Что не является характерной чертой risc архитектуры. Наборы команд должны быть свободны: доводы за RISC-V

23.04.2019

В 70-е годы XX века ученые выдвинули революционную по тем временам идею создания микропроцессора, "понимающего" только минимально возможное количество команд.

Замысел RISC- процессора (Reduced Instruction Set Computer, компьютер с сокращенным набором команд) родился в результате практических исследований частоты использования команд программистами, проведенных в 70-х годах в США и Англии. Их непосредственный итог - известное "правило 80/20": в 80% кода типичной прикладной программы используется лишь 20% простейших машинных команд из всего доступного набора. электронный устройство микроконтроллер процессор

Первый "настоящий" RISC-процессор с 31 командой был создан под руководством Дэвида Паттерсона из Университета Беркли, затем последовал процессор с набором из 39 команд. Они включали в себя 20-50 тыс. транзисторов. Плодами трудов Паттерсона воспользовалась компания Sun Microsystems, разработавшая архитектуру SPARC с 75 командами в конце 70-х годов. В 1981 г. в Станфордском университете стартовал проект MIPS по выпуску RISC-процессора с 39 командами. В итоге была основана корпорация Mips Computer в середине 80-х годов и сконструирован следующий процессор уже с 74 командами.

По данным независимой компании IDC, в 1992 году архитектура SPARC занимала 56% рынка, далее следовали MIPS - 15% и PA-RISC - 12,2%

Примерно в то же время Intel разработала серию 80386, последних "истинных" CISC-процессоров в семействе IA-32. В последний раз повышение производительности было достигнуто только за счет усложнения архитектуры процессора: из 16-разрядной она превратилась в 32-разрядную, дополнительные аппаратные компоненты поддерживали виртуальную память, и добавился целый ряд новых команд.

Основные особенности RISC-процессоров:

  • - Сокращенный набор команд (от 80 до 150 команд).
  • - Большинство команд выполняется за 1 такт.
  • - Большое количество регистров общего назначения.
  • - Наличие жестких многоступенчатых конвейеров.
  • - Все команды имеют простой формат, и используются немногие способы адресации.
  • - Наличие вместительной раздельной кэш-памяти.
  • - Применение оптимизирующих компиляторов, которые анализируют исходный код и частично меняют порядок следования команд.

RISC-процессоры 3-го поколения

Самыми крупными разработчиками RISC-процессоров считаются Sun Microsystems (архитектура SPARC - Ultra SPARC), IBM (многокристальные процессоры Power, однокристальные PowerPC - PowerPC 620), Digital Equipment (Alpha - Alpha 21164), Mips Technologies (семейство Rxx00 -- R 10000), а также Hewlett-Packard (архитектура PA-RISC - PA-8000).

Все RISC-процессоры третьего поколения:

  • - являются 64-х разрядными и суперскалярными (запускаются не менее 4-х команд за такт);
  • - имеют встроенные конвейерные блоки арифметики с плавающей точкой;
  • - имеют многоуровневую кэш-память. Большинство RISC-процессоров кэшируют предварительно дешифрованные команды;
  • - изготавливаются по КМОП-технологии с 4 слоями металлизации.

Для обработки данных применяется алгоритм динамического прогнозирования ветвлений и метод переназначения регистров, что позволяет реализовать внеочередное выполнение команд.

Повышение производительности RISC-процессоров достигается за счет повышения тактовой частоты и усложнения схемы кристалла. Представителями первого направления являются процессоры Alpha фирмы DEC, наиболее сложными остаются процессоры компании Hewlett-Packard.

Уменьшение набора машинных команд в RISC-архитектуре позволило разместить на кристалле вычислительного ядра большое количество регистров общего назначения. Увеличение количества регистров общего назначения позволило минимизировать обращения к медленной оперативной памяти, оставив для работы с RAM только операции чтения данных из оперативной памяти в регистр и запись данных из регистра в оперативную память, все остальные машинные команды используют в качестве операндов регистры общего назначения.

Основными преимуществами RISC-архитектуры является наличие следующих свойств:

  • - Большое число регистров общего назначения.
  • - Универсальный формат всех микроопераций.
  • - Равное время выполнения всех машинных команд.
  • - Практически все операции пересылки данных осуществляются по маршруту регистр - регистр.

Равное время выполнения всех машинных команд позволяют обрабатывать поток командных инструкций по конвейерному принципу, т.е. выполняется синхронизация аппаратных частей с учетом последовательной передачи управления от одного аппаратного блока к другому.

Аппаратные блоки в RISC-архитектуре:

Блок загрузки инструкций включает в себя следующие составные части: блок выборки инструкций из памяти инструкций, регистр инструкций, куда помещается инструкция после ее выборки и блок декодирования инструкций. Эта ступень называется ступенью выборки инструкций.

Регистры общего назначения совместно с блоками управления регистрами образуют вторую ступень конвейера, отвечающую за чтение операндов инструкций. Операнды могут храниться в самой инструкции или в одном из регистров общего назначения. Эта ступень называется ступенью выборки операндов.

Арифметико-логическое устройство и, если в данной архитектуре реализован, аккумулятор, вместе с логикой управления, которая, исходя из содержимого регистра инструкций, определяет тип выполняемой микрооперации. Источником данных помимо регистра инструкций может быть счетчик команд, при выполнении микроопераций условного или безусловного перехода. Данная ступень называется исполнительной ступенью конвейера.

Набор состоящий из регистров общего назначения, логики записи и иногда из RAM образуют ступень сохранения данных. На этой ступени результат выполнения инструкций записываются в регистры общего назначения или в основную память.

Однако к моменту разработки RISC-архитектуры, промышленным стандартом микропроцессоров де-факто стала архитектура Intel x86, выполненная по принципу CISC-архитектуры. Наличие большого числа программ, написанных под архитектуру Intel x86, сделала невозможным массовый переход ЭВМ на RISC-архитектуру. По этой причине основной сферой использования RISC-архитектуры явились микроконтроллеры, благодаря тому, что они не были привязаны к существующему программному обеспечению. Кроме того некоторые производители ЭВМ во главе с IBM так же начали выпускать ЭВМ, построенные по RISC-архитектуре, однако несовместимость программного обеспечения между Intel x86 и RISC-архитектурой в значительной степени ограничивала распространение последних.

Однако, преимущества RISC-архитектуры были столь существенны, что инженеры нашли способ перейти на вычислители, выполненные по RISC-архитектуре, при этом не отказываясь от существующего программного обеспечения. Ядра большинство современных микропроцессоров, поддерживающих архитектуру Intel x86, выполнены по RISC-архитектуре с поддержкой мультискалярной конвейерной обработки. Микропроцессор получает на вход инструкцию в формате Intel x86, заменяем ее несколькими (до 4-х) RISC-инструкциями.

Таким образом, ядра большинства современных микропроцессоров, начиная с Intel 486DX, выполнены по RISC-архитектуре с поддержкой внешнего Intel x86 интерфейса. Кроме того, подавляющее большинство микроконтроллеров, а так же некоторые микропроцессоры выпускаются по RISC-архитектуре.

