой антенне с действующей высотой 1 м может генерировать напряжение 1 мВ.

Измерения.

Напряженность поля можно оценивать приблизительно, но для получения точных данных необходимы измерения. Съемку карты напряженности поля, создаваемого станцией, выполняют, делая замеры через одинаковые интервалы вдоль прямой линии, начинающейся от передатчика и заканчивающейся в точке, где напряженность поля слишком мала, чтобы при измерении можно было получить надежный результат.

Реальная зона охвата, создаваемая вещательной станцией, оценивается в единицах расстояний или площадей, в пределах которых обеспечиваются приемлемые напряженности поля сигнала.

КВ-радио.

Вещательные станции, работающие на коротких волнах, обычно обслуживают аудиторию как внутри своей страны, так и в других странах. Зона такого обслуживания может простираться на много тысяч километров от передатчика. Это обслуживание ведется с использованием пространственных волн и обычно имеет неравномерный характер вследствие присущих ионосфере изменений ее отражательных характеристик, которые вызывают флуктуации уровней принимаемых сигналов. При средней напряженности поля 0,05 мВ/м в зонах, где препятствий, затрудняющих прием, немного, и при отсутствии чрезмерных помех от наложившегося или соседнего канала обычно достигается приемлемый уровень обслуживания.

Радио- и телевещание в диапазонах метровых и дециметровых волн.

Как отмечалось выше, сигналы этих диапазонов обычно распространяются вдоль линии визирования. Требуемые средние уровни сигналов для этих диапазонов выражаются в децибелах по отношению к уровню 1 мкВ/м или в единицах мВ/м. Во всех случаях оценки или измерения этих уровней производятся на высоте 9 м над поверхностью земли, что обычно соответствует высоте приемной антенны, установленной на крыше частного дома. Диапазоны, уровни и категории обслуживания приведены в таблице. Из таблицы видно, что напряженность поля увеличивается с повышением частоты. Основная причина этого состоит в том, что изменение и поглощение сигналов более заметны на высоких частотах из-за эффекта близости земли.

ХАРАКТЕРИСТИКИ РАДИО- И ТВ-ВЕЩАНИЯ В МЕТРОВОМ И ДЕЦИМЕТРОВОМ ДИАПАЗОНАХ

Диапазоны частот, МГц

Применение

Каналы

основная

вспомогательная

дБмк

мВ/м

ДБмк

мВ/м

54–88
88–108

201–300

174–216
470–806

Дополнительные зоны обслуживания этих станций обычно обеспечиваются другими станциями, работающими на тех же самых или соседних каналах. Более того, в отсутствие помех от других станций хороший прием возможен и далеко за пределами дополнительных зон обслуживания. Так, например, напряженность поля 50 мкВ/м, создаваемая станцией ЧМ-вещания в метровом диапазоне или станцией ТВ-вещания, может быть вполне достаточной для приема на чувствительные приемники в сельской местности.

КАБЕЛЬНОЕ ТЕЛЕВИДЕНИЕ

Принцип кабельного телевидения с коллективным приемом CATV в последние десятилетия получил широкое распространение. В системе CATV базового уровня имеется центральная (головная) станция, расположенная в благоприятном месте или поблизости от населенного пункта. Система располагает также одной или несколькими антенными мачтами, приемными антеннами с высоким усилением, усилителями и конверторами. В населенном пункте должна иметься распределительная сеть, построенная на коаксиальном кабеле и содержащая промежуточные усилители; кабели сети обычно монтируют на столбах, но иногда их прокладывают в земле. Кабельное телевидение обеспечивает также лучшее качество приема программ региональных станций, в гористой местности и в городах. К улучшениям недавнего времени относятся широкополосные системы распределения, в которых часто имеются кабельные, микроволновые и иногда волоконно-оптические линии.

Многие многоквартирные дома и дома-кондоминиумы обслуживаются своими кабельными системами, у других имеются собственные коллективные антенны или мини-кабельные системы MATV (системы коллективного телевизионного приема).

ВЕЩАНИЕ СО СПУТНИКОВ

Американская корпорация коммерческой спутниковой связи «Комсат» была создана в 1961. После этого аналогичные организации появились как в США, так и в других странах. Многие из них представляют собой консорциумы, в которых участвуют и правительство, и промышленность. См. также СПУТНИК СВЯЗИ .

В последние годы межконтинентальная связь и прямой прием на домашнюю антенну передач со спутников получили широкое распространение. Спутники теперь могут обеспечить работу нескольких тысяч узкополосных телефонных, телеграфных и телетайпных каналов и многих широкополосных ТВ-каналов одновременно.

Для передач региональных вещательных станций и/или для компенсации различий в поясном времени могут использоваться несколько широко разнесенных линий передачи Земля – спутник. Эти линии имеют две частоты (для передачи и приема) и антенны диаметром от 5 до 11 м с управляемой диаграммой направленности. Спутниковые ретрансляторы преобразуют принимаемый сигнал на другую частоту, усиливают и ретранслируют его, используя лампу бегущей волны. Источником для электропитания аппаратуры служат солнечные и электрохимические батареи. Для удержания станции в нужном положении имеются двигатели реактивной системы ориентации и управления. Источники питания, устанавливаемые на современных спутниках, сохраняют работоспособность в течение 9–12 лет.

Разные службы пользуются различными частотами в пределах от 400 МГц до 22 ГГц для спутниковой связи. Наиболее часто для вещания со спутников на Землю используются частоты от 3,7 до 4,2 ГГц в С -диапазоне и от 12 до 12,7 ГГц в Q -дипазоне; многие спутники работают в обоих этих диапазонах. Для видеоканала обычно требуется полоса шириной от 20 до 25 МГц; выделяемые полосы имеют несколько большую ширину.

