Что такое интегральная схема. Классификация интегральных схем

28.03.2019

Корпоративные базы данных экономических информационных систем

3. Оперативная аналитическая обработка (On-Line Analytical Processing, OLAP)

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 г. Эдгаром Коддом и имеет следующие требования к приложениям для многомерного анализа :

многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий (ключевое требование OLAP);

предоставление пользователю результатов анализа за приемлемое время (обычно не более 5 с), ценой менее детального анализа;

возможность осуществления любого логического и статистического анализа, характерного для данного приложения, и его сохранения в доступном для конечного пользователя виде;

многопользовательский доступ к данным с поддержкой соответствующих механизмов блокировок и средств авторизованного доступа;

возможность обращаться к любой нужной информации независимо от ее объема.

OLAP-система состоит из множества компонентов. На самом высоком уровне представления система включает в себя источник данных, многомерную базу данных (МБД), предоставляющая возможность реализации механизма составления отчетов на основе технологии OLAP, OLAP-сервер и клиента. Система построена по принципу клиент-сервер и обеспечивает удаленный и многопользовательский доступ к серверу МБД.

Рассмотрим составные части OLAP-системы.

Источники. Источником в OLAP-системах является сервер, поставляющий данные для анализа. В зависимости от области использования OLAP-продукта источником может служить хранилище данных, наследуемая база данных, содержащая общие данные, набор таблиц, объединяющих финансовые данные или любая комбинация перечисленного.

Хранилище данных. Исходные данные собираются и помещаются в хранилище, спроектированное в соответствии с принципами построения хранилищ данных. ХД представляет из себя реляционную базу данных (РБД). Основная таблица ХД (таблица фактов) содержит числовые значения показателей, по которым собирается статистическая информация.

Многомерная база данных. Хранилище данных служит поставщиком информации для многомерной базы данных, которая является набором объектов. Основными классами этих объектов являются измерения и показатели. К измерениям относятся множества значений (параметров), по которым происходит индексация данных, например, время, регионы, тип учреждения и пр. Каждое измерение заполняется значениями из соответствующих таблиц измерений хранилища данных. Совокупность измерений определяет пространство исследуемого процесса. Под показателями понимаются многомерные кубы данных (гиперкубы). В гиперкубе содержатся сами данные, а также агрегатные суммы по измерениям, входящим в состав показателя. Показатели составляют основное содержание МБД и заполняются в соответствии с таблицей фактов. Вдоль каждой оси гиперкуба данные могут быть организованы в виде иерархии, представляющей различные уровни их детализации. Это позволяет создавать иерархические измерения, по которым при последующем анализе данных будут осуществляться агрегирование или детализация представления данных. Типичным примером иерархического измерения служит список территориальных объектов сгруппированных по районам, областям, округам.

Сервер. Прикладной частью OLAP-системы является OLAP-сервер. Эта составляющая выполняет всю работу (в зависимости от модели системы), и хранит в себе всю информацию, к которой обеспечивается активный доступ. Архитектурой сервера управляют различные концепции. В частности, основной функциональной характеристикой OLAP-продуктов является использование МБД либо РБД для хранения данных.

Клиентское приложение. Данные, структурированные соответствующим образом и хранимые в МБД доступны для анализа с помощью клиентского приложения. Пользователь получает возможность удаленного доступа к данным, формулирования сложных запросов, генерации отчетов, получения произвольных подмножеств данных. Получение отчета сводится к выбору конкретных значений измерений и построению сечения гиперкуба. Сечение определяется выбранными значениями измерений. Данные по остальным измерениям суммируются.

Основными понятиями многомерной модели данных являются: гиперкуб данных (Data Hypercube), измерение (Dimension), метки (Memders), ячейка (Cell) и мера (Measure).

Гиперкуб данных содержит одно или более измерений и представляет собой упорядоченный набор ячеек. Каждая ячейка определяется одним и только одним набором значений измерений - меток. Ячейка может содержать данные - меру или быть пустой.