В современном RISC-процессоре используется не менее 32 регистров, часто более 100, в то время, как в классических ЦВМ обычно 8-16 регистров общего назначения. В результате процессор на 20%-30% реже обращается к оперативной памяти, что также повысило скорость обработки данных. Кроме того, наличие большого количества регистров упрощает работу компилятора по распределению регистров под переменные. Упростилась топология процессора, выполняемого в виде одной интегральной схемы, сократились сроки ее разработки, она стала дешевле.

После появления RISC-процессоров традиционные процессоры получили обозначение CISC - то есть с полным набором команд (Complete Instruction Set Computer).

В настоящее время RISC-процессоры получили широкое распространение. Современные RISC-процессоры характеризуются следующим:

  • - упрощенным набором команд;
  • - используются команды фиксированной длины и фиксированного формата, простые способы адресации, что позволяет упростить логику декодирования команд;
  • - большинство команд выполняются за один цикл процессора;
  • - логика выполнения команд с целью повышения производительности ориентирована на аппаратную, а не на микропрограммную реализацию, отсутствуют макрокоманды, усложняющие структуру процессора и уменьшающие скорость его работы;
  • - взаимодействие с оперативной памятью ограничивается операциями пересылки данных;
  • - для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки;
  • - создан конвейер команд, позволяющий обрабатывать несколько из них одновременно;
  • - наличие большого количества регистров;
  • - используется высокоскоростная память.

В RISC-процессорах обработка машинной команды разделена на несколько ступеней, каждую ступень обслуживают отдельные аппаратные средства и организована передача данных от одной ступени к следующей.

Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд.

Выполнение типичной команды можно разделить на следующие этапы:

  • - выборка команды IF - по адресу, заданному счетчиком команд, из памяти извлекается команда;
  • - 2) декодирование команды ID - выяснение ее смысла, выборка операндов из регистров;
  • - 3) выполнение операции EX, при необходимости обращения к памяти - вычисление физического адреса;
  • - 4) обращение к памяти ME;
  • - 5)запоминание результата WB

В процессорах с RISC-архитектурой набор исполняемых команд сокращен до минимума. Для реализации более сложных операций приходится комбинировать команды. При этом все команды имеют формат фиксированной длины (например, 12, 14 или 16 бит), выборка команды из памяти и ее исполнение осуществляется за один цикл (такт) синхронизации. Система команд RISC-процессора предполагает возможность равноправного использования всех регистров процессора. Это обеспечивает дополнительную гибкость при выполнении ряда операций. К МК с RISC-процессором относятся МК AVR фирмы Atmel, МК PIC16 и PIC17 фирмы Microchip и другие.

На первый взгляд, МК с RISC-процессором должны иметь более высокую производительность по сравнению с CISC МК при одной и той же тактовой частоте внутренней магистрали. Однако на практике вопрос о производительности более сложен и неоднозначен.

Рис.2

Гарвардская архитектура почти не использовалась до конца 70-х годов, пока производители МК не поняли, что она дает определенные преимущества разработчикам автономных систем управления.

Дело в том, что, судя по опыту использования МПС для управления различными объектами, для реализации большинства алгоритмов управления такие преимущества фон-неймановской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации оперрандов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды. Этот метод реализации операций позволяет обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

Большинство производителей современных 8-разрядных МК используют гарвардскую архитектуру. Однако гарвардская архитектура является недостаточно гибкой для реализации некоторых программных процедур. Поэтому сравнение МК, выполненных по разным архитектурам, следует проводить применительно к конкретному приложению.

представляет ту часть системы, которая видна программисту или разработчику компиляторов. В широком смысле архитектура охватывает понятие организации системы, включающее такие высокоуровневые аспекты разработки компьютера как систему памяти, структуру системной шины, организацию ввода/вывода и т.п.

Применительно к вычислительным системам термин "архитектура" может быть определен как распределение функций, реализуемых системой, между ее уровнями, точнее как определение границ между этими уровнями. Таким образом, архитектура вычислительной системы предполагает многоуровневую организацию. Архитектура первого уровня определяет, какие функции по обработке данных выполняются системой в целом, а какие возлагаются на внешний мир (пользователей, операторов, администраторов баз данных и т.д.). Система взаимодействует с внешним миром через набор интерфейсов: языки (язык оператора, языки программирования и системные программы (программы-утилиты, программы редактирования, сортировки, сохранения и восстановления информации).

Интерфейсы следующих уровней могут разграничивать определенные уровни внутри программного обеспечения. Например, уровень управления логическими ресурсами может включать реализацию таких функций, как управление базой данных, файлами, виртуальной памятью. К уровню управления физическими ресурсами относятся функции управления внешней и оперативной памятью, управления процессами, выполняющимися в системе.

Следующий уровень отражает основную линию разграничения системы, а именно границу между системным программным обеспечением и аппаратурой. Эту идею можно развить и дальше и говорить о распределении функций между отдельными частями физической системы. Например, некоторый интерфейс определяет, какие функции реализуют центральные процессоры, а какие - процессоры ввода/вывода.

Глава 4.2. Архитектура системы команд. Классификация процессоров (CISC и RISC).

Двумя основными архитектурами набора команд являются архитектуры CISC и RISC. Основоположником CISC-архитектуры можно считать компанию IBM с ее базовой архитектурой /360, ядро которой использлвалось с1964 года.

Лидером в разработке микропроцессоров c полным набором команд (CISC - Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для рынка микрокомпьютеров. Для CISC-процессоров характерно: сравнительно небольшое число регистров общего назначения; большое количество машинных команд, некоторые из которых нагружены семантически аналогично операторам высокоуровневых языков программирования и выполняются за много тактов; большое количество методов адресации; большое количество форматов команд различной разрядности; преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.

Основой архитектуры современных рабочих станций и серверов является архитектура компьютера с сокращенным набором команд (RISC - Reduced Instruction Set Computer). Зачатки этой архитектуры уходят своими корнями к компьютерам CDC6600, разработчики которых (Торнтон, Крэй и др.) осознали важность упрощения набора команд для построения быстрых вычислительных машин. Эту традицию упрощения архитектуры Крэй с успехом применил при создании широко известной серии суперкомпьютеров компании Cray Research. Однако окончательно понятие RISC в современном его понимании сформировалось на базе трех

исследовательских проектов компьютеров: процессора 801 компании IBM, процессора RISC университета Беркли и процессора MIPS Стенфордского университета.

Эти три машины имели много общего. Все они придерживались архитектуры, отделяющей команды обработки от команд работы с памятью, и делали упор на эффективную конвейерную обработку. Система команд разрабатывалась таким образом, чтобы выполнение любой команды занимало небольшое количество машинных тактов (предпочтительно один машинный такт). Сама логика выполнения команд с целью повышения производительности ориентировалась на аппаратную, а не на микропрограммную реализацию. Чтобы упростить логику декодирования команд использовались команды фиксированной длины и фиксированного формата.

Развитие архитектуры RISC в значительной степени определялось прогрессом в области создания оптимизирующих компиляторов. Именно современная техника компиляции позволяет эффективно использовать преимущества большего регистрового файла, конвейерной организации и большей скорости выполнения команд. Современные компиляторы используют также преимущества другой оптимизационной техники для повышения производительности, обычно применяемой в процессорах RISC: реализацию задержанных переходов и суперскалярной обработки, позволяющей в один и тот же момент времени выдавать на выполнение несколько команд.