12-ГГц диапазон менее восприимчив к земным помехам, чем 4-ГГц диапазон. Расширение полосы спектра частот без увеличения помех требует дальнейшего совершенствования системы. Так, улучшение кросс-поляризационной характеристики и подавление боковых лепестков диаграмм направленности как передающей, так и приемной антенн позволили повысить точность управления положением спутниковой станции. Стандартное расстояние между спутниками на загруженных дугах орбит сокращено до 2° (1250 км). Положение спутника в заданной точке поддерживается с точностью ±20 км. Навигационная система спутника управляется компьютером. Незначительные коррекции ориентации обычно достаточно проводить раз или два в месяц.

Каждый ТВ-ретранслятор на спутнике может принимать один или несколько каналов. Форма и размер контура сильно меняются в зависимости от диаграмм направленности спутниковых антенн, ширины посылаемого луча, его направления и мощности. Типичные области обслуживания, полученные со спутника TDF1, показаны на рис. 3 для приемных станций с разными размерами антенных зеркал. Спутники TDF1 и TDF2 имеют по шесть 240-Вт ретрансляторов, работающих в Q -диапазоне. Для телевизионных передач используется Европейский стандартный сигнал D2-MAC.

Наиболее важным критерием, по которому можно судить об основных характеристиках приемной ТВ-станции, является ее среднее отношение сигнал/шум. Другие важные факторы – замирания в атмосфере и долговременная надежность.

Антенна наземной станции фокусирует энергию сигнала, принятого со спутника. Наиболее важные характеристики такой антенны – ее способность усилить желаемый сигнал и исключить сигналы, приходящие с мало отличающихся направлений. Ширина луча, создаваемого антенной, обратно пропорциональна ее диаметру. Например, в Q -диапазоне ширина главного лепестка диаграммы направленности при диаметре антенны 3 м составляет ±0,3°, а при диаметре 0,6 м – ±1,5°. Иными словами, меньшая антенна обладает худшим коэффициентом направленного действия; вдобавок ее коэффициент усиления впятеро меньше, чем у большей антенны.

Коэффициент усиления, или направленного действия (КНД), – это мера, характеризующая увеличение сигнала и обычно выражаемая в децибелах по отношению к изотропному излучателю. КНД зависит от рабочей частоты, размеров и КПД антенны. Чем больше антенна, тем, при прочих равных условиях, больше ее КНД.

Малошумящий усилитель МШУ обычно размещают непосредственно позади антенны и соединяют с ней волноводом и коаксиальным выводом с рупором. Важное значение имеет компромисс между шумовой температурой МШУ и КНД антенны, выражаемый показателем качества G /T системы. В альтернативном варианте можно использовать малошумящий преобразователь, сочетающий в себе функции МШУ и понижающего преобразователя. Этот прибор, также обычно размещаемый у антенны, преобразует частоту из выбранного рабочего канала диапазонов C или Q в диапазон промежуточной частоты (70 МГц).

При выборе места расположения приемной наземной станции учитывают ряд факторов, к числу которых относятся беспрепятственная видимость дуги орбиты, на которой находится спутник с ретранслятором, существующие и планируемые постройки в ближней к станции зоне, возможные источники помех и т.п.

На рис. 4 показаны антенны трех типов для наземных приемных станций. В двух случаях используются параболические зеркала, а в третьем антенна выполнена в виде плоской печатной схемы и не содержит зеркала.

Спутниковая связь имеет два основных преимущества перед наземной. Стоимость ее услуг не зависит от дальности, и многие пункты могут обслуживаться при сравнительно малых вложениях в оконечное оборудование. Эти факторы делают спутники идеальным средством для трансляции программ вещания над территориями больших стран или субконтинентов. Уникальные возможности дает использование спутников для обслуживания изолированных и удаленных регионов, где наземные микроволновые линии либо отсутствуют, либо обходятся дорого (например в Северной Канаде, на Аляске, в Сибири и на Дальнем Востоке).

НЕВЕЩАТЕЛЬНЫЕ СЛУЖБЫ

Большинство систем вещания пригодно также и для других применений. Так, например, АМ-станции средневолнового диапазона могут служить в качестве аэронавигационных и морских навигационных радиомаяков, в особенности в таких удаленных и малонаселенных регионах, где отсутствуют обычные вспомогательные средства навигации.

Во всех международных соглашениях о выделении частот для вещания предусматриваются свободные участки, что дает возможность дополнительной передачи сигналов. В качестве примеров можно привести передачи на очень низких частотах (20–25 Гц) сигналов управления от средневолновых станций и выделение 5-кГц полосы на станциях ЧМ- и ТВ-вещания для каналов связи с космическим транспортным кораблем «Шаттл».

К числу вспомогательных услуг ТВ-вещания относится передача буквенно-цифровых субтитров по заказу (кодированные субтитры, передаваемые в видеосигнале) при показе фильмов на иностранных языках, для плохослышащих телезрителей и т.д. Такая информация передается во время вертикального гасящего импульса, но для доступа к ней требуется декодер. Другие абоненты могут заказать желаемую информацию по телефону или воспользовавшись клавиатурой. Эта же служба может предоставлять такие специальные услуги, как уроки иностранного языка или финансовую информацию, а также обучение письму и графике. В альтернативном варианте эти каналы можно использовать частным образом для телеметрии, управления и контроля качества сигнала.

ПЕРСПЕКТИВЫ

Важные проекты улучшений как в радио-, так и в телевещании сейчас разрабатываются или реализуются. Система цифрового звукового вещания (DAB) «Эврика» 147 прошла эксплуатационные испытания в Западной Европе. Восемь и большее число программ передавались в стереофоническом варианте одним передатчиком. В проекте участвовали Бельгия, Великобритания, Германия, Нидерланды и Франция.

