Что такое GSM?  Стандарты сотовой связи: GSM.

06.07.2019

Все мы пользуемся мобильными телефонами, но при этом редко кто задумывается - как же они работают? В данной статье мы постараемся разобраться, как, собственно, реализуется связь относительно вашего мобильного оператора.

Когда вы осуществляете звонок своему собеседнику, или кто-то звонит вам, ваш телефон соединяется по радиоканалу с одной из антенн соседней базовой станции (БС, BS, Base Station) .Каждая базовая станция сотовой связи (в простонародье - вышки сотовой связи) включает в себя от одной до двенадцати приемо-передающих антенн , имеющих направления в разные стороны с целью обеспечения качественной связью абонентов в радиусе своего действия. Такие антенны специалисты на своем жаргоне называют «секторами» , представляющими собой серые прямоугольные конструкции, которые вы можете практически каждый день видеть на крышах зданий или специальных мачтах.


Сигнал от такой антенны поступает по кабелю прямо в управляющий блок базовой станции. Базовая станция является совокупностью секторов и управляющего блока. При этом определенную часть населенного пункта или территории обслуживают сразу несколько базовых станций, подключенных к специальному блоку - контроллеру локальной зоны (сокращенно LAC, Local Area Controller или просто «контроллер»). Как правило, один контроллер объединяет до 15 базовых станций определенного района.

Со своей стороны, контроллеры (их также может быть несколько) соединены с самым главным блоком - Центром управления мобильными услугами (MSC, Mobile services Switching Center) , который для упрощения восприятия принято называть просто «коммутатором» . Коммутатор, в свою очередь, осуществляет вход и выход на любые линии связи - как сотовой, так и проводной.

Если отобразить написанное в виде схемы, то получится следующее:
GSM-сети небольшого масштаба (как правило, региональные) могут использовать всего один коммутатор. Крупные же, такие как наши операторы «большой тройки» МТС, Билайн или МегаФон, обслущивающие одновременно миллионы абонентов, используют сразу несколько объединенный между собой устройств MSC.

Давайте разберемся, зачем нужна столь сложная система и почему нельзя подключить антенны базовых станций к коммутатору напрямую? Для этого нужно рассказать про еще один термин, называемый на техническом языке handover (хэндовер) . Он характеризует собой передачу обслуживания в мобильных сетях по эстафетному принципу. Иными словами, когда вы перемещаетесь по улице пешком или в транспортном средстве и говорите при этом по телефону, то, чтобы ваш разговор при этом не прерывался, следует своевременно переключать ваш аппарат из одного сектора БС в другой, из зоны действия одной базовой станции или контроллера локальной зоны в другую и т.д. Следовательно, если бы сектора базовых станций подключались к коммутатору напрямую, ему бы пришлось самому осуществлять данную процедуру хендовера всех своих абонентов, а у коммутатора и без того хватает задач. Поэтому для уменьшения вероятности отказов оборудования, связанных с его перегрузками, схема построения сотовых сетей GSM реализуется по многоуровнему принципу.

В итоге, если вы со своим телефоном перемещаетесь из зоны обслуживания одного сектора БС в зону действия другого, то данное перемещение осуществляет блок управления данной базовой станции, не касаясь при это более «высокостоящих» устройств - LAC и MSC. Если же хэндовер происходит между разными БС, то за него берется уже LAC и т. д.

Коммутатор - ни что иное, как основной «мозг» сетей GSM, поэтому его работу следует рассмотреть более детально. Коммутатор сотовой сети берет на себя примерно те же задачи, что и АТС в сетях проводных операторов. Именно он понимает, куда вы осуществляете звонок или кто звонит вам, регулирует работу дополнительных услуг и, собственно, решает - можете ли вы в настоящее время осуществить свой звонок или нет.

Теперь давайте разберемся, что же происходит, когда вы включаете свой телефон или смартфон?

Итак, вы нажали «волшебную кнопку» и ваш телефон включился. На SIM-карте вашего сотового оператора находится специальный номер, который носит название IMSI - International Subscriber Identification Number (Международный опознавательный номер абонента) . Он является уникальным номером для кажой SIM-карты не только у вашего оператора МТС, Билайн, МегаФон и т.п., а уникальным номером для всех мобильных сетей в мире! Именно по нему операторы отличают абонентов между собой.

