Что амплитуда тока. Гармонический закон колебаний в контуре

17.04.2019

§ 50. Основные величины, характеризующие переменный ток

Переменная э. д. с., переменное напряжение, а также переменный ток характеризуются периодом, частотой, мгновенным, максимальным и действующим значениями.
Период. Время, в течение которого переменная э. д. с. (напряжение или ток) совершает одно полное изменение по величине и направлению (один цикл), называется периодом . Период обозначается буквой Т и измеряется в секундах.
Если одно полное изменение переменной э. д. с. совершается за 1/50 сек , то период этой э. д. с. равен 1/50 сек .
Частота. Число полных изменений переменной э. д. с. (напряжения или тока), совершаемых за одну секунду, называется частотой . Частота обозначается буквой f и измеряется в герцах (гц ). При измерении больших частот пользуются единицами килогерц (кгц ) и мегагерц (Мгц ); 1 кгц = 1000 гц , 1 Мгц = 1000 кгц , 1 Мгц = 1 000 000 гц = 10 6 гц . Чем больше частота переменного тока, тем короче период. Таким образом, частота - величина, обратная периоду.

Пример. Длительность одного периода переменного тока равна 1/500 сек . Определить частоту тока.
Решение . Одно полное изменение переменного тока происходит за 1/500 сек . Следовательно, за одну секунду совершится 500 таких изменений. На основании этого частота

Чем больше период переменного тока, тем меньше его частота. Таким образом, период является величиной, обратной частоте, т. е.

Пример. Частота тока равна 2000 гц (2 кгц ). Определить период этого переменного тока.
Решение . За 1 сек происходит 2000 полных изменений переменного тока. Следовательно, одно полное изменение тока - один период совершается за 1/2000 долю секунды. Но основании этого период

Угловая частота. При вращении витка в магнитном поле один его оборот соответствует 360°, или 2π радиан. (1 рад = 57° 17′ 44″; π = 3,14.) Если, например, виток за время Т = 3 сек совершает один оборот, то угловая скорость его вращения за одну секунду

Соответственно угловая скорость вращения этого витка выражается в рад/сек и определяется отношением Эта величина называется угловой частотой и обозначается буквой ω.
Таким образом,

Так как частота переменного тока то, подставляя это значение f в выражение угловой частоты, получим:

Угловая частота ω, выраженная в рад/сек , больше частоты тока f , выраженной в герцах, в 2π раз.
Если частота переменного тока f = 50 гц , то угловая частота

ω = 2πf = 2 · 3,14 · 50 = 314 рад/сек

В различных областях техники применяют переменные токи самых разных частот. На электростанциях СССР установлены генераторы, вырабатывающие переменную электродвижущую силу, частота которой f = 50 гц . В радиотехнике и электронике используют переменные токи частотой от десятков до многих миллионов герц.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения - U m , тока - I m .
На рис. 51 видно, что переменная э. д. с. достигает своего значения два раза за один период.


Действующая величина. Электрический ток, протекающий по проводам, нагревает их независимо от своего направления. В связи с этим тепло выделяется не только в цепях постоянного тока, но и в электрических цепях, по которым протекает переменный ток.
Если по проводнику сопротивлением r ом протекает переменный электрический ток, то в каждую секунду выделяется определенное количество тепла. Это количество тепла прямо пропорционально максимальному значению переменного тока.
Можно подобрать такой постоянный ток, который, протекая по такому же сопротивлению, что и переменный ток, выделял бы равное количество тепла. В этом случае можно сказать, что в среднем действие (эффективность) переменного тока по количеству выделенного тепла равно действию постоянного тока.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Электроизмерительные приборы (амперметр, вольтметр), включенные в цепь переменного тока, измеряют соответственно действующее значение тока и напряжения.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

E m = E · 1,41; U m = U · 1,41; I m = I · 1,41; (55)

Пример. Вольтметр, подключенный к зажимам цепи, показывает действующее напряжение U = 127 в . Вычислить максимальное значение (амплитуду) этого переменного напряжения.
Решение . Максимальное значение напряжения больше действующего в раз, поэтому

U m = U · = 127 · 1,41 = 179,07 в

Для характеристики каждой переменной электродвижущей силы, переменного напряжения или переменного тока недостаточно знать период, частоту и максимальное значение.