Измерением называется множество меток, образующих одну из граней гиперкуба. Примером временного измерения является список дней, месяцев, кварталов. Примером географического измерения может быть перечень территориальных объектов: населенных пунктов, районов, регионов, стран и т.д.

Для получения доступа к данным пользователю необходимо указать одну или несколько ячеек путем выбора значений измерений, которым соответствуют необходимые ячейки. Процесс выбора значений измерений называется фиксацией меток, а множества выбранных значений измерений - множеством фиксированных меток.

Преимущества применения серверных OLAP-средств по сравнению с клиентскими OLAP-средствами: в случае применения серверных средств вычисление и хранение агрегатных данных происходят на сервере, а клиентское приложение получает лишь результаты запросов к ним, что позволяет в общем случае снизить сетевой трафик, время выполнения запросов и требования к ресурсам, потребляемым клиентским приложением.

1. Многомерное представление данных - средства конечного пользователя, обеспечивающие многомерную визуализацию и манипулирование данными; слой многомерного представления абстрагирован от физической структуры данных и воспринимает данные как многомерные.

2. Многомерная обработка - средство (язык) формулирования многомерных запросов (традиционный реляционный язык SQL здесь оказывается непригодным) и процессор, умеющий обработать и выполнить такой запрос.

3. Многомерное хранение - средства физической организации данных, обеспечивающие эффективное выполнение многомерных запросов .

Первые два уровня в обязательном порядке присутствуют во всех OLAP-средствах. Третий уровень, хотя и является широко распространенным, не обязателен, так как данные для многомерного представления могут извлекаться и из обычных реляционных структур.

В любом хранилище данных - и в обычном, и в многомерном - наряду с детальными данными, извлекаемыми из оперативных систем, хранятся и агрегированные показатели (суммарные показатели), такие, как суммы объемов продаж по месяцам, по категориям товаров и т.д.

Основными недостатками являются увеличение объема хранимой информации (при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально) и времени на их загрузку.

Степень увеличения объема данных при вычислении агрегатов зависит от количества измерений куба и структуры этих измерений, т.е. соотношения количества "родителей" и "потомков" на разных уровнях измерения. Для решения проблемы хранения агрегатов применяются сложные схемы, позволяющие при вычислении далеко не всех возможных агрегатов достигать значительного повышения производительности выполнения запросов.

Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. В связи с этим в настоящее время применяются три способа хранения многомерных данных:

MOLAP (Multidimensional OLAP) - исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах позволяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений. Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные.

Эти системы обеспечивают полный цикл OLAP-обработки. Они либо включают в себя, помимо серверного компонента, собственный интегрированный клиентский интерфейс, либо используют для связи с пользователем внешние программы работы с электронными таблицами.

ROLAP (Relational OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных.

HOLAP (Hybrid OLAP) - исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных.

Некоторые OLAP-средства поддерживают хранение данных только в реляционных структурах, некоторые - только в многомерных. Однако большинство современных серверных OLAP-средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP-кубов.

OLAP-технологии как мощный инструмент обработки данных в реальном времени

Доктор Е.Ф. (Тэд) Кодди придумал фразу оперативной аналитической обработки (OLAP) в 1993 г....

Аналитическая обработка данных (OLAP). Информационное хранилище данных. Модели данных, используемые для построения информационных хранилищ

Основная задача для модели OLTP быстрая обработка запросов, поддержание целостности данных, мультидоступ к среде, её эффективность измеряется количеством транзакций в секунду...

Выбор и обоснование конфигурации персонального компьютера, ориентированного для работы со звуком на любительском уровне

Оперативная память (англ. Random Access Memory, память с произвольным доступом) - энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции...

Выбор и обоснование конфигурации персонального компьютера, ориентированного на выполнение определенного круга задач

Оператимвная паммять (англ. Random Access Memory, память с произвольным доступом; комп. жарг. Память, Оперативка) - энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды...

процессор планирование алгоритм В системах оперативной обработки в качестве основного критерия эффективности используется среднее время обслуживания заявок. Нетрудно видеть, что в случае, когда времена решения задач априори известны...

