Чем определяется мощность трансформатора. Как узнать мощность трансформатора? Определение мощности силового трансформатора

16.08.2019

Содержание:

Каждый электроприбор характерен номинальной электрической мощностью. Она обеспечивается источником питания. Он может располагаться либо внутри электроприбора, либо снаружи как внешнее устройство. Наглядный пример - ноутбук, телефон и многие другие приборы. В них содержится батарея, от которой питается устройство в автономном режиме. Но ее ресурс ограничен, и когда он исчерпывается, прибор подключается через адаптер к электросети 220 В.

Некоторые батареи обеспечивают напряжение всего лишь в 3–5 вольт. Поэтому адаптер служит для того, чтобы напряжение уменьшилось и стало равным батарейным параметрам. Основную функцию в изменении величины напряжения выполняют трансформаторы. Эта статья будет полезна тем читателям, у которых появится желание своими руками изготовить источник питания с трансформатором для тех или иных целей.

Немного теории

Напомним вкратце о том, как трансформатор устроен и что в нем происходит. Довольно давно, если судить по меркам человеческой жизни, было открыто явление электромагнитной индукции. Оно основано на принципиальном отличии электрических свойств прямого проводника от витка, если по ним пропускать один и тот же переменный ток. Так появился параметр индуктивности. С каждым новым витком индуктивность увеличивается. Дополнительное ее увеличение достигается заполнением внутреннего пространства витков материалом с магнитными свойствами (сердечником).

Однако влияние сердечника на силу тока ограничено. Как только он полностью намагничивается, эффект от его использования исчезает.

  • Граничное состояние сердечника, соответствующее полному его намагничиванию, называется насыщением.

Витки, расположенные поверх сердечника, называются обмоткой. Если на нем расположены две одинаковые обмотки, но переменное напряжение подается только на одну из них (первичную), на выводах другой обмотки (вторичной) будет напряжение по частоте и величине такое же, как и на первой обмотке. В этом проявляется трансформация электроэнергии, а само устройство называется трансформатором. Если между обмотками существует электрический контакт, устройство называется автотрансформатором.

  • Основа свойств трансформатора - это его сердечник (магнитопровод). Поэтому расчет трансформатора всегда выполняется в связи с материалом и формой магнитопровода.

Выбор материала определяют вихревые токи и потери, связанные с ними. Они увеличиваются с частотой напряжения на выводах первичной обмотки. На низких частотах (50–100 Гц) применяются пластины из трансформаторной стали. На более высоких частотах (единицы килогерц) - пластины из специального сплава, например, пермаллоя. Десятки и сотни килогерц - это область применения ферритовых сердечников. Виды (форма и размеры, особенно сечение по витку) магнитопровода определяют величину мощности, которую можно получить во вторичной обмотке.

Выбор магнитопровода

Геометрические пропорции промышленно выпускаемых сердечников стандартны. Поэтому их выбирают по размерам сечения внутри витка. Еще один параметр, который влияет на выбор магнитопровода - это индуктивность рассеяния. Она меньше у броневых и тороидальных конструкций. Что-либо вычислять не стоит - в многочисленных справочниках приводятся таблицы, а в интернете на тематических сайтах их аналоги.

Например, необходимо присоединить к сети нагрузку мощностью 100 Вт 12 В. По базовой таблице, показанной далее, выбирается типоразмер магнитопровода. Но учитываем то, что мощность ВТ меньше, чем ВА плюс неполная нагрузка для надежности. Поэтому используем коэффициент 1,43. Искомая мощность и типоразмер получатся как произведение, т.е. 143 ВА. По таблице выбираем ближайшее большее значение габаритной мощности и магнитопровод:

Пример расчета

Выбираем 150 ВА и ШЛ25х32. В таблице также приведено рекомендованное число витков на 1 вольт - W0: 3,9. Следовательно, число витков W1 первичной обмотки будет равно произведению напряжения сети на W0:

Раз число витков на 1 вольт известно, легко рассчитать и вторичную обмотку. В рассматриваемом случае три витка мало, а четыре много. Чтобы не ошибиться, наматываем три витка и оставляем запас провода для добавления после испытания трансформатора под нагрузкой. Для провода сетевой обмотки диаметр рассчитываем, используя силу тока. Ее определяем на основе мощности в первичной обмотке и сетевого напряжения. В сетевой обмотке расчетная сила тока составит:

Во вторичной обмотке сила тока составит:

Затем по таблице выбираем диаметр провода при плотности тока 2,5 А/мм кв:

Для первичной обмотки диаметр провода получается 0,59 мм, для вторичной - 2,0 мм. После этого надо выяснить, помещаются ли обмотки в окна магнитопровода. Это несложно определить на основе числа витков и диаметров проводов с учетом толщины каркасов катушек и слоев дополнительной изоляции. Рекомендуется сделать эскиз для наглядного расчета.