Фаза. Сдвиг фаз. При сопоставлении двух и более переменных синусоидальных величин (э. д. с., напряжения или тока) необходимо также учитывать, что они могут изменяться во времени неодинаково и достигать своего максимального значения в разные моменты времени. Если в электрической цепи ток изменяется во времени так же, как меняется э. д. с., т. е. когда электродвижущая сила равна нулю и ток в цепи равен нулю, а при увеличении э. д. с. до положительного максимального значения одновременно увеличивается и достигает положительной максимальной величины и сила тока в цепи, и далее, когда э. д. с. уменьшается до нуля и сила тока одновременно станет равна нулю и т. д., то в такой цепи переменная электродвижущая сила и переменный ток совпадают по фазе.
На рис. 52 показаны моменты вращения двух проводников в магнитном поле и графики изменения э. д. с. в проводах. Провод 1 и провод 2 смещены на угол φ = 90°. При пересечении магнитного потока в каждом из проводов возникает переменная э. д. с. Когда в проводе 2 электродвижущая сила равна нулю, в проводе 1 она будет максимальной. В проводе 2 э. д. с. постепенно увеличивается и достигает максимального значения в момент t 1 , а в проводе 1 индуктируемая э. д. с. постепенно убывает и в этот же момент времени равна нулю. Таким образом, индуктируемые в проводах э. д. с. не совпадают по фазе, а сдвинуты одна относительно другой по фазе на 1/4 периода или на угол φ = 90°. Кроме того, э. д. с. в проводе 1 раньше достигает максимума, чем э. д. с. в проводе 2 , и поэтому считают, что электродвижущая сила е 1 опережает по фазе э. д. с. е 2 или э. д. с. е 2 отстает по фазе от э. д. с. е 1 . При расчетах цепей переменного тока важное практическое значение имеет сдвиг фаз между переменными напряжением и током.

Важнейшим параметром, характеризующим механические, звуковые, электрические, электромагнитные и все другие виды колебаний, является период - время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5с. Период колебаний больших качелей около 2 с, а период колебаний струны может составлять от десятых до десятитысячных долей секунды.

Рисунок 2.4 - Колебание

где: φ – фаза колебания, I – сила тока, Ia – амплитудное значение силы тока (амплитуда)

Т – период колебания силы тока (период)

Другим параметром, характеризующим колебания, является частота (от слова «часто») - число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащее тело, ток в проводнике и т.п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут Гц): 1 Гц-это одно колебание в секунду. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» третьей октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При этом токе электроны в проводах сети в течение секунды текут попеременно 50 раз в одном направлении и столько же раз в обратном, т.е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты - килогерц (пишут кГц), равный 1000 Гц и мегагерц (пишут МГц), равный 1000 кГц или 1 000 000 Гц.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении. Неотрицательная скалярная величина, измеряется в единицах, зависящих от типа волны или колебания.

Рисунок 2.5 - Синусоидальное колебание.

где, y - амплитуда волны, λ - длина волны.

Например:

    амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины;

    амплитуда звуковых волн и аудио-сигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего). Её логарифм обычно измеряется в децибелах (дБ);

    для электромагнитного излучения амплитуда соответствует величине электрического и магнитного поля.

Форма изменения амплитуды называется огибающей волной .

Звуковые колебания

Как возникают звуковые волны в воздухе? Воздух состоит из невидимых глазам частиц. При ветре они могут переноситься на большие расстояния. Но они, кроме того, могут и колебаться. Например, если в воздухе сделать резкое движение палкой, то мы почувствуем легкий порыв ветра и одновременно услышим слабый звук. Звук это - результат колебаний частиц воздуха, возбужденных колебаниями палки.