Исследование алгоритмов управления ресурсами однопроцессорных серверов при оперативной обработке задач (алгоритмы SPT и RR)

Алгоритм SPT используется, когда времена решения задач (процессов) известны. Для этого, перед непосредственным решением, он сначала производит сортировку задач в порядке возрастания...

Корпоративные базы данных экономических информационных систем

Технология комплексного многомерного анализа данных получила название OLAP (On-Line Analytical Processing). OLAP - это ключевой компонент организации хранилищ данных. Концепция OLAP была описана в 1993 г...

Перспективы развития ПК

Оперативная память (Random Access Memory, RAM) - это массив кристаллических ячеек, способных хранить данные. Оперативная память является очень важным элементом компьютера. В ней хранятся программы и данные, с которыми непосредственно работает ПК...

Проектирование ПК для калькуляции праздничных расходов

Особое значение в отношении компьютерных технологий и телекоммуникаций имеют режимы «онлайн» и «офлайн». Режим «онлайн» - неавтономный режим работы компьютера, постоянное соединение с Интернетом. Программные продукты...

Системные платы, виды и спецификация

Оперативная (основная) память (от англ. Random Access Memory - "память с произвольным доступом") - энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операций (рисунок 3)...

Современное мультимедийное оборудование компьютеров

Как известно, данные компьютер хранит в основном на специальном устройстве - жестком диске. И в процессе работы берет ее именно оттуда. А куда помещается информация потом? Понятно...

1.1.1 Программный продукт Skype Скайп (Skype) -программа позволяет общаться через сеть интернет со своими коллегами, друзьями, родственниками по всему миру...

Сравнительный анализ систем дистанционного обучения

1.2.2 Система Дистанционного Обучения Moodle СДО Moodle - это среда дистанционного обучения, предназначенная для создания и использования дистанционных курсов...

Технология OLAP

При построении информационной системы OLAP-функциональность может быть реализована как серверными, так и клиентскими OLAP-средствами...

Термин оперативная аналитическая обработка (On-Line Analytical Processing- OLAP) впервые был упомянут в докладе, подготовленном для корпорации Arbor Software Corp. в 1993 году , хотя определение этого термина, как и в случае с хранилищами данных, было сформулировано намного позже. Понятие, обозначенное этим термином, может быть определено как "интерактивный процесс создания, сопровождения, анализа данных и выдачи отчетов". Кроме того, обычно добавляют, что рассматриваемые данные должны восприниматься и обрабатываться таким образом, как если бы они хранились в многомерном массиве. Но прежде чем приступить к обсуждению собственно многомерного представления, рассмотрим соответствующие идеи в терминах традиционных таблиц SQL.

Первая особенность состоит в том, что при аналитической обработке непременно требуется некоторое агрегирование данных, обычно выполняемое сразу с помощью нескольких различных способов или, иными словами, в соответствии с многими различными критериями группирования. В сущности, одной из основных проблем аналитической обработки является то, что количество всевозможных способов группирования

очень скоро становится слишком большим. Тем не менее, пользователям необходимо рассмотреть все или почти все такие способы. Безусловно, теперь в стандарте SQL поддерживается подобное агрегирование, но любой конкретный запрос SQL вырабатывает в качестве своего результата только одну таблицу, а все строки в этой результирующей таблице имеют одинаковую форму и одну и ту же интерпретацию10 (по крайней мере, так

9 Приведем совет из книги по хранилищам данных : "[Откажитесь] от нормализации… По пытки нормализовать любую из таблиц в многомерной базе данных исключительно ради экономии дис кового пространства [именно так!] - напрасная трата времени… Таблицы размерности не должны быть нормализованы… Нормализованные таблицы размерности исключают возможность просмотра".