В момент включения телефона ваш аппарат посылает данный код IMSI на базовую станцию, которая передает его далее на LAC, он же, в свою очередь, отсылает его на коммутатор. При этом в нашу игру вступают два дополнительных устройства, свзанных непосредственно с коммутатором - HLR (Home Location Register) и VLR (Visitor Location Register) . В переводе на русский это, соответственно, Регистр домашних абонентов и Регистр гостевых абонентов . HLR хранит в себе IMSI всех абонентов своей сети. В VLR же содержится информация о тех абонентах, которые пользуются сетью данного оператора в настоящее время.

Номер IMSI передается в HLR с помощью системы шифрования (за этот процесс отвечает еще одно устройство AuC - Центр аутентификации) . HLR при этом проверяет, существует ли в его базе абонент с данным номером, и если факт его наличия подтверждается, система смотрит, может ли он в настоящее время пользоваться услугами связи или, скажем, имеет финансовую блокировку. Если все нормально, то данный абонент отправляется в VLR и после этого получает возможность звонить и пользоваться другими услугами связи.

Для наглядности отобразим данную процедуру с помощью схемы:

Таким образом, мы коротко описали принцип работы сотовых сетей GSM. На самом деле, это описание достаточно поверхностно, т.к. если углубиться в технические детали подробнее, то материал бы получился во много раз объемнее и гораздо менее понятным для большинства читателей.

Во второй части мы продолжим знакомство с работой сетей GSM и рассмотрим, как и за что оператор списывает средства с нашего с вами счета.

Прежде чем разобраться в том, как работает GSM, важно понять, что такое GSM.

GSM – международный цифровой стандарт планетарного значения, название которого произошло от словосочетания «Groupe Spécial Mobile».

Этот стандарт предназначен для мобильной сотовой связи с разделением каналов. Каналы разделяются по принципу TDMA. Разработан стандарт институтом стандартизации электросвязи ещё в конце восьмидесятых годов прошлого века.

Самая первая подобная система была создана в далёком 1946 году в Соединённых Штатах Америки. Глобальное внедрение мобильной связи началось только в 1979 году.

Стандартизация

Перед стартом GSM, в самом начале восьмидесятых годов прошлого века на европейской территории работали 24 аналоговые сети. Они не были совместимы между собой, поэтому приобрёл актуальность вопрос о создании единого стандарта. Потребность в решении этой проблемы послужила поводом создания группы GSM(Group Special Mobile). В эту группу вошли представители 24 стран Европы. Система компании Mannesmann была избрана в качестве цифрового стандарта, а внедрена эта система была в 1991 году в Германии.

Под аббревиатурой GSM сегодня скрывается уже несколько иное словосочетание - Global System for Mobile. Сам стандарт GSM или его версии успешно работают в 80 странах мира.

Как работает GSM

Для того, чтобы осуществить данный вид связи на определённой территории, применяются следующие действия:

  • Установка приёмо-передающих станций стационарного типа. Каждая из станций действует на относительно небольших территориях площадью в несколько километров.
  • Станции располагаются таким образом, чтобы перекрывать друг друга. Это даёт возможность сигналу абонента перемещаться из одной зоны в другую, причём связь не нарушится.

Для реализации этого вида связи, на практике соседствующие станции настроены на различные частоты. Таких частот обычно около трёх. Используя три разные частоты, станции, расположенные в виде треугольника, перекрывали зоны обслуживания.

Есть ещё и четвёртая станция, которая может использовать одну из частот снова. Это возможно, так как она граничит с двумя зонами. Таким образом, зона действия станции будет напоминать шестиугольник, имея вид пчелиной соты.

GSM – модули

Каждый слышал, но не все знают, что такое GSM –модуль. Между тем это очень полезное устройство, использующее принципы GSM. Если говорить конкретнее, то gsm-модуль – это устройство, помогающее производить мониторинг местонахождения вашего автомобиля. Это устройство работает в связке с сигнализацией или мобильным телефоном. Вы можете также, в случае необходимости, блокировать двигатель.

С помощью этого модуля идентифицируется абонент мобильной связи. Об этом вы узнали, когда читали о том, что такое сеть GSM.

Преимущества и недостатки стандарта GSM

Преимущества стандарта GSM:

  • Меньшие в сравнении с аналоговыми стандартами размеры и вес аппаратов. При этом время работы без подзарядки заметно больше.
  • Качество связи на очень высоком уровне.
  • Низкий уровень помех на заданных частотах.
  • Защита от подслушивания. Также за счёт алгоритмов шифрования связь защищена от нелегального использования.
  • Обширные территории распространения.
  • Возможность использования роуминга. Роуминг – это возможность перемещаться из одной сети в другую, не теряя при этом своего номера

Недостатки стандарта GSM:

  • Ввиду цифровой обработки речи, речь может быть несколько искажена.
  • Расстояние, покрытое сетью, не слишком большое. Оно составляет лишь 120 километров.