Проведем такой опыт. Оттянем струну, например, гитары, а потом отпустим ее. Струна начнет дрожать - колебаться около своего первоначального положения покоя. Достаточно сильные колебания струны заметны на глаз. Слабые колебания струны можно только почувствовать как легкое щекотание, если прикоснуться к ней пальцем. Пока струна колеблется, мы слышим звук. Как только струна успокоится, звук затихнет. Рождение звука здесь - результат сгущения и разрежения частиц воздуха. Колеблясь из стороны в сторону, струна теснит, как бы прессует перед собой частицы воздуха, образуя в некотором его объеме области повышенного давления, а сзади, наоборот, области пониженного давления. Это и есть звуковые волны . Распространяясь в воздухе со скоростью около 340 м/с , они несут в себе некоторый запас энергии. В тот момент, когда до уха доходит область повышенного давления звуковой волны, она надавливает на барабанную перепонку, несколько прогибая ее внутрь. Когда же до уха доходит разреженная область звуковой волны, барабанная перепонка выгибается несколько наружу. Барабанная перепонка все время колеблется в такт с чередующимися областями повышенного и пониженного давления воздуха. Эти колебания передаются по слуховому нерву в мозг, и мы воспринимаем их как звук. Чем больше амплитуды звуковых волн, тем больше энергии несут они в себе, тем громче воспринимаемый нами звук.

Звуковые волны, как и водяные или электрические колебания, изображают волнистой линией - синусоидой. Ее горбы соответствуют областям повышенного давления, а впадины-областям пониженного давления воздуха. Область повышенного давления и следующая за нею область пониженного давления образуют звуковую волну.

По частоте колебаний звучащего тела можно судить о тоне или высоте звука. Чем больше частота, тем выше тон звука, и наоборот, чем меньше частота, тем ниже тон звука. Наше ухо способно реагировать на сравнительно небольшую полосу (участок) частот звуковых колебаний - примерно от 20 Гц до 20 кГц . Тем не менее эта полоса частот вмещает всю обширнейшую гамму звуков, создаваемых голосом человека, симфоническим оркестром: от очень низких тонов, похожих на звук жужжания жука, до еле уловимого высокого писка комара. Колебания частотой до 20 Гц, называемые инфразвуковыми , и свыше 20 кГц, называемые ультразвуковыми , мы не слышим. А если бы барабанная перепонка нашего уха оказалась способной реагировать и на ультразвуковые колебания, мы могли бы тогда услышать писк летучих мышей, голос дельфина. Дельфины издают и слышат ультразвуковые колебания с частотами до 180 кГц.

Но нельзя путать высоту, т.е. тон звука с его силой. Высота звука зависит не от амплитуды, а от частоты колебаний. Толстая и длинная струна музыкального инструмента, например, создает низкий тон звука, т.е. колеблется медленнее, чем тонкая и короткая струна, создающая высокий тон звука (рис. 1).

Рисунок 2.6 - Звуковые волны

Чем больше частота колебаний струны, тем короче звуковые волны и выше тон звука.

В электро - и радиотехнике используют переменные токи частотой от нескольких герц до тысяч гигагерц. Антенны широковещательных радиостанций, например, питаются токами частотой примерно от 150 кГц до 100 МГц.

Эти быстропеременные колебания, называемые колебаниями радиочастоты, и являются тем средством, с помощью которого осуществляется передача звуков на большие расстояния без проводов.

Весь огромный диапазон переменных токов принято подразделять на несколько участков - поддиапазонов.

Токи частотой от 20 Гц до 20 кГц, соответствующие колебаниям, воспринимаемым нами как звуки разной тональности, называют токами (или колебаниями) звуковой частоты , а токи частотой выше 20 кГц - токами ультразвуковой частоты .

Токи частотой от 100 кГц до 30 МГц называют токами высокой частоты ,

Токи частотой выше 30 МГц - токами ультравысокой и сверхвысокой частоты.