Следует отметить, что в разработках компании Intel (имеется в виду Pentium P54C и процессор следующего поколения P6), а также ее последователейконкурентов (AMD R5, Cyrix M1, NexGen Nx586 и др.) широко используются идеи, реализованные в RISC-микропроцессорах.

В 70-е годы XX века ученые выдвинули революционную по тем временам идею создания микропроцессора, "понимающего" только минимально возможное количество команд.

Замысел RISCпроцессора (Reduced Instruction Set Computer, компьютер с сокращенным набором команд) родился в результате практических исследований частоты использования команд программистами, проведенных в 70-х годах в США и Англии. Их непосредственный итог - известное "правило 80/20": в 80% кода типичной прикладной программы используется лишь 20% простейших машинных команд из всего доступного набора.

Первый "настоящий" RISC-процессор с 31 командой был создан под руководством Дэвида Паттерсона из Университета Беркли, затем последовал процессор с набором из 39 команд. Они включали в себя 20-50 тыс. транзисторов. Плодами трудов Паттерсона воспользовалась компания Sun Microsystems, разработавшая архитектуру SPARC с 75 командами в конце 70-х годов. В 1981 г. в Станфордском университете стартовал проект MIPS по выпуску RISC-процессора с 39 командами. В итоге была основана корпорация Mips Computer в середине 80-х годов и сконструирован следующий процессор уже с 74 командами.

По данным независимой компании IDC, в 1992 году архитектура SPARC занимала 56% рынка, далее следовали MIPS - 15% и PA-RISC - 12,2%

Примерно в то же время Intel разработала серию 80386, последних "истинных" CISCпроцессоров в семействе IA-32. В последний раз повышение производительности было достигнуто только за счет усложнения архитектуры процессора: из 16разрядной она превратилась в 32-разрядную, дополнительные аппаратные компоненты поддерживали виртуальную память, и добавился целый ряд новых

Основные особенности RISC-процессоров:

1. Сокращенный набор команд (от 80 до 150 команд).

2. Большинство команд выполняется за 1 такт.

3. Большое количество регистров общего назначения.

4. Наличие жестких многоступенчатых конвейеров.

5. Все команды имеют простой формат, и используются немногие способы адресации.

6. Наличие вместительной раздельной кэш-памяти.

7. Применение оптимизирующих компиляторов, которые анализируют исходный код и частично меняют порядок следования команд.

RISC-процессоры 3-го поколения

Самыми крупными разработчиками RISC-процессоров считаются Sun Microsystems (архитектура SPARC - Ultra SPARC), IBM (многокристальные процессоры Power, однокристальные PowerPC - PowerPC 620), Digital Equipment (Alpha - Alpha 21164), Mips Technologies (семейство Rxx00 -- R 10000), а также Hewlett-Packard (архитектура PA-RISC - PA-8000).

Все RISC-процессоры третьего поколения:

∙ являются 64-х разрядными и суперскалярными (запускаются не менее 4-х команд за такт);

имеют встроенные конвейерные блоки арифметики с плавающей точкой;

имеют многоуровневую кэш-память. Большинство RISC-процессоров кэшируют предварительно дешифрованные команды;

изготавливаются по КМОП-технологии с 4 слоями металлизации.

Для обработки данных применяется алгоритм динамического прогнозирования ветвлений и метод переназначения регистров, что позволяет реализовать внеочередное выполнение команд.

Повышение производительности RISC-процессоров достигается за счет повышения тактовой частоты и усложнения схемы кристалла. Представителями первого направления являются процессоры Alpha фирмы DEC, наиболее сложными остаются процессоры компании Hewlett-Packard. Рассмотрим процессоры этих фирм более подробно.

Структура процессоров Alpha: 21064, 21264

Структура процессора Alpha 21064 представлена на рис.

Рис. Структура процессора Alpha 21064

Основные функциональные блоки процессора Alpha 21064:

∙ I-cache - кэш команд.

IRF - регистровый файл целочисленной арифметики.

∙ F-box - устройство арифметики с плавающей точкой.

∙ E-box - устройство целочисленной арифметики (7 ступеней конвейера).

∙ I-box - командное устройство (управляет кэш команд, выборкой и дешифрацией команд).

∙ A-box - устройство управления загрузкой/сохранением данных. Управляет процессом обмена данными м/у IRF, FRF, кэш данных и внешней памятью.

Write Buffer - буфер обратной записи.

∙ D-cache - КЭШ данных.

BIU - интерфейсный блок, с помощью которого подключаются внешняя кэшпамять, размером 128 Кб-8 Мб.

Сравнительные характеристики Alpha 21164 и 21264

Процессор Alpha 21264 отличается значительной новизной по сравнению с предшественником 21164. Он обладает кэш-памятью первого уровня большего объема, дополнительными функциональными блоками, более эффективными средствами предсказания ветвлений, новыми инструкциями обработки видеоданных и широкой шиной.

Alpha 21264 читает до четырех инструкций за один такт и может одновременно исполнять до шести инструкций. Самое большое его отличие от модели 21164 - это способность выполнять команды (впервые для Alpha) с изменением их очередности

Эффективность выполнения Out-of-Order определяется количеством инструкций, которыми может манипулировать ЦП в целях определения оптимального порядка выполнения команд. Чем больше инструкций ЦП может для этого использовать, тем лучше, тем дальше он может заглядывать вперед. Процессоры Intel класса Р6 (Pentium Pro, Pentium II, Xeon) могут одновременно обращаться не менее чем с 40 командами. У других процессоров данный показатель значительно больше: PA-8000 фирмы HP оперирует 56 командами, а процессор Alpha справляется с 80 командами.

Как и большинство RISC-процессоров, Alpha содержит набор из 32 целочисленных и 32 регистров с плавающей запятой, все они имеют разрядность 64 бита. Для повышения эффективности внеочередного выполнения команд процессор 21264 дополнительно к обычному набору регистров снабжен еще 48 целочисленными регистрами и 40 регистрами с плавающей запятой.

Каждый регистр может временно хранить значения текущих команд. Если обрабатывается какая-либо инструкция, нет необходимости перегружать результат в целевой регистр - вместо этого ЦП просто переименовывает временный регистр (Register Renaming).

Подобное переименование регистров есть и в других процессорах. Однако в 21264 реализована уникальная "хитрость" - он имеет задублированный набор целочисленных регистров, каждый из 80 целочисленных регистров дублируется еще раз. Таким образом, на чипе в целом - 160 целочисленных регистров. Это одна из причин, почему, несмотря на сложность выполнения Out-of-Order, допустима высокая частота процессора 21264.

Блоки целочисленных операций в обеих группах идентичны не полностью. Одна из них содержит блок умножения, а вторая - специальную логику для обработки движущихся изображений (MPEG). Для этого набор команд Alpha был дополнен пятью новыми командами. Самая интересная из них - PERR - служит для оценки движения, т.е. выполнения задачи, возникающей как при сжатии, так и декомпрессии MPEG. Команда PERR выполняет работу девяти обычных инструкций. Таким образом, процессор 21264 может декодировать видеопоследовательности MPEG-2, а также DVD-аудиоданные AC-3 в режиме реального времени без использования дополнительных периферийных устройств.