Таким образом, пока что gsm остается развивающейся технологией, но, тем не менее, ее значение в мире невозможно переоценить. Ведь мы пользуемся ей каждый день.

В комментариях к постам про сеть WiMAX ( , ) и про GPRS был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети - сеть радиодоступа (RAN - Radio Access Network) и сеть коммутации или опорную сеть (CN - Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Сеть радиодоступа

Существующие сети радиодоступа у наших операторов - продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN - GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN - UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа - оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа - эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть

Опорная сеть - ядро сетей сотовой связи. Название опорная - мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS - Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже - её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части - верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах - проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи:)

HLR - Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько - они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки - в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири - 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
- может ли абонент совершать исходящие звонки
- может ли абонент отправлять/принимать SMS
- разрешена ли услуга конференц-связи
- ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC/VLR

MSC - Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR - Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.

MSC - классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции - для исходящего вызова - определить куда переключить вызов, для входящего же соединения - определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR - MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC - AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте - на радиоинтерфейсе.

GMSC - Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN - Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN - Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC - Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями - назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга - через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC - TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS - Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути - довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки - это не есть базовая станция:) Базовая станция похожа на холодильник - шкафчик с модулями, который стоит в специальном месте. Это специальное место - например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.

Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

GSM (Global System Mobile) — глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

GSM обеспечивает поддержку услуг:

  • Передачи данных GPRS
  • Передача речи
  • Передача коротких сообщений SMS
  • Передача факса

Кроме того, существуют дополнительные услуги:

  • Определение номера
  • Переадресация вызова
  • Ожидание и удержание вызова
  • Конференц-связь
  • Голосовая почта

Архитектура сети GSM

Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

Сеть GSM делится на две системы: SS (Switching System) — коммутационная подсистема, BSS (Base Station System) — система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

SS включает в себя:

  • MSC (Mobile Switching Center) — узел коммутации сети GSM
  • GMSC (Gate MSC) — коммутатор, который обрабатывает вызовы от внешних сетей
  • HLR (Home Location Register) — база данных домашних абонентов
  • VLR (Visitor Location Register) — база данных гостевых абонентов
  • AUC (Authentication Cetner) — центр аутентификации (проверки подлинности абонента)

BSS включает в себя:

  • BSC (Base Station Controller) — контроллер базовых станций
  • BTS (Base Transeiver Station) — приемо-передающая станция
  • MS (Mobile Station) — мобильная станция

Состав коммутационной подсистемы SS

MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
Хранящаяся информация в HLR включает в себя:

  • Идентификаторы (номера) абонента.
  • Дополнительные услуги, закрепленные за абонентом
  • Информацию о местоположении абонента, с точностью до номера MSC/VLR
  • Аутентификационную информацию абонента (триплеты)

HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC — центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

Состав подсистемы базовых станций BSS

BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

Географическое построение сетей GSM

Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

Частотный план GSM

GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

  • P-GSM900 890-915/935-960 MHz
  • E-GSM900 880-915/925-960 MHz
  • R-GSM900 890-925/935-970 MHz
  • R-GSM1800 1710-1785/1805-1880 MHz

В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.

Впервые акроним GSM был использован в 1982 г. и означал Groupe Speciale Mobile – французское название рабочей группы CEPT (Сonference des administrations Europennes des Postes et Telecommunications – Европейская администрация почты и электросвязи).

Перед рабочей группой CEPT стояла задача разработки спецификаций нового цифрового стандарта мобильной связи в диапазоне 900 МГц. Со временем (1989 г.) эти работы из CEPT перешли в новую организацию ETSI.

Днем рождения GSM считается 01.07.1991 г. – в г. Хельсинки (Финляндия) был сделан первый телефонный вызов в этой системе.

Значение акронима GSM изменилось и стало означать Global System for Mobile Communications.

«GSM Казахстан» - оператор сотовой связи стандарта GSM 900, предоставляющий услуги под брендами «Activ» и «Kcell». Основан 30.09.1998 г. Акционеры «GSM Казахстан» - национальный оператор связи АО «Казахтелеком» и финcко-шведо-турецкая компания «FinTur».

Первым среди операторов Казахстана осуществил коммерческий запуск услуги «Мобильное видео», услуг на основе GPRS (MMS, WAP, Мобильный Интернет).

Сети систем радиосвязи в технической литературе называются сетями подвижной, мобильной и сотовой связи. Все названия используются как синонимы, однако в этом вопросе намечаются некоторые расхождения.