Республика Казахстан

Начало формы

Конец формы

3. Колебательный контур состоит

А) конденсатора и резистора В) конденсатора и лампы С) конденсатора и катушки индуктивности Д) коденсатора и вольтметра

4. Если сопротивление колебательного контура равна нулю, то полная энергия электромагнитного поля

А) меняется В) равна нулю С) не меняется Д) увеличивается

5. Устройство, которое повышает или понижает напряжение, называется

А генератором) В) конденсатором С) трансформатором Д) колебательным контуром

6. Примером автоколебательной системы является

А) колебательный контур В) математический маятник С) генератор на транзисторе Д) физический маятник

7. Если в цепи имеется конденсатор, то колебания силы тока

А) В) С) Д)

8. Индуктивное сопротивление зависит от А) фазы В) амплитуды С частоты) Д) ёмкости конденсатора

9. Если К>1, то трасформатор А) понижающий В) повышающий С) электрический Д) не повышает и не понижает

10. Величина, равная квадратному корню из среднего значения квадрата силы тока, называется

А) действующим значением напряжения В) действующим значением силы тока С) мгновенным значением силы тока Д) амплитудным значением силы тока

11. Резонанс в колебательном контуре - это

А) резкое возрастание амплитуды вынужденных колебаний силы тока В) резкое уменьшение амплитуды вынужденных колебаний силы тока С) резкое возрастание частоты вынужденных колебаний силы тока Д) резкое возрастание периода вынужденных колебаний силы тока

12. Скорость изменения энергии магнитного поля по модулю равна

А) нулю В) скорости изменения энергии электрического поля С) скорости перезарядки конденсатора Д) скорости движения электронов в проводнике

13. Если в цепи имеется катушка индуктивности, то колебания силы тока

А) отстают по фазе на П/8 от колебаний напряжения В) совпадают по фазе с колебаниями напряжения С) опережают по фазе на П/3 колебания напряжения Д) отстают по фазе на П/2 от колебаний напряжения

14. Устройство, которое преобразует энергию того или иного вида в электрическую, называется

А) трансформатором В) генератором С) коденсатором Д) колебательным контуром

15. Ёмкостное сопротивление зависит от

А) индуктивности катушки В) фазы С) амплитуды Д) частоты и ёмкости конденсатора

16. Переменный электрический ток - это

А) вынужденные электромагнитные колебания В) свободные электромагнитные колебания С) затухающие электромагнитные колебания Д) механические колебания

17. В колебательном контуре энергия электрического поля конденсатора периодически превращается

А) в энергию магнитного поля тока В) в энергию электрического поля С) в механическую энергию Д) в световую энергию

18. Колебания в цепи под действием внешней периодической ЭДС называются

А) механическими В) электромагнитными С) свободными Д) вынужденными

19. Основные элементы автоколебательной системы

А) источник энергии, колебательная система, клапан, обратная связь В) источник энергии, колебательная система, клапан, резистор С) транзистор, колебательная система, клапан, обратная связь Д) транзистор, колебательная система

20. В проводнике с активным сопротивлением колебания силы тока

А) отстают по фазе на П/2 от колебаний напряжения В) совпадают по фазе с колебаниями напряжения С) опережают по фазе на П/2 колебания напряжения Д) опережают по фазе на П/6 колебания напряжения

21. Колебания, возникающие в системе без воздействия на неё внешних периодических сил, называются

А) гармоническими В) вынужденными С) автоколебаниями Д) свободными

22. В катушке с индуктивностью 68 мГн сила тока 3 , 8 А исчезает за 0,012 с. ЭДС самоиндукции равна

A) » 0. B) » 0,67 В. C) » 3,1 В. D) » 0,21В. E) » 21,5 В

23. Значение силы тока задано уравнением: i =8,5 sin (314 t +0,651). Определите действующее значение силы тока

A) » 8,5 А. B) » 3,14 А. C) » 6 А. D) » 314 А. E) » 0,651 А..