Если вторичных обмоток несколько, должны быть известны мощности для каждой из них. Они суммируются для получения параметров первичной обмотки. Затем расчет выполняется аналогично рассмотренному выше примеру. Но определение токов делается по мощности каждой вторичной обмотки.

Расчетные данные в виде таблиц приведены в справочниках для всех типов сердечников, но при определенных частотах напряжений первичной обмотки:

Для рассматриваемой нагрузки 100 Вт выбираем ПЛ20х40-50

Если требуемые параметры не совпадают с табличными значениями, придется использовать формулы:

S0 – площадь окна в магнитопроводе,

Sc – сечение материала магнитопровода по витку,

Рг – габаритная мощность,

kф – коэффициент формы напряжения на первичной обмотке,

f – частота напряжения на первичной обмотке,

j – плотность тока в проводе обмотки,

Bm – индукция насыщения магнитопровода,

k0 – коэффициент заполнения окна магнитопровода,

kс – коэффициент заполнения стали.

Упрощенные формулы справедливы только для тех случаев, которые эти упрощения определяют. Поэтому они не могут охватить все возможные ситуации и не будут обеспечивать приемлемую точность в большинстве из них.

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100-200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s - в квадратных сантиметрах, а Р1 - в ваттах.

По значению S определяется число витков w" на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w" на 20-30 %.

и т.д.

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз - диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2-3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

Таблица 1

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5x3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

- для повышающего автотрансформатора

- для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15 Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 - I2, если автотрансформатор повышающий, и I2 - I1 если он понижающий.

Первое, что надо сделать, это взять листок бумаги, карандаш и мультиметр. Пользуясь всем этим, прозвонить обмотки трансформатора и зарисовать на бумаге схему. При этом должно получиться что-то очень похожее на рисунок 1.

Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу - «земле» схемы.

Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом. Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков. Сопротивление понижающих вторичных обмоток практически равно нулю - малое количество витков и толстый провод.

Рис. 1. Схема обмоток трансформатора (пример)

Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.

Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.

Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.

Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки. У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой. Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.

Рис. 2. Трансформатор ТПП-281

Как измерить ток холостого хода трансформатора

Ток холостого хода следует измерить амперметром переменного тока. При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть. Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.

Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, - напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.

Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.

Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.

Рисунок 3. Схема испытания вторичной обмотки трансформатора

Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.

Для питания усилителя требуется одна обмотка со средней точкой (см. статью ). Соединяем последовательно две вторичные обмотки и измеряем напряжение. Должно получиться 48В, точка соединения обмоток будет средней точкой. Если в результате измерения на концах соединенных последовательно обмоток напряжение будет равно нулю, то концы одной из обмоток следует поменять местами.

В этом примере все получилось почти удачно. Но чаще бывает, что трансформатор приходится перематывать, оставив только первичную обмотку, что уже почти половина дела. Как рассчитать трансформатор это тема уже другой статьи, здесь было рассказано лишь о том, как определить параметры неизвестного трансформатора.

Каждый из нас знает, что такое трансформатор. Он служит для преобразования напряжения в большее или меньшее значение. Когда мы приобретаем трансформатор в специализированных магазинах, как правило, в инструкции к ним имеется полное техническое описание. Вам нет необходимости считать все его параметры и измерять их, так как они все уже подсчитаны и выведены заводом-изготовителем. В инструкции вы сможете найти такие параметры, как мощность трансформатора, входное напряжение, выходное напряжение, количество вторичных обмоток, если их количество превышает одну.

Что делать, если вы приобрели б/у оборудование?