Беспроводные технологии активно осваивают рынок ноутбуков и ПК, пользователям которых необходима высокая скорость передачи при ограниченной мобильности как в скорости передвижения и так и в непрерывности связи.

Исходя из этого, мобильным можно назвать все, что можно перенести и через что можно войти в сеть связи в любом месте.

Подвижной сетью можно назвать традиционную сотовую связь.

Термин сотовая (cellular) означает разделение сети на ячейки – соты (географических участков). Каждой соте назначается частотный диапазон, который можно использовать и в других сотах.

В каждой соте имеется базовая станция, которая содержит радиопередающее и радиопринимающее оборудование и обеспечивает радиосвязь с мобильными телефонами, оказавшимися территориально в этой соте.

Рисунок 18. Соты в системе мобильной (подвижной) связи

Зона охвата соты зависит от ряда факторов:

мощности передатчика базовой станции;

мощности мобильного телефона;

высоты антенны базовой станции;

топологии местности.

Размеры сот варьируются и потому, каждая сота может обслуживать только ограниченное количество сотовых телефонов, которые называются мобильными терминалами, мобильным оборудованием МЕ, мобильными станциями MS.



Количество мобильных терминалов составляет 600 – 800. Соты становятся меньше в зонах с более высокой плотностью населения. Охват соты лежит в пределах от 100 м до десятков километров.

Выбор шестиугольной формы соты объясняется следующим.

Квадратная сота (соответствующая кварталам города) со стороной будет иметь четыре граничащие с ней стороны на расстоянии от ее центра до центров этих четырех ячеек.

Центры каждой из четырех ячеек, граничащих с ячейкой, будут располагаться от центра рассматриваемой ячейки на расстоянии .

Такая конфигурация создает проблемы при переключении на новую антенну абонента при его движении от центра ячейки.

Для эффективного переключения желательно, чтобы центры всех ячеек были на одинаковом расстоянии друг от друга. Это достигается при шестиугольной конфигурации.

При шестиугольной конфигурации ячейки расстояния между центрами ячеек будет равно . Антенны базовой станции BS будут находиться на одинаковом расстоянии друг от друга вне зависимости от направления перемещения мобльного абонента.

Рассматривая архитектуру и функциональные возможности сети GSM, будем иметь в виду, что именно GSM является фундаментом ряда более совершенных технологий поколения 2,5G, GPRS.

Сеть GSM состоит из следующих основных конструктивных блоков:

1. Приемопередающая BS;

2. Контроллер BS;

3. Блок перекодировки и аддаптации скорости передачи TRAU (Transcoding and Rate Adaptation Unit).

4. Центр коммутации MSC.

5. Домашний регистр HLR (Home Location Register) – сетевая база данных, в которой хранятся справочные данные об абонентах, постоянно зарегистрированных в зоне, которую контролирует HLR (адреса, информация об услугах).

6. Гостевой регистр VLR (Visitor Location Register) – сетевая база данных, в которой хранится информация о перемещениях абонентов. Накопленная информация хранится до тех пор, пока абонент находится в зоне, контролируемой MSC.

7. Регистр идентификации оборудования EIR (Equipment Identity Register).

8. Центр аутентификации AuC (Authentication Center).

Рисунок 18. Архитектура системы GSM 2G

С целью изучения удобно рассмотреть технологию GSM-900, так как эта технология после незначительной модификации используется в GSM-1800 и GSM-1900. GSM-1900 в США используется также под названием PSC-1900 (Personal Communication Services). GSM-1800 отличается от GSM-900 меньшей мощностью базовых станций BS, мобильных терминалов MS и меньшим размером сот.

Рассмотрим принцип работы технологии GSM (рисунок 18).

Мобильный терминал MS (mobile station) связывается через радиоинтерфейс с базовой приемоперадающей станцией BTS (Base Transceiver Station).

MS состоит из двух частей: самой трубки, т.е. мобильным оборудованием (терминалом) ME (Mobile Equipment) и SIM-карты (Subscriber Identity Module).

SIM-карта – это микроконтроллер, размещенный в небольшом куске пластика, хранящий программу работы с сетью GSM и информацию об абоненте и операторе связи.

Станция BTS соеденены с контролером базовой станции BSC (Base Station Controller), который обеспечивает ряд функций, связанных:

с управлением радиоресурсом RR (Radio Resource);

с поддержкой мобильности MM (Mobile Management) в зоне охвата станций BTS;

ряд функций эксплуатационного управления всей радиосетью.

Станции BTS и контроллеры базовой станции BSC образуют подсистему базовой станции BSS (Base Station Subsystem). BSS обеспечивает радиодоступ для мобильного терминала ME.