24. Скорость изменения силы тока в катушке индуктивностью 3,5 Гн, если в ней возбуждается ЭДС самоиндукции 105 В, равна A) 0,03 А/с. B) 30 А/с. C) 15 А/с. D) 367,5 А/с. E) 45 А/с.

25. Закон электромагнитной индукции имеет вид

A) ei = B × S × w × sinw×t. B) ei = I × R. C) D) e = I × (R + r). E) .

26. Равномерное изменение силы тока на 0,6А за время 0,1с порождает ЭДС самоиндукции 2,1В. Индуктивность катушки равна A) 3 Гн. B) 3×105 Гн. C) 35 Гн. D) 3,5 Гн. E) 0,35 Гн.

27. Изменение тока в антенне радиопередатчика происходит по закону: i =0,3 sin 15 · 105 t . Найти длину излучаемой электромагнитной волны .

A) » 0,6×104 м. B) » 1,2 ×103 м. C) » 1,2×104 м. D) » 0,6×103 м. E) » 0,4×103 м.

28. Напряжение в цепи переменного тока изменяется по закону: u =110 cos 50 πt . Определите период колебаний напряжения.

A) 3,14 с. B) 0,04 с. C) 50 с. D) 110 с. E) 157 с.

29. Индукционный ток своим магнитным полем

A) Противодействует тому изменению магнитного потока, которым он вызван.

B) Действует на электрические заряды. C) Увеличивает магнитный поток. D) Порождает электростатическое поле.

E Е) Ускоряет элементарные частицы.

30. Если в идеальном колебательном контуре к конденсатору подключить параллельно конденсатор такой же емкости, то собственная частота колебаний в контуре

A) не изменится. B) уменьшится в 2 раза. C) увеличиться в 2 раза..gif" width="28" height="25"> раз.

31. Первая автоколебательная система

A) Маятниковые часы. B) Закрытый колебательный контур. C) Открытый колебательный контур. D) Вибратор Герца.

E) Камера Вильсона.

32. Вращающаяся часть генератора имеет специальное название A) сердечник. B) ротор. C) электромагнит. D) статор. E) обмотка.

33. Магнитный поток, возникающий в катушке с индуктивностью 0,2 мГн при силе тока 10 А, равен

A) 50 мВб B) 2 мВб C) 0,02 мВб D) 2 Вб E) 50 Вб

34. Формула, связывающая период и частоту колебаний. A) w = 2pn..gif" width="41" height="34">..gif" width="61" height="35">.

35. Прием сигнала колебательным контуром радиоприемника основан на

A) Превращении энергии. B) Модуляции. C) Законе сохранения энергии. D) Детектировании. E) Явлении резонанса.

36. Энергия при свободных колебаниях в колебательном контуре через 1/8 периода после начала разрядки конденсатора сосредоточена

A) Энергия равна нулю B) В катушке. C) В подводящих проводниках. D) В конденсаторе и катушке. E) В конденсаторе.

37. Процесс детектирования высокочастотных колебаний состоит

A) Выделении из модулированных колебаний высокой частоты низкочастотных колебаний.

B) В усилении принимаемого сигнала.

C) В сложении высокочастотных и низкочастотных колебаний.

D) В усилении плотности потока излучения.

E) В передаче низкочастотных колебаний на большие расстояния.

38. Резонансная частота в контуре из катушки индуктивностью 4 Гн и конденсатора электроемкостью 9 Ф равна

A) Гц..gif" width="37" height="27 src="> Гц. E) DIV_ADBLOCK383">

A) W=mgh..gif" width="58" height="36">..gif" width="57" height="40">.

40. Амплитуда гармонических колебаний - это

A) Смещение от положения равновесия. B) Время одного полного колебания. C) Величина, зависящая от частоты.

D) Количество колебаний в единицу времени. E) Максимальное смещение от положения равновесия.

41. В автоколебательной системе транзистор играет роль

A) колебательной системы. B) преобразования энергии. C) клапана. D) источника энергии. E) обратной связи.

