Что такое процессор в пк. Что такое процессор компьютера? Работа микропроцессора на примере вычисления факториала

04.06.2021

Сейчас полно информации в интернете по теме процессоров, можно найти кучу статей о том как он работает, где в основном упоминаются регистры, такты, прерывания и прочее...Но, человеку не знакомому со всеми этими терминами и понятиями достаточно трудно вот так "с лету" вникнуть в понимание процесса, а начинать надо с малого - а именно с элементарного понимания как устроен процессор и из каких основных частей он состоит .

Итак, что же окажется внутри микропроцессора, если его разобрать:

цифрой 1 обозначается металлическая поверхность (крышка) микропроцессора, служащая для отвода тепла и защиты от механических повреждений того, что находится за этой крышкой (тоесть внутри самого процессора).

Под номером 2 - находится сам кристалл, по факту являющийся самой важной и дорогой в изготовлении частью микропроцессора. Именно благодаря этому кристаллу происходят все вычисления (а это и есть самая главная функция процессора) и чем он сложнее, чем совершенней - тем мощнее получается процессор и тем дороже соответственно. Кристалл изготавливается из кремния. На самом деле процесс изготовления очень сложный и содержит в себе десятки шагов, подробнее в этом видео:

Цифра 3 - специальная текстолитовая подложка, к которой крепятся все остальные части процессора, кроме того она играет роль контактной площадки - на ее обратной стороне есть большое количество золотистых "точек" - это контакты (на рисунке их немного видно). Благодаря контактной площадке (подложке) обеспечивается тесное взаимодействие с кристаллом, ибо напрямую хоть как нибудь воздействовать на кристалл не представляется возможным.

Крышка (1) крепится к подложке (3) с помощью клея-герметика, устойчивого к высоким температурам. Между кристаллом (2) и крышкой нет воздушного зазора, его место занимает термопаста, при застывании из нее получается "мостик" между кристаллом процессора и крышкой, благодаря чему обеспечивается очень хороший отток тепла.

Кристалл соединяется с подложкой с помощью пайки и герметика, контакты подложки соединяются с контактами кристалла. На этом рисунке наглядно показано как соединяются контакты кристалла с контактами подложки при помощи очень тонких проводков (на фото 170-кратное увеличение):

Вообще устройство процессоров разных производителей и даже моделей одного производителя может сильно разниться. Однако принципиальная схема работы остается прежней - у всех есть контактная подложка, кристалл (или несколько, расположенных в одном корпусе) и металлическая крышка для отвода тепла.

Так например выглядит контактная подложка процессора Intel Pentium 4 (процессор перевернут):

Форма контактов и структура их расположения зависит от процессора и материнской платы компьютера (сокеты должны совпадать). Например на рисунке чуть выше контакты у процессора без "штырьков", поскольку штырьки находятся прямо в сокете материнской платы.

А бывает другая ситуация, где "штырьки" контактов торчат прямо из контактной подложки. Эта особенность характерна в основном для процессоров AMD:

Как уже упоминалось выше, устройство разных моделей процессоров одного производителя может различаться, перед нами яркий тому пример - четырехъядерный процессор Intel Core 2 Quad, который по сути представляет собой 2 двухъядерных процессора линейки core 2 duo, совмещенных в одном корпусе:

Важно! Количество кристаллов внутри процессора и количество ядер процессора - не одно и то же.

В современных моделях процессоров Intel умещается сразу 2 кристалла (чипа). Второй чип - графическое ядро процессора, по-сути играет роль встроенной в процессор видеокарты, тоесть даже если в системе отсутствует , графическое ядро возьмет на себя роль видеокарты, причем довольно мощной (в некоторых моделях процессоров вычислительная мощь графических ядер позволяет играть в современные игры на средних настройках графики).

Вот и все устройство центрального микропроцессора , вкратце конечно же.

Персональный компьютер состоит из множества компонентов, соединенных в единую систему. Взаимодействие и контроль между ними осуществляется благодаря центральному процессору, выполняет роль электронного мозга ПК. Без него любая техника, будь то ноутбук, планшет или системный блок – груда железок. Давайте подробнее разберемся, как работает центральный процессор компьютера и какова его структура.

Прежде чем переходить к рассмотрению ключевых характеристик ЦП, необходимо разобраться каких видов он бывает. Центральных процессоров или CPU, как их называют заграницей много, и они разделяются по следующим критериям.

Мощности:

  • Бывают слабые, одноядерные модели, производство которых остановлено и приобрести их можно только после долгих поисков;
  • Средние и мощные модели, имеющие от 2 до 16 ядер;

По способу применения:

  1. Игровые;
  2. Серверные;
  3. Бюджетные;

По фирме производителю:

  • Центральный процессор от компании Intel;
  • ЦП от компании AMD;

Обратите внимание! Помимо Интеловских и Амдэшных ЦП существуют продукты, выпускаемые под брендами других компаний, но они мало востребованы, составляя малую часть об общего объема товаров на рынке компьютерного железа.