В процессоре 21264, в отличие от его предшественников практически полностью реорганизована иерархия кэш-памяти. Он снабжен одним 64-Кбайт кэшем первого уровня (L1) для инструкций и еще одним 64-Кбайт кэшем первого уровня для данных; оба являются двукратно-ассоциативными. Кэш-память второго уровня (L2) была вынесена за пределы чипа - к ней можно обращаться через 128-бит backsideшину.

Сравнительные характеристики Alpha 21164 и 21264 приведены в табл. .

Таблица 10.1. Сравнительные характеристики Alpha 21164 и 21264

Тактовая частота, МГц

Емкость:8(I)+8(D)

Емкость: 64(I)+64(D)

Предыдущие части:

Создание архитектуры RISC

Как уже неоднократно упоминалось, все х86-процессоры, решения компании Motorola и подавляющее большинство выпущенных в 1980-е годы кристаллов имели архитектуру CISC (Complex Instruction Set Computing). Совокупность всех особенностей привела к тому, что чипы стали не только сложными и дорогими в производстве, но и достигли своего потолка производительности. Для дальнейшего увеличения быстродействия требовалось наращивать количество транзисторов, однако освоенные технологические нормы не позволяли создавать более сложные решения. С этим столкнулась Intel при выпуске семейства i486. Для поднятия производительности они внесли изменения в архитектуру процессоров, добавив кэш-память, множители и конвейеры. Словом, 486-е «камни» получили некоторые «фишки» архитектуры RISC. Тем не менее к созданию RISC-платформы американская компания никакого отношения не имеет. Своим созданием архитектура обязана американскому инженеру Дэвиду Паттерсону, который руководил проектом Berkeley RISC с 1980 по 1984 годы.

Дэвид Паттерсон - отец RISC

Первоначальной идеей, которая затем воплотилась в столь масштабный проект Berkeley RISC, стало исследование работы Motorola 68000. В ходе наблюдений выяснилось, что программы попросту не использовали подавляющее большинство инструкций, заложенных в процессор. Например, система Unix при компиляции использовала лишь 30% команд. Поэтому в рамках проекта Berkeley RISC планировалось создать такой процессор, который бы содержал лишь самые необходимые инструкции.

После нескольких лет исследований и разработки было выпущено несколько образцов процессоров, название которых и дало имя всей архитектуры. Сама аббревиатура RISC расшифровывается как Restricted (Reduced) Instruction Set Computer, что переводится как «компьютер с сокращенным набором команд». «Сокращенный набор команд» вовсе не означает, что количество инструкций меньше, чем число команд CISC-кристаллов. Разница состоит в том, что любая инструкция платформы RISC является простой и выполняется за один такт (по крайней мере, должна выполняться), тогда как на выполнение RISC-инструкции могло уходить несколько десятков тактов. При этом длина команды является фиксированной. Например, 32 бита. Также у RISC имеется гораздо больше регистров общего назначения. Плюс для этой архитектуры характерна конвейеризация. Именно ее использование (вкупе с упрощенными командами) позволяет эффективно наращивать тактовую частоту процессоров RISC.

Команда проекта Berkeley RISC

Дебютными решениями стали RISC I и RISC II - детища Паттерсона и проекта Berkeley RISC. Первый содержал более чем 44 000 транзисторов и работал на частоте 4 МГц. Такой процессор при выполнении небольших программ был в среднем в два раза быстрее VAX 11/780 и примерно в четыре раза производительнее, чем «камень» Zilog Z8000. RISC II отличался от предшественника большим количеством инструкций: 39 против 32. Он был более быстрым. Его преимущество над процессором VAX достигало 200%, а Motorola 68000 в некоторых программах был медленнее примерно в четыре раза.

Нужно отметить, что Berkeley RISC был частью большого проекта под названием VLSI. Сюда также входил проект Стэнфордского университета MIPS, который стартовал в 1981 году.

Процессоры MIPS

Главой проекта MIPS был ученый Стэнфордского университета Джон Хэннесси. Как и в случае с Berkeley RISC, задачей стартапа было исследование и создание такого процессора, который использовал бы конвейер и сокращенный набор команд. Архитектура MIPS-решений также предусматривала наличие вспомогательных блоков в составе кристалла: например, модулей для работы с памятью, целочисленного АЛУ (арифметико-логическое устройство) и декодеров команд. Отличием плана MIPS от Berkeley RISC было использование удлиненного конвейера. Архитектура RISC, в принципе, предполагает использование конвейера, но Хэннесси пошел дальше и предложил максимально удлинить конвейер в процессоре, то бишь еще больше «раздробить» выполнение одной операции. Такой подход открывал еще большие просторы по наращиванию тактовой частоты. При этом удлинение конвейера обеспечивало более эффективное распараллеливание выполнения команд. В то время распараллеливание являлось отличительной чертой RISC-архитектуры, поскольку ни в одном CISC-процессоре эта функция не была реализована вплоть до появления в них конвейеров. Например, в MIPS, так же как и в RISC, выполнение одной команды могло быть еще не завершено, когда начиналась выполняться другая. В процессорах CISC для старта выполнения одной инструкции было необходимо, чтобы была окончена обработка другой.

Джон Хэннесси - создатель архитектуры MIPS, а ныне президент Стэнфордского университета

В первоначальной спецификации процессоров MIPS не была предусмотрена поддержка таких элементарных операций, как умножение и деление. Сделано это было специально. Таким образом, разработчики хотели избавиться от необходимости использования так называемых блокировок конвейера. Сама блокировка представляла собой приостановку конвейера в тех случаях, когда операцию на определенной стадии конвейера невозможно выполнить за один такт. Тем не менее первые реализации архитектуры MIPS работали с блокировками и даже поддерживали операции умножения и деления. Прошло некоторое время, прежде чем в процессорах была реализована первоначальная задумка.

В 1984 году Хэннесси покинул Стэнфордский университет и основал компанию MIPS Computer Systems, которая и занялась выпуском процессоров с одноименной архитектурой. Спустя год увидел свет первый продукт компании - 32-битный «камень» R2000. Он стал первой коммерчески доступной RISC-моделью в истории. В 1988 году появился процессор следующего поколения под названием R3000. В сравнении с R2000 он получил поддержку многопроцессорности и кэш-памяти инструкций и данных. «Трехтысячный» оказался коммерчески успешным. Процессор использовался в серверных системах и рабочих станциях таких компаний, как Silicon Graphics, DEC, Seiko Epson и многих других. Плюс R3000 стал сердцем игровой консоли Sony PlayStation.

Процессор MIPS R3000

На разработку следующего поколения MIPS-процессоров ушло три года. Процессор R4000 был представлен в 1991 году. Он получил 64-битную архитектуру, встроенный сопроцессор и работал на более высокой тактовой частоте, нежели предшественники. Так, минимальная частота R4000 составляла 100 МГц. Объем кэш-памяти инструкций и данных составлял 8 Кбайт каждый. Спустя два года была представлена доработанная версия процессора с индексом R4400. Новый кристалл обладал увеличенным вдвое кэшем и поддерживал кэш-память второго уровня большего объема. Помимо этого, были исправлены многочисленные ошибки при работе в 64-разрядном режиме.