42. При увеличении индуктивности катушки в 4 раза частота колебаний в контуре

A) Уменьшится в 2 раза. B) Увеличится в 2 раза. C) Увеличится в 4 раза. D) Не изменяется. E) Уменьшится в 4 раза.

43. При отключении катушки с сопротивлением 5 Ом и индуктивностью

0,1 Гн от цепи постоянного тока выделяется 0,2 Дж энергии. Напряжение на концах этой катушки было равно

A) 30 B. B) 20 B. C) 10 B. D) 15 B. E) 25 B.

44. Динамик подключен к выходу генератора электрических колебаний с частотой 170 Гц. При скорости звука в воздухе 340 м/с длина звуковой волны равна

A) 57800 м. B) 28900 м. C) 0,5 м. D) 1 м. E) 2 м.

45. Полная энергия колебательного контура определяется по формуле

A) ..gif" width="44" height="37">..gif" width="89" height="42">.

46. Чтобы энергия магнитного поля катушки индуктивностью 0,5 Гн оказалась равной 1 Дж, сила тока должна быть равна

A) 4 A. B) 1 A. C) 8 A. D) 2 A. E) 6 A.

47. Индуктивность катушки колебательного контура увеличивалась в 4 раза. При этом период колебаний

A) Увеличится в 4 раза. B) Уменьшится в 2 раза. C) Не изменится. D) Уменьшится в 4 раза. E) Увеличится в 2 раза.

48. Циклическая частота колебаний в колебательном контуре определяется формулой

A) ..gif" width="38" height="38">. D) 0 " style="border-collapse:collapse;border:none">

Рассмотрим подробнее кривую, изображающую зависимость мгновенного значения технического переменного тока (или напряжения) от времени (рис. 293). Прежде всего обращает на себя внимание тот факт, что этот ток (или напряжение) изменяется периодически, т. е. каждое мгновенное значение этих величин, например значение, соответствующее точке (или точке ), повторяется через один и тот же промежуток времени. Другими словами, сила тока (или напряжение) пробегает за этот промежуток времени все возможные значения, возвращаясь к исходному, т. е. совершает полное колебание. Промежуток времени, в течение которого сила тока (или напряжение) совершает полное колебание и принимает прежнее по модулю и знаку мгновенное значение, называется периодом переменного тока. Его принято обозначать буквой . Для сетей СССР и большинства других стран с, а так как изменение направления тока происходит два раза в течение каждого периода, то технический ток меняет свое направление 100 раз в секунду.

Рис. 293. Зависимость силы переменного тока от времени

Максимальное значение, которое может иметь переменный ток (или напряжение) в том или другом направлении, называется амплитудой этой величины. На рис. 293 амплитуда изображается отрезками . Амплитуду токов и напряжений обозначают или , а их мгновенные значения – и .

Число полных колебаний (циклов) синусоидального тока или напряжения за единицу времени называют частотой соответствующей величины и обозначают буквой . Очевидно,

За единицу частоты принимают частоту, равную одному колебанию в секунду. Эту единицу называют герцем (Гц) по имени немецкого физика Генриха Герца (1857-1394). Таким образом, технический переменный ток имеет частоту 50 Гц.

Вместо частоты вводят также величину , которую называют циклической или круговой частотой тока (напряжения). Она представляет собой число полных колебаний (циклов) данной величины за секунд.

Пока мы имеем дело только с одним синусоидальным переменным током или переменным напряжением, частота и амплитуда являются полными и исчерпывающими характеристиками этих величии, потому что начальный момент отсчета времени мы можем выбрать произвольно. Но когда нам приходится сопоставлять друг с другом две или несколько величин такого рода, мы должны учитывать и тот факт, что они могут достигать максимального значения не в один и тот же момент времени.

Две кривые на рис. 294,а изображают форму двух синусоидальных переменных токов с одной и той же частотой и амплитудой, но кривые эти смещены по оси абсцисс (оси времени) на отрезок, равный четверти, периода. Начальная точка отсчета времени выбрана так, что для первой кривой нулевые значения достигаются в моменты а амплитудные – в моменты . Вторая же кривая проходит через нулевые значения в моменты а через амплитудные – в моменты .