Рассматривается возможность использования DAB для микроволнового вещания со спутника, а также для одночастотных наземных сотовых сетей. Эти сети могли бы работать на частоте около 210 МГц. Каждый канал мог бы занимать полосу 7 МГц и служить для передачи до 16 разных стереопрограмм. Новые интегральные схемы облегчат производство небольших приемников, оснащенных переключателями диапазонов и режимов.

Система «Эврика» успешно прошла эксплуатационные испытания и в Канаде. Для обслуживания больших городов использовался передатчик, излучавший мощность в несколько киловатт. Полученные результаты показали, что при работе на уровнях мощности 10–20 кВт прием в городских условиях может быть значительно улучшен благодаря уменьшению помех и исключению мертвых зон и искажений, обусловленных многолучевым распространением. Кроме того, благодаря схемным улучшениям ЧМ-приемника, возможно, удастся уменьшить трудности, связанные с многолучевым приемом, и в некоторой степени повысить качество звука. В качестве факультативной возможности у некоторых выпускаемых приемников уже предусмотрен прием цифрового вещания.

На повестке дня стоит также вопрос о телевидении повышенной и высокой четкости. Такое телевидение будет, видимо, наиболее привлекательно для вещания со спутников и(или) по кабельной сети, что объясняется повышенными требованиями к ширине полосы каналов и перегруженностью спектра в современных диапазонах вещания на метровых и дециметровых волнах.

Японская вещательная корпорация приступила к экспериментальному вещанию телевидения высокой четкости (ТВЧ) со спутника на частотах диапазона Q . Это вещание рассчитано на прием только в Японии и занимает полосы 24 МГц в дециметровом диапазоне на частотах 12 ГГц и 8 ГГц. Видеосигнал представляет собой АМ-волны, соответствующие ТВ-стандарту на 1125 строк (стандарт кодирования с многократной субдискретизацией).

Разные системы телевидения повышенной или высокой четкости проходят оценку в США и Канаде. Большая часть их относится к цифровым, другие – к аналоговым, одна выполнена по модифицированному японскому стандарту MUSE. В соответствии с новой концепцией Федеральной комиссии связи для улучшенного телевидения планируется использовать наземные службы распределения, работающие в дециметровом диапазоне. Как и в японской системе MUSE, в ней используется формат кадра (отношение ширина/высота) 16:9 вместо обычного 4:3. Она рассчитана на широкий экран и широкий угол обзора, что повышает реализм восприятия изображения и дает примерно удвоенное изображение по горизонтали и вертикали по сравнению с обычным.

Широкое распространение приема спутникового телевидения непосредственно в жилых домах радикальным образом изменит вещание и связь. В Европе и Японии такие системы используются с 1989; они принимают сигналы на зеркальные антенны диаметром всего лишь 40–60 см и обеспечивают множество каналов. Аналогичные спутники, оснащенные гораздо более мощными ретрансляторами Q -диапазона, НАСА ввело в действие в 1994–1995. Тем не менее очень мала вероятность того, что будет принят какой-либо всемирный стандарт на телевидение высокой четкости. Скорее, каждая крупная промышленно развитая страна или группа стран, как, например, Европейский союз, разработают собственные стандарты. См. также АНТЕННА ; ЗВУКА ВОСПРОИЗВЕДЕНИЕ И ЗАПИСЬ ; ИЗОБРАЖЕНИЙ ЗАПИСЬ И ВОСПРОИЗВЕДЕНИЕ ; СПУТНИК СВЯЗИ ; ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ .

Литература:

Резников М.Р. Радио и телевидение вчера, сегодня, завтра . М., 1977
Александрова Т.С., Урьев А.Г. Основы телевидения и радиорелейной связи . М., 1980
Ефимов А.П. и др. Радиосвязь, вещание и телевидение . М., 1981



Cтраница 1


Дециметровые волны в меньшей степени, чем метровые, подвержены явлению дифракции. Они рассеиваются местными предметами, что уменьшает вероятность интерференционных помех приему. Так же как и метровые волны, они испытывают рассеяние на неоднородно-стях тропосферы.  

Дециметровые волны в меньшей степени, чем метровые, подвержены дифракции. Они рассеиваются местными предметами, что уменьшает вероятность интерференционных помех приему. Так же как и метровые волны, они испытывают рассеяние на неоднородностях тропосферы. Это позволяет осуществить многоканальную телефонную связь или трансляцию телевизионной передачи с помощью радиорелейных линий на расстояниях, превышающих сотни и даже тысячи километров.  

Дециметровые волны - радиоволны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 до 300 Мщ.  

Дециметровые волны - радиоволны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 до 300 МГц.  


Дециметровые волны используются в зоне прямой видимости.  

Дециметровые волны - радио волны длиной от 10 см до 1 м, соответствующие диапазону частот от 3000 Мгц до 300 Мгц.  

Дециметровые волны - радиоволны длимой от 10 см до 1 м, соответствующие диапазону частот от 3000 Мгц до 300 Мгц.  

Дециметровые волны распространяются только в пределах прямой видимости и избирательно поглощаются атмосферой, интенсивно отражаются от подвижных и неподвижных объектов. Антенны малогабаритны и обладают острой направленностью излучения. Дециметровые волны используются в радиорелейных и спутниковых системах связи, высокоточных наземных системах радиолокации и радиоуправления.  

Дециметровые волны позволяют получать с помощью спутниковых РНС очень высокую точность местоопределения в рабочей области системы, которая для глобальных СРНС охватывает все околоземное пространство.  


Мертвые и дециметровые волны распространяются в пределах прямой видимости. Эти волны не отражаются от ионосферы, а поверхностная волна очень быстро затухает. Для увеличения дальности радиосвязи на этих волнах применяются направленные антенны, излучающие электроэнергию узким пучком.  