Но если к вам в руки попало уже использовавшееся оборудование и его функциональность вам неизвестна, необходимо самостоятельно рассчитать обмотку трансформатора и его мощность. Но как рассчитать обмотку трансформатора и его мощность хотя бы приблизительно? Стоит отметить, что такой параметр, как мощность трансформатора, очень важный показатель для данного устройства, так как от него будет зависеть, насколько функциональным будет устройство, собранное из него. Чаще всего его используют для создания блоков питания.

В первую очередь следует обозначить, что мощность трансформатора зависит от потребляемого тока и напряжения, которые необходимы для его функционирования. Для того чтобы подсчитать мощность, вам необходимо перемножить эти два показателя: силу потребляемого тока и напряжение питания устройства. Данная формула знакома каждому еще со школьной скамьи, выглядит она следующим образом:

P=Uн*Iн, где

Uн — напряжение питания, измеряется в вольтах, Iн — сила потребляемого тока, измеряется в амперах, P — потребляемая мощность, измеряется в ваттах.

Если у вас имеется трансформатор, который вы бы хотели измерить, то можете делать это прямо сейчас по следующей методике. Для начала необходимо осмотреть сам трансформатор и определиться с его типом и используемыми в нем сердечниками. Всматриваясь в трансформатор, необходимо понять, какой тип сердечника в нем используется. Самым распространенным считается Ш-образный тип сердечника.

Данный сердечник используется в не самых лучших трансформаторах, с точки зрения коэффициента полезного действия, но их вы можете легко найти на прилавках магазинов по продаже электротехники или выкрутить у старой и неисправной техники. Доступность и достаточно низкая цена делают их достаточно популярными среди любителей собрать устройство своими руками. Также можете приобрести тороидальный трансформатор, который иногда называют кольцевым. Он значительно дороже первого и обладает лучшим коэффициентом полезного действия и другими качественными показателями, используется в достаточно мощных и высокотехнологичных устройствах.

Вернуться к оглавлению

Самостоятельный расчет обмотки мощности трансформатора

Воспользовавшись книгами по радиотехнике и электронике, мы можем самостоятельно рассчитать со стандартным Ш-образным сердечником. Для того чтобы рассчитать мощность такого устройства, как трансформатор, необходимо правильно рассчитать сечение магнитопровода. Что касается стандартных трансформаторов с Ш-образным сердечником, размер сечения магнитопровода будет измеряться длиной поставленных пластин, выполненных из специальной электротехнической стали. Итак, для того чтобы определить сечение магнитопровода, необходимо перемножить два таких показателя, как толщина набора пластин и ширина центрального лепестка Ш-образной пластины.

Взяв линейку, мы сможем измерить ширину набора излучаемого трансформатора. Очень важно, что лучше всего все измерения проводить в сантиметрах, как и вычисления. Это сможет исключить появления ошибок в формулах и избавит вас от ненужных вычислений в переводы с сантиметров на метры. Итак, образно возьмем ширину рядов, равную трем сантиметрам.

Дальше необходимо измерить ширину его центрального лепестка. Данная задача может стать проблемной, так как многие трансформаторы могут по своим технологическим особенностям быть закрыты пластиковым каркасом. В таком случае вам будет нельзя, предварительно не видя реальной ширины, сделать какие-либо расчеты, которые хотя бы близко будут походить на реальные. Для того чтобы измерить данный параметр, вам понадобится поискать такие места, где это было бы возможно сделать. В ином случае можно аккуратно разобрать его корпус и измерить данный параметр, но стоит делать это с ювелирной точностью.

Вернуться к оглавлению

Формула расчета мощности

Найдя открытое место или разобрав прибор, вы сможете измерить толщину центрального лепестка. Абстрактно возьмем данный параметр, равный двум сантиметрам. Стоит напомнить, что, примерно рассчитывая мощность, следует как можно точнее проводить измерения. Далее вам необходимо перемножить размер набора магнитопровода, равного трем сантиметрам, и толщину лепестка пластины, равную двум сантиметрам. В итоге мы получаем сечение магнитопровода в шесть квадратных сантиметров. Чтобы делать дальнейший расчет, вам необходимо ознакомиться с такой формулой, как S=1,3*√Pтр, где:

  1. S — это площадь сечения магнитопровода.
  2. Pтр — это мощность трансформатора.
  3. Коэффициент 1,3 является усредненным значением.