Рис. 294. Графическое изображение переменных токов одинаковой частоты и амплитуды, смещенных по фазе: а) два синусоидальных тока, смещенные по фазе на четверть периода; б) токи, изображаемые кривыми 2 и 3, смещены по фазе относительно кривой 1 на одну восьмую часть периода

В подобных случаях говорят, что эти два тока (или две другие синусоидальные величины) сдвинуты друг относительно друга по фазе, или, иначе, что между ними существует некоторый сдвиг фаз (или разность фаз), равный в данном примере четверти периода. Так как кривая 1 проходит через амплитудное значение, так же как и через любое другое соответствующее значение, раньше, чем кривая 2, то говорят, что она опережает кривую 2 по фазе или, иначе, что кривая 2 отстает по фазе от кривой 1.

153.1. На рис. 294,б кривые 2 и 3 сдвинуты относительно кривой 1 по фазе на одну восьмую периода. Определите, какая из этих кривых отстает по фазе от кривой 1 и какая опережает ее. Какова разность фаз между кривыми 2 и 3?

Во всех случаях, когда приходится сопоставлять синусоидальные величины или рассматривать их совместное действие (складывать или перемножать их), вопрос о соотношении фаз между этими величинами имеет очень важное значение. Таким образом, в общем случае, когда имеется несколько синусоидальных токов или напряжений, нужно характеризовать каждый из них тремя величинами: частотой, амплитудой и фазой или, точнее, сдвигом фаз между данным током (или напряжением) и каким-нибудь другим, относительно которого мы рассматриваем сдвиг фаз всех остальных.

Соотношения между фазами различных синусоидальных переменных токов очень удобно изучать при помощи петлевого осциллографа, имеющего в отличие от прибора, описанного в §152, не одну, а две отдельные рамки (петли), помещенные в общее магнитное поле (рис. 295). Развертка формы обоих токов, проходящих по этим петлям, по оси времени осуществляется одним и тем же вращающимся барабаном, так что точки двух получающихся на экране кривых, расположенные друг над другом, изображают мгновенные значения сравниваемых токов, соответствующие одному и тому же моменту времени.

Рис. 295. Двухпетлевой осциллограф для одновременной записи двух переменных токов, проходящих через петли 1 и 2

Точное математическое определение фазы синусоидальной переменной величины (тока или напряжения) таково. Мгновенное значение этой величины в какой-нибудь момент времени определяется значением величины , стоящей под знаком функции в формуле (151.2). Если начальный момент отсчета времени выбран уже так, чтобы мгновенное значение тока проходило через нуль в моменты то, вообще говоря, другой ток будет проходить через нуль в моменты , и закон его изменения со временем будет иметь вид

где буквой обозначено произведение . Фазой тока (или напряжения) в общем случае называют значение величины, стоящей под знаком функции в формуле (153.2), а величина определяет разность фаз сравниваемых токов (или напряжений). Если эта величина положительна, то первый ток опережает по фазе второй ток, а если она отрицательна, то первый ток отстает по фазе от второго. Фаза измеряется в радианах.

На постоянном токе поток носителей электрозарядов не меняет свое направление во времени, хотя мгновенная его величина может меняться. На переменном токе ток периодически изменяет направленность. Количественная характеристика этого изменения – это частота электрического тока.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/1-16-768x461..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Измерение частоты тока осциллографом

Определение частоты и периода

Колебания потока зарядов происходят циклически, по синусоидальному закону. Протяженность одного такого цикла, выраженная в секундах, – это период переменного тока (Т).

Частота тока определятся количеством колебательных циклов за 1 секунду. Другими словами, это скорость, с которой ток меняет направление. Буквенный символ, обозначающий частоту, – f.