Однако дециметровые волны не могут быть приняты существующими телевизионными приемниками непосредственно, и работа в этом диапазоне потребует использования конверторов-преобразователей частоты.  

Для телевизионного вещания используются метровые и дециметровые волны. Для черно-белого телевидения в СССР отведено двенадцать каналов.  

Сначала в радиолокации использовались метровые и дециметровые волны, а затем стали переходить к сантиметровым волнам, которым соответствует спектр частот от 30 тыс. до 3 тыс. мггц. Малая длина этих волн, являющихся частью диапазона ультракоротких волн, позволила создать сравнительно небольшие по размерам радиолокационные антенны, имеющие ширину диаграммы направленности в несколько градусов и даже долей градуса.  

К. Харченко

Прием телевизионных передач на радиочастотах 470...622 МГц (21-39 каналы) диапазона дециметровых волн (ДЦВ) требует соответствующего подхода к расчету и конструированию антенных устройств.

Некоторые радиолюбители пытаются решить эту задачу простым пересчетом, основанным на принципах электродинамического подобия антенн, параметров имеющихся конструкций телевизионных антенн метрового диапазона (1-12 каналы). При этом, они неизбежно сталкиваются с трудностями самого пересчета и зачастую не получают желаемых результатов.

Каковы же основные принципы подхода к решению этой задачи?

В свободном пространстве радиоволны, излученные антенной, имеют сферическую расходимость, в результате чего электрическая напряженность поля Е убывает обратно пропорционально расстоянию r от антенны.

В реальных условиях распространяющиеся радиоволны претерпевают большее затухание, чем существующее в свободном пространстве. Для учета этого затухания вводят множитель ослабления F(r)= Е/Есв, который характеризует отношение напряженности поля для реальных условий, к напряженности поля свободного пространства при равных расстояниях, одинаковых антеннах и подводимых к ним мощностях и т. д. С помощью множителя ослабления напряженность поля, создаваемая передающей антенной в реальных условиях на расстоянии r, может быть выражена как

Приемная антенна преобразует энергию электромагнитной волны в электрический сигнал. Количественно эту способность антенны характеризуют ее эффективной площадью Sэфф. Она соответствует той плошади фронта волны, из которой поглощается вся содержащаяся в ней энергия, С КНД эта площадь связана соотношением:


Изложенное здесь позволяет написать уравнение радиопередачи, которое связывает параметры аппаратуры связи (передатчика и приемника) и антенн и определяет уровень сигнала на трассе: при мощности передатчика Р1 мощность Р2 сигнала на входе приемника будет равна


Множитель в этом выражении, заключенный в скобки, определяет основные потери при распространении радиоволн (основные потери передачи). При этом предполагается, что антенна согласована с фидером, а фидер с телевизионным приемником и, кроме того, антенна согласована по поляризации с полем сигнала.

Рассмотрим подробнее выражение (11).


Этот конкретный пример показывает, что с увеличением частоты (уменьшением длины волны) телевизионных передач мощность сигнала, поступающего на вход телевизора при прочих равных условиях, быстро уменьшается, т. е. условия приема ухудшаются. На стороне передачи эти неприятности стараются компенсировать увеличением произведения Р1У1. Но в реальных условиях множитель F(r) и КПД приемного фидера с ростом частоты уменьшаются, поэтому необходимость увеличения коэффициента усиления приемной антенны Y2 становится неизбежностью. Этот вывод влечет за собой еще один, заключающийся в том, что, как правило, для уверенного приема программ 21-39 телевизионных каналов нужно применять новые, более направленные антенны по сравнению с антеннами, применяемыми в диапазоне волн 1-5 каналов.

Стремясь получить устойчивый прием телепередач, радиолюбители вынуждены усложнять антенны, например, строить антенные решетки, т. е. объединяют несколько однотипных, зарекомендовавших себя на практике антенн (каждая из которых имеет свою пару точек питания) с общей системой питания и только одной (общей для всех) парой точек питания. При этом они нередко недооценивают важность этапа согласования при построении антенных решеток, связанного с относительно сложными измерениями. Сказанное проиллюстрируем таким конкретным примером.


Подобный эффект получается и при параллельном соединении трех элементов (рис. 1, в). Продолжая такие рассуждения, можно получить зависимость, которую иллюстрирует рис. 2.


Здесь эффективная площадь антенны прямо пропорциональна числу n излучателей в решетке, равно как и поглощаемая антенной мощность Р сумм. Мощность же Р пр подводимая к приемнику, с увеличением числа n асимптотически приближается к 4Рo. Этот пример показывает бесплодность попыток увеличить коэффициент усиления антенной решетки без учета согласования ее элементов с фидером. Трудности, связанные с согласованием, преодолевают либо применением специальных согласующих устройств, либо выбором специальных типов антенн. Например, в дециметровом и особенно в сантиметровом диапазонах волн применяют, как правило, так называемые апертурные антенны, т. е. рупорные или параболические. Особенность таких антенн заключена в том, что они имеют простой, «небольших» размеров облучатель, и «большой», сравнительно сложный рефлектор. Большой рефлектор и обусловливает направленные свойства антенны, определяет ее КНД.

Выполнить в любительских услозиях антенны апертурного типа на диапазон ДЦВ не представляется возможным, так как они громоздки и сложны. Но некоторое подобие апертурной антенны сконструировать можно, положив в основу облучатель в виде известной зигзагообразной антенны (з-антенны). Полотно такой антенны состоит из восьми замкнутых одинаковых проводников, которые образуют две ромбовидные ячейки (рис. 3).