Удивительно, что, несмотря на коммерческий успех своих процессоров, MIPS испытывала финансовые трудности и в конечном счете была куплена компанией SGI и переименована в MIPS Technologies. Следом начались выдаваться лицензии на производство клонов сторонним компаниям. Так, компания QED (Quantum Effects Devices) создала недорогие MIPS-процессоры, которые использовались в маршрутизаторах Cisco. А NEC занималась производством «камня» VR4300, который «прописался» в игровой консоли Nintendo 64.

Процессор NEC VR4300 использовался в приставке Nintendo 64

В 1994 году появился процессор R8000. Он стал первым MIPS-решением с суперскалярной архитектурой, которая подразумевает параллельное выполнение команд при условии, что исполнение одной команды не зависит от результата другой. Например, R8000 умел обрабатывать до четырех инструкций за такт.

В январе 1996 года MIPS представила процессор следующего поколения под названием R10000. «Десятитысячный» использовал такую же суперскалярную архитектуру, как и R8000, и, по сути, являлся доработанной версией предшественника. Также процессор имел кэш-память инструкций и данных объемом 32 Кбайт каждая и работал на частоте 175 МГц или 195 МГц. В 1997 году даже появилась версия чипа с частотой 250 МГц. Но даже при параметре 195 МГц R10000 был одним из быстрейших процессоров того времени.

Процессор R10000, произведенный компанией Toshiba

К сожалению, после запуска R10000 компания SGI забросила MIPS-архитектуру. Все последующие кристаллы основывались на ядре «десятитысячного» и не имели в сравнении с ним каких-то принципиальных отличий. Например, процессор R12000, представленный в 1998 году, получил дополнительную стадию в конвейер и улучшенную работу с очередями инструкций. Его тактовая частота составляла 270 МГц, 300 МГц или 360 МГц. После R12000 вышли еще два поколения процессоров MIPS: R14000 и R16000. Они получили поддержку более быстрых системных шин, увеличенные частоты и кэш-память большего объема. Например, R16000 мог работать на частоте 700 МГц и поддерживал 64 Кбайт кэш-памяти инструкций и данных.

После этого MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Компания Sun Microsystems также решилась на разработку архитектуры - SPARC (Scalable Processor ARChitecture). Так, инженеры черпали вдохновение из проекта Berkeley RISC. А сам Дэвид Паттерсон даже привлекался к проекту в качестве консультанта. Тем не менее в результате SPARC больше напоминала MIPS-архитектуру. Например, в наборе команд платформы также отсутствовали инструкции умножения и деления. Особенностью архитектуры SPARC стало использование регистрового окна, с помощью которого был немного изменен процесс вызова функций в программах. Обычно при вызове программ процессор запоминал свое состояние (то есть запоминал состояние некоторых регистров общего и специального назначения), переходил к выполнению функции, а затем возвращался в свое исходное состояние до вызова функции. А в процессорах SPARC при вызове функции необходимые данные записывались в конец регистрового окна, а само регистровое окно перемещалось по файлу так, чтобы данные оказывались в начале окна. Такой подход в теории обеспечивал более высокую скорость работы.

Процессор SPARC V7, изготовленный компанией Fujitsu

Первая версия архитектуры получила название SPARC V7. Одноименный процессор на ее базе производился вплоть до 1992 года. Затем появилась следующая генерация архитектуры - SPARC V8. Она не претерпела каких-либо кардинальных изменений. Ключевыми отличиями стало добавление операций умножения и деления, а также улучшенное выполнение арифметики чисел с плавающей запятой. Как и SPARC V7, SPARC V8 оставалась 32-битной архитектурой, на базе которой был создан процессор microSPARC. Он принадлежал к Low-End-сегменту и использовался в небольших рабочих станциях и встраиваемых системах. Силами компаний Texas Instruments и Fujitsu также были выпущены улучшенные клоны. Более производительным решением стал процессор SuperSPARC.

Созданием следующего поколения архитектуры с именем SPARC V9 работала уже целая организация SPARC Architecture Committee, в состав которой, кроме самой Sun, входили такие компании, как Texas Instruments, Fujitsu, Philips и многие другие. Платформа была расширена до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные объемом 16 Кбайт каждая, а также второго уровня емкостью 512-4096 Кбайт. Реализацией архитектуры стал процессор UltraSPARC с частотой 143-200 МГц.

Процессор UltraSPARC II

UltraSPARC не был единственным процессором с архитектурой SPARC V9. В 1997 году был представлен UltraSPARC II.

Процессоры ARM

История ныне популярных ARM-процессоров, а точнее самой архитектуры ARM, начинается с компании Acorn Computers и ее компьютера BBC Micro. В нем использовался «камень» MOS Technology 6502, однако его производительности было недостаточно, чтобы создать десктоп следующего поколения. По различным причинам другие доступные процессоры также не подходили под требования Acorn, поэтому в компании задумались о создании собственного чипа. После изучения различных архитектур, инженеры Acorn взяли за основу процессоры RISC и все тот же кристалл MOS Technology 6502.

Компьютер BBC Micro

У процессора MOS, например, была позаимствована архитектура доступа к памяти и набор инструкций. Каждая инструкция была дополнена специальным четырехбитным кодом условия. В зависимости от значения кода (true или false) инструкция могла выполняться или не выполняться. Это позволило сократить количество переходов при выполнение операций, которые негативно влияли на производительность конвейерной архитектуры. Также разработчики заложили в первоначальную ревизию архитектуры команды, которые выполняли несколько элементарных операций. Словом, немного отступили от правил RISC. Однако в конечном счете это лишь улучшило производительность процессора.

Разработка архитектуры была завершена в 1985 году созданием процессора ARM. Первые же коммерческие варианты появились в 1986 году и носили название ARM2. По сравнению с CISC-процессорами, ARM2 был очень простым - он содержал всего 30 000 транзисторов. При этом он потреблял очень мало энергии и в то же время был достаточно производительным. Несколько позже появились и ARM-процессоры, в которые были добавлены 4 Кбайт кэш-памяти, что еще больше повысило производительность кристаллов.

Процессор ARM2

К концу 1980-х годов Acorn занималась разработкой архитектуры ARM уже не в одиночку – к ней присоединилась Apple. В связи с этим подразделение, занимавшееся непосредственно ARM-процессорами, было преобразовано в отдельную компанию – Advanced RISC Machines. Первым продуктом новой компании стало процессорное ядро ARM6 и процессор ARM610, который использовался в одном из первых в мире КПК Apple Newton.

Однако ARM-процессоры уже не могли соперничать с CISC-решениями в плане производительности, а в RISC-сегменте господствовали процессоры с архитектурой MIPS. Тогда в ARM пошли иным путем. Компания начала позиционировать ARM6 как встраиваемое ядро, которое любой сторонний производитель мог использовать в своих процессорах за небольшие деньги. Такая политика принесла свои плоды, и ядро ARM стало очень популярным, а сама компания - коммерчески успешной.

Вместе с компанией DEC была разработана архитектура для более производительных ARM-решений под названием StrongARM, которое представляло собой классическую скалярную архитектуру с 5-стадийным конвейером. Архитектура имела блоки управления памятью и поддерживала кэш-память инструкций и данных объемом 16 Кбайт каждая.