Взаимосвязь частоты и периода, выраженная математически, определяется формулой:

Справедлива и обратная зависимость:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/02/2-17-600x445.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/2-17.jpg 711w" sizes="(max-width: 600px) 100vw, 600px">

Период переменного тока

При расчетах частота переменного тока измеряется в герцах (Гц). Если током совершается 1 колебательный цикл в секунду, то f = 1 Гц.

Важно! Пятьдесят колебательных циклов за 1 секунду соответствуют 50 Гц. Это промышленная частота электрического тока в России.

Иногда в расчетах применяется угловая частота:

единица измерения этого показателя – рад/с.

1 радиан = 360°/2π.

Некоторые общие частотные диапазоны:

  • 50-60 Гц – частота тока в энергосистеме (60 Гц применяется, например, в США);
  • 1-20 кГц (килогерц) – частотно-регулируемые приводы;
  • 16 Гц -20 кГц – аудиочастоты (диапазон человеческого слуха);
  • 3 кГц-3000 ГГц (гигагерц) – радиочастоты.

Взаимосвязь частоты и работы электрооборудования

Схемы и электрооборудование предназначены для работы с фиксированной или переменной частотой.

Для электротехники, нормально функционирующей при фиксированной частоте, изменение этого показателя вызовет нарушения в работе. Например, электродвигатель на 50 Гц будет работать медленнее при частотном значении ниже 50 Гц и быстрее, если частотный показатель выше 50 Гц.

Важно! Между частотой и скоростью электродвигателя существует пропорциональная зависимость. Однопроцентное отклонение частоты приведет к такому же изменению скорости двигателя.

Частотный показатель является одним из основных параметров, по которым оценивается качество электроэнергии в энергосистемах. Кроме того, он показывает соответствие между вырабатываемой и потребляемой мощностями. Допустимое значение частотных колебаний в энергетической системе разрешается не выше 0,2 Гц. Причем при приближении к крайнему показателю энергетики принимают немедленные меры для его возвращения в диапазон колебаний ±0,05 Гц. Хотя минимальные пределы регламентированы в 0,4 Гц. Если частота снижается более значительно, может наступить ее лавинообразное падение из-за нарушения работы собственных нужд электростанции и впоследствии коллапс энергосистемы.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/3-15.jpg 720w" sizes="(max-width: 600px) 100vw, 600px">

Автоматическая частотная разгрузка

С целью недопущения этих процессов устанавливается АЧР (автоматическая частотная разгрузка). При превышении мощности потребления над вырабатываемой и отсутствии резерва активной мощности АЧР на электроподстанциях в соответствии с установленными очередями автоматически отключают потребителей. Когда частота восстанавливается, происходит автоматическое включение в обратном порядке. Установки срабатывания ступеней АЧР регулируются по частотному значению и выдержке времени в секундах.

Важно! Согласно Правилам технической эксплуатации, автоматика частотной разгрузки не должна допускать снижения частотного показателя мене 45 Гц даже на минимальное время.

Частотомер

Частотные изменения позволяет регистрировать частотомер. Такие приборы конструируются с использованием нескольких способов измерения:

  1. Дискретный счет. Применяется в цифровых приборах. Основан на вычислении количества сигналов за временную единицу;
  2. Перезаряд конденсаторов. Усредненный показатель силы тока, при которой перезаряжается конденсатор, соразмерен частоте. Ток фиксируется амперметром, а шкала устройства представлена в герцах;
  3. Сравнение частот. Прибором для использования этого способа часто является осциллограф, где происходит сравнение частотного значения с эталонным образцом;
  4. Вибрационные частотомеры. Содержат тонкие пластины из металла, закрепленные с одной стороны, которые начинают колебаться под воздействием электромагнитного поля, создаваемого в приборе. Пластина, частота колебаний которой резонирует с частотой колебаний электромагнитного поля, покажет искомое значение. Приборы применяются для замеров частотного показателя в питающей сети.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/02/4-12.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/4-12-150x150.jpg 150w" sizes="(max-width: 600px) 100vw, 600px">