10 Если только эта таблица результатов не включает какие-либо неопределенные значения, или NULL-значения (см. главу 19, раздел 19.3, подраздел "Дополнительные сведения о предикатах"). На самом деле конструкции SQL: 1999, которые должны быть описаны в данном разделе, можно охаракте ризовать как "основанные на использовании" этого весьма не рекомендуемого средства SQL (?); в дей ствительности, они подчеркивают тот факт, что в своих различных проявлениях неопределенные значе ния могут иметь разный смысл, и поэтому позволяют представить в одной таблице много разных преди катов (как будет показано ниже).

было до появления стандарта SQL: 1999). Поэтому, чтобы реализовать п различных способов группирования, необходимо выполнить п отдельных запросов и создать в результате л отдельных таблиц. Например, рассмотрим приведенную ниже последовательность запросов, выполняемых в базе данных поставщиков и деталей.

1. Определить общее количество поставок.

2. Определить общее количество поставок по поставщикам.

3. Определить общее количество поставок по деталям.

4. Определить общее количество поставок по поставщикам и деталям.

(Безусловно, "общее" количество для данного поставщика и для данной детали - это просто фактическое количество для данного поставщика и данной детали. Пример был бы более реалистичным, если бы использовалась база данных по ставщиков, деталей и проектов. Но, чтобы не усложнять этот пример, мы все же остановились на обычной базе поставщиков и деталей.)

Теперь предположим, что есть только две детали, с номерами Р1 и Р2, а таблица поставок выглядит следующим образом.

Многомерные базы данных

До сих пор предполагалось, что данные OLAP хранятся в обычной базе данных, использующей язык SQL (не считая того, что иногда мы все же касались терминологии и концепции многомерных баз данных). Фактически мы, не указывая явно, описывали так называемую систему ROLAP (Relational OLAP- реляционная OLAP). Однако многие считают, что использование системы MOLAP (Multi-dimensional OLAP - многомерная OLAP) - более перспективный путь. В этом подразделе принципы построения систем MOLAP будут рассмотрены подробнее.

Система MOLAP обеспечивает ведение многомерных баз данных, в которых данные концептуально хранятся в ячейках многомерного массива.

Примечание. Хотя выше и было сказано о концептуальном способе организации хранения, в действительности физическая организация данных в MOLAP очень похожа на их логическую организацию.

Поддерживающая СУБД называется многомерной. В качестве простого примера можно привести трехмерный массив, представляющий, соответственно, товары, заказчиков и периоды времени. Значение каждой отдельной ячейки может представлять общий объем указанного товара, проданного заказчику в указанный период времени. Как отмечалось выше, перекрестные таблицы из предыдущего подраздела также могут считаться такими массивами.

Если имеется достаточно четкое понимание структуры совокупности данных, то могут быть известны и все связи между данными. Более того, переменные такой совокупности (не в смысле обычных языков программирования), грубо говоря, могут быть разделены на зависимые и независимые. В предыдущем примере товар, заказчик и период времени можно считать независимыми переменными, а количество - единственной зависимой переменной. В общем случае независимые переменные - это переменные, значения которых вместе определяют значения зависимых переменных (точно так же, как, если воспользоваться реляционной терминологией, потенциальный ключ является множеством

столбцов, значения которых определяют значения остальных столбцов). Следовательно, независимые переменные задают размерность массива, с помощью которого организуются данные, а также образуют схему адресации11 для данного массива. Значения зависимых переменных, которые представляют фактические данные, сохраняются в ячейках массива.

Примечание. Различие между значениями независимых, или размерных, переменных,

и значениями зависимых, или неразмерных, переменных, иногда характеризуют как различие между местонахождением и содержанием.

" Поэтому ячейки массива адресуются символически, а не с помощью числовых индексов, которые обычно применяются для работы с массивами.