Для формирования диаграммы направленности антенны, в частности, необходимо, чтобы излучатели были сфазированы и разнесены относительно друг друга. З-антенна имеет одну пару точек питания (а-б), к которой непосредственно подключают фидер. Благодаря такой конструкции антенны ее проводники возбуждаются так (частный случай направления токов на проводниках антенны на рис. 3 показан стрелками), что образуется своеобразная синфазная решетка из четырех вибраторов. В точках П-П проводники полотна антенны замкнуты между собой и здесь всегда имеется пучность тока. Антенна имеет линейную поляризацию. Ориентация вектора электрического поля Е на рис. 3 показана стрелками.

Диаграммы направленности з-антенны удовлетворяют диапазону частот с перекрытием fмакс/fмин =2-2,5. Ее КНД мало зависит от изменения угла а (альфа), так как с увеличением его уменьшение направленности антенны в плоскости Н компенсируется увеличением направленности в плоскости Е, и наоборот. Характеристика направленности з-антенны симметрична относительно плоскости, в которой расположены проводники ее полотна.

В связи с тем, что в точках П-П нет разрыва проводников полотна антенны, то здесь имеются точки нулевого потенциала (нули напряжения и максимумы тока) независимо от длины волны. Это обстоятельство позволяет обойтись без специального симметрирующего устройства при питании коаксиальным кабелем.

Кабель прокладывают через точку нулевого потенциала П и по двум проводникам полотна антенны подводят к точкам ее питания (рис. 4). Здесь оплетку кабеля соединяют с одной из точек питания антенны, а центральный проводник - с другой. Принципиально оплетку кабеля в точке П тоже нужно замкнуть накоротко на полотно антенны, однако, как показала практика, делать это не обязательно. Достаточно кабель подвизать к проводам полотна антенны в точке П, не нарушая его полихлорвиниловой оболочки.

Зигзагообразная антенна широкополосна и удобна тем, что ее конструкция сравнительно проста. Это ее свойство позволяет допускать значительные отклонения (неизбежные при изготовлении) в ту или иную сторону от расчетных размеров ее элементов практически без нарушения электрических параметров.

Кривая 1, показанная на рис. 5, характеризует зависимость КБВ от

Пользуясь графиками рис. 5, можно построить з-антенну, имеющую максимально возможный КНД для данного типа полотна антенны. Ее входное сопротивление в диапазоне частот в значительной степени зависит от поперечных размеров проводников, из которых выполнено полотно. Чем толще (шире) проводники, тем лучше согласование антенны с фидером. Вообще же для полотна з-антенны пригодны проводники самого различного профиля - трубки, пластины, уголки и т. п.

Рабочий диапазон з-антенны можно расширить в сторону более низких частот без увеличения размера L путем образования дополнительной распределенной емкости проводников ее полотна, а общие размеры, выраженные в длинах максимальной волны рабочего диапазона, уменьшить. Достигается это перемыканием части проводников з-антенны, например, дополнительными проводниками (рис. 6),


Которые и создают дополнительную распределенную емкость.

Диаграммы направленности такой антенны в плоскости Е аналогичны диаграммам симметричного вибратора. В плоскости H диаграммы направленности с увеличением частоты претерпевают значительные изменения. Так, в начале рабочего диапазона частот они лишь слегка сжаты под углами, близкими к 90°, а в конце рабочего диапазона поле практически отсутствует в секторе углов ±40...140°.

Для увеличения направленности антенны, состоящей из зигзагообразного полотна, применяют плоский экран-рефлектор, который часть высокочастотной энергии, падающей на экран, отражает в сторону полотна антенны. В плоскости полотна фаза высокочастотного поля, отраженного рефлектором, должна быть близка к фазе поля, создаваемого самим полотном. В этом случае происходит требуемое сложение полей и экран-рефлектор примерно удваивает первоначальный коэффициент усиления антенны. Фаза отраженного поля зависит от формы и размеров экрана, а также от расстояния S между ним и полотном антенны.

Как правило, размеры экрана значительные и фаза отраженного поля зависит, главным образом, от расстояния S. На практике редко выполняют рефлектор в виде единого металлического листа. Чаще он представляет собой ряд проводников, расположенных в одной плоскости параллельно вектору поля Е.

Длина проводников зависит от максимальной длины волны (Лямбда макс) рабочего диапазона и размеров активного полотна антенны, которое не должно выступать за пределы экрана. В плоскости Е рефлектор обязательно должен быть несколько больше половины максимальной длинны волны. Чем толще проводники, из которых делают рефлектор, и ближе они расположены друг к другу, тем меньшая часть энергии, падающей на него, просачивается в заднее полупространство.

По конструктивным соображениям экран не следует делать очень плотным. Достаточно, чтобы расстояния между проводниками диаметром 3...5 мм не превышали 0,05...0,1- минимальной волны рабочего диапазона. Проводники, образующие экран, можно соединить между собой в любом месте и даже приваривать или припаивать к металлической раме. Если они расположены в плоскости самого рефлектора или за ним, то их влиянием на работу рефлектора можно пренебречь.

Во избежание дополнительных помех не следует допускать, чтобы проводники (полотна антенны или рефлектора) от ветра терлись либо касались друг друга.

Один из возможных вариантов антенны с рефлектором показан на рис. 7.

Ее активное полотно состоит из плоских проводников - планок, а рефлектор - из трубок. Но она может быть полностью металлической. В местах соединений элементов антенны должен быть надежный электрический контакт.

На значение КБВ в тракте с волновым сопротивлением 75 Ом в значительной мере влияют как ширина планки dпл (или радиус провода) активного полотна антенны, так и расстояние S, на которое оно удалено от экрана.

С увеличением расстояния S КНД антенны снижается и сужается диапазон частот, в пределах которого направленные свойства з-антенны не претерпевают заметных изменений. Таким образом, с точки зрения улучшения КНД антенны расстояние S желательно уменьшать, а с точки зрения согласования - увеличивать.