Первый процессор на базе StrongARM - SA-110 - был представлен в феврале 1996 года. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц. «Камень» использовался в Apple MessagePad 2000, а также системах Acorn Computer Risc PC и Eidos Optima. На протяжении 1996 года SA-110 оставался самым производительным мобильным процессором.

Apple MessagePad 2000 использовал процессор SA-110

В 1997 году права на архитектуру StrongARM были проданы компании Intel, которая занялась разработкой следующего поколения платформы. В 2000 году оно было представлено, но архитектура (а точнее реализация архитектуры) носила другое название - Xscale. Платформа получила множество изменений. Например, длина конвейера была увеличена до 8 стадий. Объем кэш-памяти как для инструкций, так и для данных увеличился до 32 Кбайт. XScale использовался в таких устройствах, как RIM Blackberry, Dell Axim, мобильном телефоне Motorola A780 и других девайсах.

Процессоры PowerPC

Если быть уж совсем точным, то первой компанией, начавшей разработку RISC-архитектуры, стала IBM. Еще в 1974 году стартовала разработка процессора IBM 801, которая и заложила первые основы для этой платформы. А проект Berkeley RISC окончательно сформировал архитектуру.

В начале 80-х годов некоторые процессоры IBM для встраиваемых систем использовали архитектуру 801. Процессор на его базе также «прописался» в компьютере IBM 9370.

В 1985 году IBM начала разработку RISC-архитектуры следующего поколения. Проект получил название America Project. Разработка процессора и набора инструкций для него закончилась в 1990 году. Сам кристалл получил название POWER1 и использовался в серверах и рабочих станциях IBM. Он обладал достаточно высоким уровнем производительности, но имел многочиповую компоновку и состоял из 11 различных микросхем. В 1992 году IBM представила бюджетный вариант процессора POWER1, который умещался в одном чипе.

Процессор POWER1. Даже, скорее, чипсет

В 1993 году была представлена второе поколение архитектуры POWER2. В него было добавлено по одному дополнительному блоку арифметико-логических операций и вычислений с плавающей запятой. Также был расширен набор команд: например, была добавлена операция вычисления квадратного корня из числа на аппаратном уровне. Тактовая частота процессора варьировалась от 55 МГц до 71 МГц, а кэш-память данных и инструкций - 256 Кбайт и 32 Кбайт соответственно. Как и предшественник, новый процессор имел многочиповую компоновку. Но в мае 1994 года была выпущена и одночиповая версия.

Однако еще до выхода POWER2 IBM вместе с Apple и Motorola образовали альянс AIM и договорились о создании улучшенной архитектуры на основе POWER. В выигрыше остались все три компании, получив один из самых быстрых RISC-процессоров на рынке. Разработанная совместно архитектура получила название PowerPC. Помимо базового набора функций платформы POWER, в нее были добавлены поддержка работы в двух режимах (big-endian и little-endian), новые инструкции для вычислений с плавающей запятой и обратная совместимость с 32-битным режимом работы для 64-разрядной версии архитектуры.

Процессор PowerPC первого поколения

В отличие от других RISC-архитектур, которые занимали узкие ниши рынка, PowerPC позиционировалась как платформа-конкурент x86. Ее основным назначением являлись персональные компьютеры. Так, процессор на базе PowerPC довольно долгое время использовался в компьютерах Apple Macintosh - вплоть до 2006 года.

Архитектура конкурировала наравне с x86 до 2001 года, но после этого угнаться за процессорами Intel и AMD не смогла. Несмотря на это, процессоры на базе PowerPC использовались в игровых консолях Sony PlayStation 3 и Microsoft Xbox 360.

Консоли Sony PlayStation 3 и Microsoft Xbox 360 работают под управлением процессора PowerPC

В 90-е годы IBM успела выпустить третью генерацию процессоров под названием POWER3, которая, по сути, стала реализацией 64-разрядной архитектуры PowerPC. Чип создавался с прицелом на использование в серверах и рабочих станциях, но в итоге его главным применением стали системы IBM RS/6000.

Процессоры DEC Alpha

Архитектура DEC VAX безнадежно устаревала и в начале 90-х в компании задумались о разработке собственной RISC-платформы. Ей стала Alpha, выпущенная в 1994 году. Первым процессором стал Alpha 21064 с кодовым названием EV4. Это 64-разрядный суперскалярный кристалл с конвейерной архитектурой. То есть имел классический RISC-дизайн. Процессор DEC выгодно отличала отлаженная работа всех его блоков. Так, при равной с другими «камнями» частоте EV4 показывал более высокую производительность. Внешняя шина процессора была 128-разрядной. Он имел 16 Кбайт кэш-памяти данных и инструкций и изготавливался с помощью технологии CMOS-4. Тактовая частота EV4 составляла 150 МГц или 200 МГц. Несколько позже появилась модификация под названием 21064A, которая могла работать на скоростях вплоть до 300 МГц, что обеспечило кристаллу звание самого быстрого процессора того времени. Основным применением EV4 стали серверы и рабочие станции.

Процессор Alpha 21064

Alpha 21064A оставался топовой моделью DEC до выхода следующего поколения процессоров - 21164 (EV5). Он обладал двумя целочисленными блоками и двумя модулями вычислений с плавающей запятой. В EV5 было уже три уровня кэш-памяти: два располагались непосредственно в процессоре, а третий был внешним. Кэш-память первого уровня была разделена на две части: кэш данных и кэш инструкций объемом 8 Кбайт каждый. Объем кэш-памяти второго уровня составлял 96 Кбайт. Тактовая частота процессора варьировалась от 266 МГц до 333 МГц. Alpha 21164 перенял пальму первенства у Alpha 21064A и был быстрейшим процессором до выхода Pentium Pro. Тем не менее, ответ DEC не заставил себя долго ждать - компания выпустила более производительный процессор Alpha 21164A, работающий на более высоких тактовых частотах (до 666 МГц). Процессор использовался в рабочих станциях и серверных компьютерах таких компаний, как Digital, Network Appliance и Cray Research.

Процессор Alpha 21264

В 1996 году было представлено следующее поколение процессоров DEC - Alpha 21264 (EV6). Чип получил несколько важных изменений по сравнению с предшествующими моделями. Например, он поддерживал внеочередное исполнение инструкций, что повлекло за собой полную реорганизацию ядра. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой выделены в модуль Fbox. Помимо самих блоков, эти юниты содержали еще и файлы регистров. Структура кэш-памяти опять стала двухуровневой - она пришла на смену трехуровневой организации кэша в Alpha 21164. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кбайт. Что касается кэш-памяти второго уровня, то ее объем мог составлять от 1 Мбайт до 16 Мбайт. Плюс процессор получил поддержку предсказания ветвлений. С течением времени выпускались все новые и новые версии процессоров Alpha 21264, в которых, прежде всего, наращивалась тактовая частота. Последней модификацией стал Alpha 21264E, который работал на частоте 1250 МГц.

Увы, но линейка процессоров Alpha 21264 стала последней в истории «независимой» DEC. В начале 1998 года DEC признали банкротом, и она была поглощена компанией Compaq.