Остальные сетевые элементы отвечают за функции управления и за базы данных, необходимые для установления соединения в сети GSM, например, шифрование, аутентификацию и роуминг.

Контроллер базовых станций BSC – это сетевой элемент, являющийся ядром подсистемы радиосети (BSS) сотовой связи стандарта GSM.

SIM-карта (Subscriber Identity Module) – это модуль идентификации абонента, пластиковая карта, вставляемая в мобильный терминал МЕ и обеспечивающий возможность санкционированного доступа в сеть мобильной (сотовой) связи.

Микрочип SIM-карты имеет размеры 85,5×54×0,76 мм, универсален для разных мобильных устройств. Защищена специальным паролем или персональным идентификационным номером, содержит уникальный международный идентификатор абонента IMSI (International Mobile Subscriber Identity).

Несколько BS присоединены к контроллеру базовой станций BSC (Base Station Controller), который содержит логику управления каждой из этих станций.

Все BSC присоединены к центру коммутации подвижной связи МSC (Mobile Switching Center), который управляет установлением соединений к мобильным абонентам и от них.

Центр МSC представляет функциональные возможности стандартного коммутатора и, дополнительно, ряд специальных функций для мобильной связи.

К этим функциям, в частности, относится, функции хэндовера и роуминга.

Функция хэндовера (handover или handoff) заключается в перепоручении новой соте управления обслуживания вызова во время соединения мобильного абонента при перемещении из одной соты в другую.

Фактически хэндовер означает переключение абонента с одно радиоканала и (или) временного интервала на другой, без уведомления абонента об этом изменении.

Если интенсивность сигнала падает ниже заданного уровня (пользователь перемещается в другую соту или приближается к границе текущей соты), то проверяется, не принимает ли соседняя сота сигнал с более высоким уровнем.

При подтверждении этого обслуживание мобильного абонента переключается на эту соту.

В современных технологиях для этого используется метод MAHO (Mobile Assisted Handover), в котором мобильный терминал сам периодических измеряет уровень сигнала и качество сигналов, принятых как от обслуживающего BS, так и от соседних, и передает в сеть соответствующее сообщение.

От характера этого сообщения зависит принятие решения: нужно ли производить хэндовер или нет.

При технологии подвижной связи абонент перемещается из соты в соту в пределах сети, а так же из одной сети в другую. Перемещение (местонахождение) необходимо отслеживать с определенной точностью, чтобы адресовать ему вызовы (сообщение).

Задача эта решается следующим образом.

1. Абонент первоначально включает свой мобильный терминал.

Устройство самостоятельно посылает регистрационное сообщение к местному центру MSC. В состав сообщения входит уникальный идентификатор абонента.

В состав сообщения входит уникальный идентификатор абонента.

На основе его центр MSC может определить регистр HLR, которому принадлежит абонент и передать регистрационное сообщение в регистр HLR, чтобы информировать его о том, какой центр MSC в данное время обслуживает абонента.

2. Регистр HLR – передает сообщение отмены регистрации в тот центр MSC, который до этого обслуживал этого абонента (если таковой имеется), и посылает подтверждение в новый обслуживающий центр MSC.

В каждой трубке хранятся 15 цифр идентификатора IMEI (International Mobile Equipment Identity) – уникальный международный идентификатор мобильного терминала или 16 цифр IMEISV (International Mobile Equipment Identity and Software Version Number) – уникальный международный идентификатор мобильного терминала и номер версии программного обеспечения (ПО).

Чтобы узнать IMEI своего мобильного телефона, введите комбинацию «*#06#». Полезно записать этот номер на тот случай, если мобильный телефон будет похищен.

В регистре EIR хранятся три списка – черный, серый и белый.

В черном списке может находиться и полный номер IMEI и номер IMEISV. Если полный номер IMEI появляются в черном списке, значит вызовы с этого мобильного терминала запрещены.

Если эти значения появляются в сером списке, то вызовы могут быть разрешены. Но могут быть и запрещены по усмотрению Оператора.

Когда эти значения появляются в белом списке, вызовы разрешены.

В белом списке содержатся все серии идентификационных номеров оборудования для различных стран.

В черном списке содержатся идентификационные номера мобильных аппаратов, запрещенных к использованию в данной сети.

В сером списке содержится информация о дефектном или нелицензированном (несертификацированном) оборудовании.

Аутентификация (англ. authentication) – проверка принадлежности субъекту доступа предъявленного им идентификатора.

Аутентификацию не следует путать с идентификацией и авторизацией.