Для крепления полотна антенны к плоскому рефлектору используют стойки. В точках П-П (рис. 6 и 7) стойки могут быть как металлическими, так и диэлектрическими, а в точках У-У-обязательно диэлектрическими.

В ряде практических случаев приема сигналов по 21-39 каналам телевидения имеющегося коэффициента усиления (КУ) з-антенны c плоским экраном может оказаться недостаточным. Увеличить КУ, как уже говорилось, можно построением антенной решетки, например, из двух или четырех з-антенн с плоским экраном. Есть, однако, другой путь увеличения КУ - усложнение формы рефлектора з-антенны.

Приводим пример, каким должен быть рефлектор з-антенны, чтобы ее КУ соответствовал значению КУ антенной синфазной решетки, построенной из четырех з-антенн. Этот путь наиболее простой и доступный в любительской практике, чем построение антенной решетки.

На рисунках антенны размеры всех ее элементов указаны применительно к приему телепрограмм по 21-39 каналам.

Активное полотно антенны, показанной на рис. 6, выполнено из плоских металлических пластин толщиной 1...2 мм, наложенных друг на друга «внахлест» и скрепленных винтами с гайками. В точках соприкосновения пластин должен быть надежный электрический контакт. Конструктивно активное полотно антенны имеет осевую симметрию, что позволяет прочно закрепить его на плоском экране. Для этого используют стойки-опоры, располагая их в вершинах П-П и У-У квадрата, образуемого пластинами полотна антенны. Точки П-П имеют «нулевой» потенциал по отношению к «земле», поэтому стойки в этих тачках могут быть из любого материала, в том числе металлическими. Точки У-У имеют некоторый потенциал по отношению к «земле», поэтому стойки в этих точках должны быть только из диэлектрика (например, из оргстекла). Кабель (фидер) к точкам а-б питания прокладывают по металлической опоре к одной (нижней) точке П и далее по сторонам полотна антенны (см. рис. 6). Особое внимание следует обратить на ориентацию вектора Е, характеризующего поляризационные свойства антенны. Направление вектора Е совпадает с направлением, соединяющим точки а-б питания антенны. Зазор между "точками а-б должен быть около 15 мм без зазубрин и прочих следов небрежной обработки пластин.

Основой плоского экрана-рефлектора служит металлическая крестовина, на которой, как на каркасе, размещают активное полотно антенны и проводники экрана. За крестовину антенну в сборе надежно прикрепляют к мачте с таким расчетом, чтобы поднятая она была выше местных мешающих предметов (рис. 8).

При изготовлении рефлектора типа «усеченный рупор» все стороны плоского рефлектора удлиняют створками и загибают их так, чтобы образовать фигуру по типу «полуразвалившейся» коробки, у которой дно -- плоский экран, а стенки - створки. На рис. 9


Такой объемный рефлектор показан в трех проекциях со всеми размерами. Сделать его можно из металлических трубок, пластин, проката различного профиля. В точках пересечения металлические стержни должны быть сварены или спаяны. На том же рис. 9 показано и место размещения активного полотна антенны с точками П-П, У-У. Полотно-удалено от плоского рефлектора - донышка усеченного рупора - на 128 мм. Стрелка символизирует ориентацию вектора Е. Почти все проекции стержней рефлектора на фронтальную плоскость параллельны вектору Е. Исключением являются лишь часть силовых стержней, образующих каркас рефлектора. Если рефлектор выполнен из трубок, диаметр трубок силовых стержней может быть 12...14 мм, а остальных - 4...5 мм.

КНД антенны с рефлектором типа «усеченный рупор» при заданных размерах соизмерим с КНД объемного ромба (1) и изменяется по диапазону частот в пределах 40...65. Это означает, что на верхних частотах рабочего диапазона антенны половина угла раскрыва ее диаграммы направленности составляет около 17°.

Форма диаграммы направленности антенны, показанной на рис. 9, примерно одинакова для обеих плоскостей поляризации. При установке антенны на местности ее ориентируют на телецентр. Конструкция антенны осесимметрична по отношению к направлению на телецентр, что может стать источником поляризационной ошибки при ее установке на мачту. Здесь надо учитывать, какую поляризацию имеют сигналы, приходящие от телецентра. При их горизонтальной поляризации точки питания а-б антенны должны быть расположены в горизонтальной плоскости, а при вертикальной поляризации - в вертикальной плоскости.

Литература
Харченко К., Канаев К. Объемная ромбическая антенна. Радио, 1979, № 11, с. 35-36.
[email protected]

Современный рынок предлагает огромный ассортимент антенн для приема эфирного телевидения. Существует два основных вида этих изделий, позволяющие осуществлять прием метрового и дециметрового диапазона радиоэфира. Также их можно разделить по месту использования на наружные и комнатные. Принципиально они мало чем отличаются. Здесь в первую очередь делается упор на размер и сохранение необходимых параметров под воздействием погодных условий. В этой статье мы обсудим существующие виды данных изделий, рассмотрим, какие у них параметры, как проводить тестирование. А для любителей мастерить расскажем, как изготавливается дециметровая антенна своими руками.

А в чем разница?

Попробуем объяснить в двух словах, как определить, какого вида изделие находится перед вами. Антенна дециметрового диапазона внешне напоминает лесенку. Устанавливают их параллельно земле. Метровые представляют собой скрещенные алюминиевые трубки. Внешний вид обоих типов представлен на фото ниже. Существуют также и комбинированные антенны, когда совмещены и «лесенка», и перекрестные трубки.