К сожалению, приведенная выше характеристика многомерных баз данных слишком упрощена, поскольку большинство совокупностей данных изначально остаются не изученными в полной мере. По этой причине мы обычно стремимся, в первую очередь, проанализировать данные, чтобы лучше их понять. Часто недостаточное понимание может быть настолько существенным, что заранее невозможно определить, какие переменные являются независимыми, а какие зависимыми. Тогда независимые переменные выбираются согласно текущему представлению о них (т.е. на основании некоторой гипотезы), после чего проверяется результирующий массив для определения того, насколько удачно выбраны независимые переменные (см. раздел 22.7). Подобный подход приводит к тому, что выполняется множество итераций по принципу проб и ошибок. Поэтому система обычно допускает замену размерных и неразмерных переменных, и эту операцию называют сменой осей координат (pivoting). Другие поддерживаемые операции включают транспозицию массива и переупорядочение размерностей. Должен быть также предусмотрен способ добавления размерностей.

Между прочим, из предыдущего описания должно быть ясно, что ячейки массива часто оказываются пустыми (и чем больше размерностей, тем чаще наблюдается такое явление). Иными словами, массивы обычно бывают разреженными. Предположим, например, что товар р не продавался заказчику с в течение всего периода времени t. Тогда ячейка [с,р, t] будет пустой (или в лучшем случае содержать нуль). Многомерные СУБД поддерживают различные методы хранения разреженных массивов в более эффективном, сжатом представлении12. К этому следует добавить, что пустые ячейки соответствуют отсутствующей информации и, следовательно, системам необходимо предоставлять некоторую вычислительную поддержку для пустых ячеек. Такая поддержка действительно обычно имеется, но стиль ее, к сожалению, похож на стиль, принятый в языке SQL. Обратите внимание на тот факт, что если данная ячейка пуста, то информация или не известна, или не была введена, или не применима, или отсутствует в силу других причин

(см. главу 19).

Независимые переменные часто связаны в иерархии, определяющие пути, по которым может происходить агрегирование зависимых данных. Например, существует временная

иерархия, связывающая секунды с минутами, минуты с часами, часы с сутками, сутки с неделями, недели с месяцами, месяцы с годами. Или другой пример: возможна иерархия

композиции, связывающая детали с комплектом деталей, комплекты деталей с узлом, узлы с модулем, модули с изделием. Часто одни и те же данные могут агрегироваться многими разными способами, т.е. одна и та же независимая переменная может принадлежать ко многим различным иерархиям. Система предоставляет операторы для прохождения вверх (drill up) и прохождения вниз (drill down) по такой иерархии. Прохождение вверх означает переход от нижнего уровня агрегирования к верхнему, а прохождение вниз -

переход в противоположном направлении. Для работы с иерархиями имеются и другие операции, например операция для переупорядочения уровней иерархии.

Примечание. Между операциями прохождения вверх (drill up) и накопления итогов (roll

up) есть одно тонкое различие: операция накопления итогов - это операция реализации

12 Обратите внимание на отличие от реляционных систем. В настоящем реляционном аналоге этого примера в строке Ic, p, t) не было бы пустой "ячейки" количества, в связи с тем, что строка (с,р, t) просто бы отсутствовала. Поэтому при использовании реляционной модели, в отличие от многомерных массивов, нет необходимости поддерживать "разреженные массивы", или скорее "разреженные таблицы", а значит, не требуются искусные методы сжатия для работы с такими таблицами.

требуемых способов группирования и агрегирования, а операция прохождения вверх- это операция доступа к результатам реализации этих способов. А примером операции прохождения вниз может служить такой запрос: "Итоговое количество поставок известно; получить итоговые данные для каждого отдельного поставщика". Безусловно, для ответа на этот запрос должны быть доступными (или вычислимыми) данные более детализированных уровней.

В продуктах многомерных баз данных предоставляется также ряд статистических и других математических функций, которые помогают формулировать и проверять гипотезы (т.е. гипотезы, касающиеся предполагаемых связей). Кроме того, предоставляются инструменты визуализации и генерации отчетов, помогающие решать подобные задачи. Но, к сожалению, для многомерных баз данных пока еще нет никакого стандартного языка запросов, хотя ведутся исследования в целях разработки исчисления, на котором мог бы базироваться такой стандарт . Но ничего подобного реляционной теории нормализации, которая могла бы служить научной основой для проектирования многомерных баз данных, пока, к сожалению, нет.