Архитектура Intel P5

Процессоры с архитектурой RISC в своем большинстве заняли свою специализированную нишу, однако в настольных системах все равно продолжали использоваться кристаллы с архитектурой x86. Их развитие продолжалось, пусть и с некоторыми изменениями.

Несмотря на то, что Intel вышла на рынок RISC-процессоров со своими решениями i860 и i960, основную ставку в компании все же делали на x86-кристаллы. Следующим поколением «камней» стали всем известные Pentium на базе архитектуры P5, выпущенные в 1993 году.

Была проделана большая работа. Во-первых, P5 стала суперскалярной. Архитектура работала с помощью двух конвейеров, каждый из которых мог выполнять две операции за такт. Во-вторых, шина данных стала 64-битной, что позволило передавать вдвое больший объем данных за цикл. В-третьих, кэш-память данных и инструкций была разделена на два отдельных блока объемом 8 Кбайт каждый. Помимо этого, в процессор был добавлен блок предсказания ветвлений, а модуль вычислений с плавающей запятой стал более производительным.

Первые процессоры линейки Pentium работали на частотах 60 МГц или 66 МГц. При этом для их работы требовалось напряжение 5 В, поэтому они сильно грелись. Также первые «пни» прославились неправильной работой блока вычислений с плавающей запятой, который в некоторых случаях при выполнении деления чисел выдавал неверный результат. Поэтому вскоре Intel запустила в продажу процессоры с исправленной архитектурой P54C.

Процессор Intel Pentium

P54C стала своего рода работой над ошибками. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Сами кристаллы теперь работали с напряжением 3,3 В, что позволило решить проблему с перегревом. Что касается изменений на уровне архитектуры, то в P54C был добавлен полуторный множитель - отныне процессоры работали на более высокой частоте, чем системная шина. Скорость работы процессоров составляла 75 МГц, 90 МГц или 100 МГц. Также P54C устанавливались в разъемы Socket 5 или Socket 7. В отличие от P5, которые поддерживали только Socket 4. Сама архитектура P54C еще раз получила обновление в 1995 году, когда была переведена на 350-нм техпроцесс. Это позволило вновь снизить энергопотребление кристаллов, а также увеличить их тактовую частоту до 200 МГц.

сокращенным набором команд ) родился в результате практических исследований частоты использования команд программистами, проведенных в 70-х годах в США и Англии. Их непосредственный итог - известное "правило 80/20": в 80% кода типичной прикладной программы используется лишь 20% простейших машинных команд из всего доступного набора.

Первый "настоящий" RISC - процессор с 31 командой был создан под руководством Дэвида Паттерсона из Университета Беркли, затем последовал процессор с набором из 39 команд. Они включали в себя 20-50 тыс. транзисторов. Плодами трудов Паттерсона воспользовалась компания Sun Microsystems, разработавшая архитектуру SPARC с 75 командами в конце 70-х годов. В 1981 г. в Станфордском университете стартовал проект MIPS по выпуску RISC -процессора с 39 командами. В итоге была основана корпорация Mips Computer в середине 80-х годов и сконструирован следующий процессор уже с 74 командами.

По данным независимой компании IDC , в 1992 году архитектура SPARC занимала 56% рынка, далее следовали MIPS - 15% и PA-RISC - 12,2%

Примерно в то же время Intel разработала серию 80386, последних "истинных" CISC-процессоров в семействе IA-32 . В последний раз повышение производительности было достигнуто только за счет усложнения архитектуры процессора: из 16-разрядной она превратилась в 32-разрядную, дополнительные аппаратные компоненты поддерживали виртуальную память , и добавился целый ряд новых команд.

Основные особенности RISC -процессоров:

  1. Сокращенный набор команд (от 80 до 150 команд).
  2. Большинство команд выполняется за 1 такт.
  3. Большое количество регистров общего назначения.
  4. Наличие жестких многоступенчатых конвейеров.
  5. Все команды имеют простой формат, и используются немногие способы адресации.
  6. Наличие вместительной раздельной кэш-памяти.
  7. Применение оптимизирующих компиляторов, которые анализируют исходный код и частично меняют порядок следования команд.

RISC-процессоры 3-го поколения

Самыми крупными разработчиками RISC -процессоров считаются Sun Microsystems ( архитектура SPARC - Ultra SPARC ), IBM (многокристальные процессоры Power , однокристальные PowerPC - PowerPC 620), Digital Equipment ( Alpha - Alpha 21164), Mips Technologies (семейство Rxx00 -- R 10000), а также Hewlett-Packard ( архитектура PA-RISC - PA-8000).

Все RISC -процессоры третьего поколения:

  • являются 64-х разрядными и суперскалярными (запускаются не менее 4-х команд за такт);
  • имеют встроенные конвейерные блоки арифметики с плавающей точкой;
  • имеют многоуровневую кэш-память. Большинство RISC-процессоров кэшируют предварительно дешифрованные команды;
  • изготавливаются по КМОП-технологии с 4 слоями металлизации.

Для обработки данных применяется алгоритм динамического прогнозирования ветвлений и метод переназначения регистров, что позволяет реализовать внеочередное выполнение команд.

Повышение производительности RISC -процессоров достигается за счет повышения тактовой частоты и усложнения схемы кристалла. Представителями первого направления являются процессоры Alpha фирмы DEC , наиболее сложными остаются процессоры компании Hewlett-Packard. Рассмотрим процессоры этих фирм более подробно.

Структура процессоров Alpha: 21064, 21264

Структура процессора Alpha 21064 представлена на рис. 10.1 .


Рис. 10.1.

Основные функциональные блоки процессора Alpha 21064:

  • I-cache - кэш команд.
  • IRF - регистровый файл целочисленной арифметики.
  • F-box - устройство арифметики с плавающей точкой.
  • E-box - устройство целочисленной арифметики (7 ступеней конвейера ).
  • I-box - командное устройство (управляет кэш команд, выборкой и дешифрацией команд).
  • A-box - устройство управления загрузкой/сохранением данных. Управляет процессом обмена данными м/у IRF, FRF , кэш данных и внешней памятью.
  • Write Buffer - буфер обратной записи.
  • D-cache - КЭШ данных.
  • BIU - интерфейсный блок, с помощью которого подключаются внешняя кэшпамять, размером 128 Кб-8 Мб.

Сравнительные характеристики Alpha 21164 и 21264

Процессор Alpha 21264 отличается значительной новизной по сравнению с предшественником 21164. Он обладает кэш-памятью первого уровня большего объема, дополнительными функциональными блоками, более эффективными средствами предсказания ветвлений, новыми инструкциями обработки видеоданных и широкой шиной.

Alpha 21264 читает до четырех инструкций за один такт и может одновременно исполнять до шести инструкций. Самое большое его отличие от модели 21164 - это способность выполнять команды (впервые для Alpha) с изменением их очередности (Out-of-Order).

Эффективность выполнения Out-of-Order определяется количеством инструкций, которыми может манипулировать ЦП в целях определения оптимального порядка выполнения команд. Чем больше инструкций ЦП может для этого использовать, тем лучше, тем дальше он может заглядывать вперед. Процессоры Intel класса Р6 ( Pentium Pro , Pentium II, Xeon) могут одновременно обращаться не менее чем с 40 командами. У других процессоров данный показатель значительно больше: PA-8000 фирмы HP оперирует 56 командами, а процессор Alpha справляется с 80 командами.