Вспомнив формулы из курса математики, мы можем сделать вывод, что, для того чтобы подсчитать мощность, можно сделать следующее преобразование:

〖Ртр=(S/1.33)〗^2

Следующий шаг является подстановкой в данную формулу получившегося значения сечения магнитопровода в 6 квадратных сантиметрах, в итоге получим следующие значение:

〖Ртр=(S/1.33)〗^2=(6/1.33)^2=〖4.51〗^2=20.35 Вт

После всех подсчетов получаем абстрактное значение в 20,35 ватт, которое будет тяжело найти в трансформаторах с Ш-образным сердечником. Реальные значения колеблются в области семи ватт. Данной мощности будет вполне достаточно, чтобы собрать блок питания для аппаратуры, работающей на звуковых частотах и имеющей мощность в пределах от 3 до 5 ватт.

Наиболее распространены магнитопроводы следующих типов:

  1. Кольцевой ленточный (тороидальный) магнитопровод;
  2. Ш- (или ШЛ-) образный ленточный магнитопровод;
  3. П- (или О-) образный ленточный магнитопровод;
  4. Ш- (или ШЛ-) образный пластинчатый магнитопровод (устарел).

Внешний вид и основные размерности сердечников представлены на рисунке:



Расчет Ш-образные пластинчатые сердечников аналогичен расчету Ш-образного ленточного.

Трансформатор на тороидальный магнитопроводе - самый компактный и эффективный, может использоваться при мощностях от 30 до 1000 Вт, а особенно - когда важно минимальное рассеяние магнитного потока или когда требование минимального объема является первостепенным.

Имея преимущества в объеме, массе и характеристиках перед другими типами конструкций трансформаторов, тороидальные трансформаторы вместе с тем являются и наименее технологичными в изготовлении.

Расчет трансформатора

Исходными начальными данными для упрощенного расчета являются:
  1. напряжение первичной обмотки U1
  2. напряжение вторичной обмотки U2
  3. ток вторичной обмотки I2

Расчет габаритной мощности трансформатора

При выборе железа для трансформатора надо учитывать, чтобы габаритная мощность трансформатора была строго больше расчетной электрической мощности вторичных обмоток.

Мощность вторичной обмотки

Р2 = I2 * U2 = Рвых


Если обмоток много, то мощность, отдаваемая трансформатором, определяется суммой всех мощностей вторичных обмоток (Рвых).
Другими словами - габаритная мощность трансформатора - это мощность которую способно "вынести" железо.

Прежде чем перейти к формуле, сделаем несколько оговорок:

  1. Главный качественный показатель силового трансформатора для радиоаппаратуры - его надежность. Следствие надежности - это минимальный нагрев трансформатора при работе (иными словами он должен быть всегда холодным!) и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть "жестким");
  2. В расчетах примем КПД трансформатора 0.95;
  3. Так как речь в статье пойдет об обычном сетевом трансформаторе, примем рабочую частоту равной 50Гц;
  4. Учитывая то, что нам нужен надежный трансформатор, и учитывая то, что напряжение в сети может иметь отклонения от 220 вольт до 10%, принимаем В=1.2 Тл.;
  5. Плотность тока в обмотках принимаем 3.5 А/мм2;
  6. Коэффициент заполнения сердечника сталью принимаем 0.95;
  7. Коэффициент заполнения окна принимаем 0.45;
Исходя из принятых допущений, формула для расчета габаритной мощности у нас примет вид:

Р = 1.9 * Sc * So


Где:
Sc и So - площади поперечного сечения сердечника и окна [кв. см];

Определение количества витков в обмотках.

Прежде всего рассчитываем количество витков в первичной обмотке.
Упрощенная формула будет иметь вид:

Р = 40 * U / Sc

Где:
Sc - площадь поперечного сечения сердечника [кв. см];
U - напряжение первичной обмотки [В];

Количество витков во вторичной обмотке можно расчитать по этой же формуле, увеличив число витков примерно на 5% (КПД трансформатора), но можно поступить проще: после того как намотана первичка - наматываем поверх нее 10 витков и измеряем напряжение. Зная какое напряжение требуется получить на выходе трансформатора и зная какое напряжение приходится на 10 витков - определяем необходимое число витков.