Завершая этот раздел, отметим, что в некоторых продуктах сочетаются оба подхода - ROLAP и MOLAP. Такую гибридную систему OLAP называют HOLAP. Проводятся широкие дискуссии с целью выяснить, какой из этих трех подходов лучше, поэтому стоит и нам попытаться сказать по данному вопросу несколько слов13. В общем случае системы MOLAP обеспечивают более быстрое проведение расчетов, но поддерживают меньшие объемы данных по сравнению с системами ROLAP, т.е. становятся менее эффективными по мере возрастания объемов данных. А системы ROLAP предоставляют более развитые возможности масштабируемости, параллельности и управления по сравнению с аналогичными возможностями систем MOLAP. Кроме того, недавно был дополнен стандарт SQL и в него включены многие статистические и аналитические функции (см. раздел 22.8). Из этого следует, что в настоящее время продукты ROLAP способны к тому же предоставлять расширенные функциональные возможности.

Элементную базу всех цифровых устройств (ЦУ) [Digital Devices ] составляют интегральные схемы (ИС) [Integrated Circuit (IC )], которые также называются микросхемами (МС) или чипами (микрочипами ) [Chip (Microchip )].

Интегральные схемы – это электронные приборы, выполненные на тонких полупроводниковых пластинах, содержащие электронные элементы и выполненные внутри корпуса определённого типа.

ИС со времени изобретения в США в 1959 г. постоянно совершен­ствуются и усложняются. Быстрый прогресс в области изготовления интегрируемых схем привел к резкому росту объёма их производства и снижению стоимости. В результате использования МС стало возможным не только в сложных специализированных устройствах (таких, как ЭВМ), но и в разнообразных измерительных приборах, управляющих и контролирующих системах. Круг потребителей МС непрерывно расширяется.

Характеристикой сложности ИС является уровень интеграции , оцениваемый либо числом базовых логических элементов (ЛЭ) [Logic (al ) Element /Component /Gate /Unit ], либо числом транзисторов , которые размещены на кристалле.

В зависимости от уровня интеграции ИС делятся на несколько категорий: МИС, СИС, БИС, СБИС, УБИС (соответственно малые, средние, большие, сверхболь­шие, ультрабольшие ИС).

МИС [SSI = Small /Standard Scale Integration – малая/стандартная степень (уровень) интеграции] – это МС с очень небольшим числом элементов (несколько десятков). МИС реализуют простейшие логические преобразования и обладают очень большой уни­версальностью – даже с помощью одного типа ЛЭ (например, И-НЕ) можно построить любое ЦУ.

СИС [MSI = Medium Scale Integration – средняя степень (уровень) интеграции] – это МС со степенью интеграции от 300 до нескольких тысяч транзисторов (обычно до 3000). В виде СИС выпускаются в готовом виде такие схемы, как малоразрядные регистры, счётчики, дешиф­раторы, сумматоры и т. п. Номенклатура СИС должна быть более широкой и разнообразной, т. к. их универсальность по сравнению с МИС снижается. В развитых сериях стандартных ИС насчитываются сотни типов СИС.

БИС [LSI = Large Scale Integration – большая (высокая) степень (уровень) интеграции] – МС с числом логических вентилей от 1000 до 5000 (в некоторых классификациях – от 500 до 10000). Первые БИС были разработаны в начале 70-х годов прошлого века.

СБИС [VLSI = Very Large-Scale Integration – очень большая (высокая) степень (уровень) интеграции или GSI = Giant Scale Integration – гигантская (сверхбольшая, сверхвысокая) степень (уровень) интеграции] – это МС, содержащие на кристалле от 100000 до 10 млн. (VLSI ) или более 10 млн. (GSI ) транзисторов или логических вентилей.


УБИС [ULSI = Ultra Large Scale Integration – ультрабольшая (ультравысокая) степень (уровень) интеграции] – это МС, в которых число транзисторов на кристалле составляет от 10 млн. до 1 млрд. К таким схемам можно отнести современные процессоры.

Приведённые выше данные о МС разной степени интеграции для наглядности сведены в табл. 1.