Как и большинство RISC-процессоров, Alpha содержит набор из 32 целочисленных и 32 регистров с плавающей запятой, все они имеют разрядность 64 бита. Для повышения эффективности внеочередного выполнения команд процессор 21264 дополнительно к обычному набору регистров снабжен еще 48 целочисленными регистрами и 40 регистрами с плавающей запятой.

Каждый регистр может временно хранить значения текущих команд. Если обрабатывается какая-либо инструкция, нет необходимости перегружать результат в целевой регистр - вместо этого ЦП просто переименовывает временный регистр ( Register Renaming ).

Подобное переименование регистров есть и в других процессорах. Однако в 21264 реализована уникальная "хитрость" - он имеет задублированный набор целочисленных регистров, каждый из 80 целочисленных регистров дублируется еще раз. Таким образом, на чипе в целом - 160 целочисленных регистров. Это одна из причин, почему, несмотря на сложность выполнения Out-of-Order, допустима высокая частота процессора 21264.

Блоки целочисленных операций в обеих группах идентичны не полностью. Одна из них содержит блок умножения, а вторая - специальную логику для обработки движущихся изображений (MPEG). Для этого набор команд Alpha был дополнен пятью новыми командами. Самая интересная из них - PERR - служит для оценки движения, т.е. выполнения задачи, возникающей как при сжатии, так и декомпрессии MPEG. Команда PERR выполняет работу девяти обычных инструкций. Таким образом, процессор 21264 может декодировать видеопоследовательности MPEG-2, а также DVD-аудиоданные AC-3 в режиме реального времени без использования дополнительных периферийных устройств.

Сравнение CISC и
RISC архетиктур
процессоров

CISC
Исторически первые микропроцессоры, появившиеся в
70­х годах XX века, имели относительно простую
систему команд, что объяснялось небольшими
возможностями интегральной схемотехники. По мере
увеличения степени интеграции ИМС разработчики
МП старались расширять систему команд и делать
команды более функциональными, «семантически
нагруженными».

CISC
Это объяснялось, в частности, двумя моментами – во­
первых, требованиями экономить память для
размещения программ, оставлять больше памяти под
данные и т.д., а во­вторых – возможностью
реализовать внутри кристалла процессора сложные
инструкции быстрее, чем при их программной
реализации. В результате появились процессоры с
большими наборами команд, причем команды эти
также зачастую являлись достаточно сложными. В
последствии эти МП назвали CISC.

CISC
CISC (Complex instruction set computing, или. complex instruction set
computer - компьютер с полным набором команд) - концепция
проектирования процессоров, которая характеризуется следующим
набором свойств:
● нефиксированное значение длины команды;
● арифметические действия кодируются в одной команде;
● небольшое число регистров, каждый из которых выполняет строго
определённую функцию.

Недостатки CISC
Наряду с отмеченными преимуществами процессоры CISC
обладали и рядом недостатков, в частности – команды
оказывались сильно неравнозначными по времени
выполнения (разное количество тактов), плохо
конвейеризовывались, требовали сложного (и длительного)
декодирования и выполнения. Для повышения
производительности стали использовать жесткую логику
управления, что отразилось на регулярности и сложности
кристаллов (нерегулярные кристаллы менее технологичны
при изготовлении). На кристалле оставалось мало места
для РОН и КЭШ.

История CISC
Типичными представителями являются
большинство процессоров семейства x86.
Например:
Intel 8008, Intel 80286, Motorola 68k

Что такое RISC?
RISC (Reduced Instruction Set Computer) – архитектура
процессора с сокращённым набором инструкций.
Начало исследований в данной области положено
компанией IBM в 1975 году. Правда фактически, RISC
подобная архитектура была создана Сеймуром Крэйем
в 1964 году и опробована в суперкомпьютере CDC
6600.

«Сокращённый набор команд» вовсе не означает, что
процессор имеет малое количество инструкций. Это
значит лишь то, что инструкции разделены на
действия, результаты которых могут быть вычислены
за определённый период времени (обычно один такт).

Особенности RISC
1. Любая операция должна выполняться за один такт, вне
зависимости от ее типа.
2. Система команд должна содержать минимальное количество
наиболее часто используемых простейших инструкций
одинаковой длины.
3. Операции обработки данных реализуются только в формате
"регистр­регистр" (операнды выбираются из оперативных
регистров процессора, и результат операции записывается
также в регистр; а обмен между оперативными регистрами и
памятью выполняется только с помощью команд чтения/записи).
4. Состав системы команд должен быть "удобен" для компиляции
операторов языков высокого уровня.

RISC
Новая архитектура была создана для устранения
недостатков CISC архитектуры, но не получила
популярности в то время из­за унификации стандарта
Intelx86 и всех программ выпущенных в то время под
CISC процессоры (точнее нежелания их переписывать
заново, ведь этот процесс ­ затратный).

RISC
Вычислительным ядрам больше не нужно было
обращаться к более медленной ОЗУ для занесения и
считывания результатов. Эти цели теперь выполняют
регистры общего назначения, а к оперативной памяти
обращение идёт только в процессе чтения начальных
данных и вывода результатов вычислений.
Поддерживается маршрут «регистр­регистр».

RISC
Основной проблемой по
реализации RISC архитектуры
являлась недостаточная
поддержка со стороны софта и
программного обеспечения. Но с
появлением поддержки UNIX
Linux подобных систем, эта
проблема практически решилась.

RISC
Самыми известными и успешными представителями
архитектуры RISC являются ARM от разработчика
ARM Holdings. Процессоры с данной архитектурой,
применяемые в абсолютном большинстве мобильных
устройств и даже серверных системах, благодаря
очень низкому энергопотреблению и тепловыделению.

RISC
На данный момент, RISC – архитектура является одной
самых распространённых в мире, имея более 40%
мирового рынка. Данный результат в основном
благодаря ARM архитектуре и то, что в современных
мобильных устройствах используются именно
процессоры ARM (в абсолютном большинстве).

RISC
CDC 6600 ­ прародитель идеи
RISC процессоров на которых
сейчас работает большинство
электроники: от холодильников
до iPhone.

Сравнение CISC и RISC
Появление полноценной RISC архитектуры на
процессорах, позволило упростить конструкцию
вычислительных ядер; уменьшить стоимость, площадь
и при этом увеличить количество регистров общего
назначения; унифицировать команды для
вычислительных ядер и сравнять время выполнения
всех команд, что также позволило воплотить в жизнь
конвейерную обработку инструкций (реализация
сложных инструкций из результатов более простых).

Сравнение CISC и RISC
Начиная с Intel 486DX все x86 процессоры имеют
внутреннее ядро RISC, остался только
преобразователь и дополнительные конвейеры,
который на входе преобразует CISC инструкции в
RISC, а на выходе обратно в CISC. Это необходимо из­
за особенностей архитектуры х86, но иногда тормозит
работу процессора и увеличивается количество
транзисторов, площадь и тепловыделение в сравнении
с полноценными RISC процессорами.