Проблема выбора

Казалось бы, все просто. Однако при этом перед покупателем возникает вопрос о том, как правильно выбрать устройство, на какие параметры обращать внимание. Вообще лучше всего антенны ТВ тестировать непосредственно в тех условиях, в которых им предстоит работать. Прохождение радиосигнала зачастую бывает индивидуальным для той или иной местности. Так, изделие в лабораторных условиях показывает одни результаты, а в «полевых» - совсем иные. Существует определенная тактика, позволяющая тестировать как метровые, так и дециметровые ТВ-антенны. Однако, выбирая такое изделие в магазине, мы не имеем возможности провести полноценное тестирование. Ни один продавец не согласится дать нам на испытания несколько различных антенн. В таком случае приходится доверять характеристикам этих изделий. И надеяться, что выбранная антенна будет выполнять свои функции согласно паспортным данным, а не реальным условиям.

Основные параметры

Антенна дециметровая характеризуется в первую очередь диаграммой направленности. Основными параметрами этой характеристики являются уровень боковых (вспомогательных) лепестков и ширина основного лепестка. Ширину диаграммы определяют в горизонтальной и вертикальной плоскостях на уровне 0,707 от наибольшего значения. Так, по этому параметру (ширине основного лепестка) диаграммы принято делить на ненаправленные и направленные. Что это означает? Если основной лепесток умеет узкую форму, значит, антенна (дециметровая) является направленной. Следующим важным параметром является помехозащищенность. Данная характеристика в первую очередь зависит от уровня задних и боковых лепестков диаграммы. Она определяется отношением выделяемой антенной мощности при условии согласованной нагрузки в момент приема сигнала с главного направления к мощности (с той же нагрузкой) при приеме с бокового и заднего направления. В первую очередь форма диаграммы зависит от количества директоров и конструкции антенны.

Что означает термин «волновойканал»?

Антенны ТВ этого типа являются весьма эффективными направленными приемниками радиосигналов. Их широко применяют в зонах явно слабого телевизионного эфира. Антенна (дециметровая) типа «волновой канал» обладает большим усилением и имеет хорошую направленность. Кроме того, эти изделия имеют сравнительно небольшие габариты, что (наравне с высоким уровнем усиления) делает ее весьма популярной среди жителей дачных поселков и других населенных пунктов, удаленных от центра. Эта антенна имеет и второе название - Уда-Яги (по имени японских изобретателей, которые и запатентовали данное устройство).

Принцип работы

Антенна дециметровая типа «волновой канал» представляет собой набор элементов: пассивного (рефлектора) и активного (вибратора), а также нескольких директоров, которые устанавливаются на общую стрелу. Принцип ее действия заключается в следующем. Вибратор имеет определенную длину, он находится в электромагнитном поле радиосигнала и резонирует на частоте принимаемого сигнала. В нем наводится На каждый пассивный элемент воздействует электромагнитное поле, что также приводит к возникновению ЭДС. В результате они переизлучают вторичные электромагнитные поля. В свою очередь эти поля наводят на вибраторе дополнительную ЭДС. Поэтому размеры пассивных элементов, а также их расстояния до активного вибратора выбираются такими, чтобы наводимая ими ЭДС за счет вторичных полей была в фазе с основной ЭДС, которая наводится в нем первичным электромагнитным полем. В таком случае все ЭДС суммируются, что обеспечивает увеличение эффективности конструкции по сравнению с одиночным вибратором. Таким образом, даже обычная комнатная может обеспечить устойчивый прием сигнала.

Рефлектор (пассивный элемент) устанавливается сзади вибратора 0,15-0,2 λ 0 . Его длина должна превышать длину активного элемента на 5-15 процентов. У такой антенны получается односторонняя направленная диаграмма в вертикальной и горизонтальной плоскостях. В результате значительно снижается прием отраженных сигналов и полей, которые приходят с тыльной стороны антенны. В случае необходимости принимать телевизионный сигнал на больших расстояниях, а также в сложных условиях, при наличии большого количества помех, рекомендуется использовать трех- и более элементную антенну, которая состоит из активного вибратора, одного либо более директоров и рефлектора.

Прямой и отраженный сигналы

В статье, посвященной волновым приемным устройством («Теле-Спутник» № 11 за 1998 год), отмечалось, что в случае, когда источником сигнала служит не стандартный (то есть не лабораторный) генератор и излучающая антенна, а сигнал транслируется телевизионной вышкой, значительную роль играют погодные условия, а также место установки приемника. Особенно это сказывается на работе изделий ДМВ-диапазона. Объясняется это тем, что в дециметровом диапазоне меньше, соответственно, огибание препятствий значительно хуже, а любые отражения сигнала играют важную роль в качестве принимаемой картинки. В частности, даже стена дома может быть отражателем волн. Так, в условиях отсутствия прямой видимости этим свойством можно воспользоваться - принимать отраженный сигнал. Однако его качество будет ниже, чем у прямого. Если уровень транслируемого сигнала высокий, но нет прямой видимости, то можно воспользоваться отраженной волной. По сути, комнатная дециметровая антенна работает именно на этом принципе. Ведь в комнате сложно поймать прямую волну, если окна выходят в обратную сторону. Поэтому, если постараться, всегда можно найти такую точку, где принимаемый сигнал будет выше. А вот в случае прямой видимости любая отраженная помеха испортит принимаемую картинку.

Методика, позволяющая сравнивать параметры антенн

Для того чтобы провести тестирование приемных устройств, им необходимо создать одинаковые условия:

1. Выбрать место установки, в котором будет работать ваша антенна. Можно воспользоваться балконом, крышей или мачтой. Главное, чтобы и высота, и место были одинаковым для всех изделий.

2. Направление на источник транслируемого сигнала следует выдерживать с точностью до трех градусов. Для этого можно сделать специальную метку на трубе крепления.

3. Измерения следует проводить при одинаковых погодных условиях.

4. Кабель, соединяющий антенну и телевизор, должен иметь одинаковые сопротивление и длину. Лучше всего использовать один провод, меняя только приемники.

Тестирование следует проводить только для изделий одного вида. Например, комнатная антенна ДМВ-диапазона не должна сравниваться с наружной или с метровыми приемниками. Следует понимать, что полевые испытания могут дать результаты, которые будут существенно отличаться от лабораторных.

Дециметровая антенна для цифрового телевидения

В последнее время в средствах массой информации все настойчивее говорится о необходимости перехода на цифровое телевидение. Многие уже сделали это, а кто-то еще размышляет. Пока что трансляция сигнала ведется в обоих режимах. Однако качество оставляет желать лучшего. В связи с этим люди интересуются, какие можно использовать дециметровые антенны для Т2. Давайте разберемся с этим вопросом. По сути, цифровое телевидение вещает на канал ДМВ-диапазона. Так что для его приема может подойти стандартная ДМВ-антенна. В магазинах часто можно увидеть приемные устройства, на которых указано, что они предназначены для цифрового телевидения. Однако это маркетинговый ход, позволяющий продать стандартную дециметровую антенну дороже, чем она стоит. Покупая такое изделие, у вас не будет гарантии того, что оно обеспечит лучший прием, чем то, что уже стоит у вас дома и работает не один год. Как мы уже говорили раннее, качество зависит в основном от уровня транслируемого сигнала и условий прямой видимости. Однако следует учитывать, что в большинстве городов используются для передачи цифрового телевидения значительно более мощные генераторы, чем для аналогового. Это делается для того, чтобы ускорить переход на новый стандарт. Ведь зрители хотят видеть четкое изображение, а не «снег» на экранах. Поэтому если в витрине выставлен приемник, на котором написано «Дециметровая антенна для DVB T2», знайте: это вовсе не значит, что перед вами какое-то особенное изделие. Просто не совсем честный продавец хочет нажиться на неосведомленном покупателе. Также следует знать, что программа перехода на новый стандарт предусматривает создание консультативных центров. В них вы можете получить исчерпывающую информацию по любому вопросу, связанному с цифровым телевидением. Все консультации даются бесплатно. В некоторых городах данное оборудование находится в тестовом режиме, поэтому сигнал может быть неустойчивым или ослабленным. Не переживайте, работники центра всегда подскажут, как решить проблему с качеством приемом сигнала.

Дециметровая антенна своими руками

Длина ДМВ-волн укладывается в промежуток от 10 см до 1 м. От этой особенности и произошло их название. на этой частоте распространяются преимущественно по прямой линии. Они практически не огибают препятствия, лишь частично отражаются тропосферой. В связи с этим дальняя связь в дециметровом диапазоне весьма затруднительна. Ее радиус не превышает ста километров. Рассмотрим пару примеров того, как сделать дециметровую антенну в домашних условиях.

Первый вариант самодельного приемника телевизионного вещания будет, так сказать, собран на колене из подручных материалов. ДМВ-каналы располагаются на отрезке от 300 МГц до 3 ГГц. Наша задача - изготовить антенну, которая будет работать именно на этих частотах. Для этого нам понадобятся две пивные банки объемом 0,5 литра. Если использовать емкость большего объема, то снизится принимаемая частота. Для монтажа понадобится какой-нибудь каркас, можно использовать доску шириной 10 см. Также можно воспользоваться обычной деревянной вешалкой, в таком случае полученную антенну можно будет подвесить на гвоздь в любом удобном месте комнаты. Кроме каркаса и банок, необходимо подготовить пару шурупов-саморезов, инструменты, коаксиальный кабель, разъем, клеммы, изоляционную ленту. На один конец кабеля надеваем телевизионный разъем и подпаиваем его. Второй конец заводим в клеммник. Далее прикрепляем шурупами к горлышкам банок клеммы. Провода должны плотно прилегать к металлу. Теперь приступим к сборке самой антенны. Для этого на горизонтальной перекладине закрепляем банки горлышками навстречу. Расстояние между ними должно составлять 75 мм. Для фиксации банок можно использовать изоляционную ленту. Все, антенна готова! Теперь следует отыскать место устойчивого приема телевизионного сигнала и повесить в этом месте нашу «вешалку».

Приемное устройство для цифрового телевидения

Этот раздел предназначается для людей, которые не желают использовать обычное (аналоговое) изделие, а хотят, чтобы для нового формата использовалась специальная дециметровая антенна. Своими руками такое приемное устройство также собирается элементарно. Для этого нам понадобятся квадратный деревянный (можно из оргстекла) каркас с диагональю 200 мм и обычный кабель РК-75. Представленный вашему вниманию вариант является зигзагообразной антенной. Она отлично себя зарекомендовала при работе в диапазоне приема цифрового телевидения. Причем она может использоваться в местах, где отсутствует прямая видимость на источник сигнала. Если у вас слабая трансляция, к ней можно подключить усилитель. Итак, приступим к работе. Зачищаем конец кабеля на 20 мм. Далее выгибаем провод по форме квадрата с диагональю 175 мм. Конец загибаем наружу под углом 45 градусов, к нему пригибается второй зачищенный конец. Плотно соединяем экраны. Зачищенная центральная жила свободно висит в воздухе. На противоположном углу квадрата аккуратно снимаем изоляцию и экран на участке 200 мм. Это будет верх нашей антенны. Теперь соединяем полученный квадрат с деревянным каркасом. В нижней части, там, где соединены два конца, следует использовать медные скобы, сделанные из толстого провода. Это обеспечит лучший электрический контакт. Вот и все, дециметровая антенна для цифрового телевидения готова. Если она будет устанавливаться снаружи, можно сделать для нее пластиковых корпус, что защитит устройство от осадков.