Многие пользователи ошибочно полагают, что продукция компании Intel отличается от AMD только названием, но это далеко не так. Структура каждого центрального процессора, произведенного под торговой маркой данных компаний, существенно отличается от конкурентов. Благодаря этому, они обладают своими достоинствами и недостатками. Например, продукция компании Intel наделена следующими положительными характеристиками, выгодно отличающими их центральные процессоры от AMD:

  1. Большинство производителей комплектующих изделий для ПК подгоняют свою продукцию под стандарты CPU от Intel;
  2. Во время работы потребляют меньшее количество энергии, снижая нагрузку на систему;
  3. Показывают большее быстродействие при работе с одной программой;
  4. Лучший выбор для игровых сборок системных блоков;

Товары от AMD также имеют ряд характеристик, позволяющих им активно конкурировать на рынке компьютерного железа:

  • В отличии от ЦП производства Интел, центральные процессоры от АМД имеют функцию разгона, увеличивающую исходную мощность до 20%;
  • Лучшее соотношение цены и качества товаров;
  • Графические ядра, встроенные в ЦП, обладают большими возможностями чем Интеловские, позволяя быстрее работать с видео;

Описание центрального процессора

Итак, с видами ЦП и их отличительными особенностями мы разобрались, пора переходить к описанию самого изделия и разобраться в том, что это такое. Для простоты понимания разобьём его на несколько пунктов, выделяя в них ключевые особенности изделия:

  1. Назначение ЦП;
  2. Его строение;
  3. Базовые характеристики;

С их помощью мы разберемся как работает процессор и как он устроен.

Назначение

Главная задача любого центрального процессора – выполнение вычислительных процессов, с помощью которых устройствам передается набор команд, необходимых для выполнения. Команды находятся в ОЗУ ПК и считываются CPU оттуда напрямую. Соответственно, чем выше вычислительные мощности процессора, тем большим быстродействием обладает вся система.

Структура

Общая структура любого центрального процессора состоит из следующих блоков:

  1. Блока интерфейса;
  2. Операционного блока;

Блок интерфейса содержит следующие компоненты:

  • Адресные регистры;
  • Регистры памяти, в которых осуществляется хранение кодов передаваемых команд, выполнение которых планируется в ближайшее время;
  • Устройства управления – с его помощью формируются управляющие команды, которые в дальнейшем выполняются ЦП;
  • Схемы управления, отвечающие за работу портов и системных шин;

В операционный блок входят:

  1. Микропроцессорная память. Состоит из: сегментных регистров, регистров признаков, регистров общего назначения и регистров подсчитывающих количество команд;
  2. Арифметико-логическое устройство. С его помощью информация интерпретируется в набор логических, или арифметических операций;

Обратите внимание! Операционный блок и блок интерфейса работают в параллельном режиме, но интерфейсная часть находится на шаг впереди, записывая в блок регистров команды, которые в дальнейшем выполняются операционной частью.

Системная шина служит для передачи сигналов от центрального процессора к другим компонентам устройства. С каждым новым поколением структура процессора немного меняется и последние разработки сильно отличаются от первых процессоров, используемых на заре становления компьютерных технологий.

Характеристики

Характеристики любого центрального процессора оказывают большое влияние на быстродействие как отдельных элементов системы, так и всего комплекса устройств в целом. Среди основных характеристик, влияющих на параметры производительности, выделяют:

  • Тактовая частота; Для обработки одного фрагмента данных, передаваемых внутри ПК, требуется один такт времени. Отсюда следует, что чем выше тактовая частота приобретаемого ЦП, тем быстрее работает устройство обрабатывая за раз большие массивы информации. Измеряется тактовая частота в мегагерцах. Один мегагерц эквивалентен 1 миллиону тактов в секунду. Старые модели имели маленькую частоту, из-за чего скорость работы оставляла желать лучшего. Современные модели имеют большие показатели тактовой частоты, позволяя быстро обрабатывать и выполнять самые сложные наборы команд.
  • Разрядность; Информация, предназначенная для обработки ЦП, попадает в него через внешние шины. От разрядности зависит какой объем данных передается за один раз. Это влияет на быстродействие. Старые модели были 16 разрядными, а современные имеют 32 или 64 разряда. 64 разрядная система на сегодняшний день считается самой продвинутой и под нее разрабатываются современные программные продукты и устройства.
  • Кеш – память; Используется для увеличения работы устройства в компьютере, создавая буферную зону, хранящую копию последнего массива данных, обработанного процессором. Это дает возможность быстро выполнить схожую операцию в случае необходимости, без траты времени на обращение к общей памяти персонального компьютера.
  • Сокет; Вариант крепления устройства к материнской плате. Разные поколения процессоров, как и материнских плат имеют собственный поддерживаемых сокетов. Это стоит учитывать при покупке. У разных производителей сокеты также отличаются друг от друга.
  • Внутренний множитель частоты; Процессор и материнская плата работают на разных частотах и для их синхронизации друг с другом существует множитель частоты. Базовой или опорной считается рабочая частота материнской платы, которая умножается на персональный коэффициент ЦП.

Из побочных характеристик, напрямую не относящихся от технологии производства, выделяют тепловыделение и количество потребляемой во время работы энергии. Мощные устройства выделяют много тепла и требуют большую энергетическую подпитку во время работы. Для их полноценной работы применяются вспомогательные системы охлаждения.

В наши дни процессоры играют особую роль только в рекламе, всеми силами стараются убедить, что именно процессор в компьютере является решающим компонентом, особенно такой производитель как Intel. Возникает вопрос: что такое современный процессор, да и вообще, что такое процессор?

Долгое время, а если быть точнее, то вплоть до 90 х годов производительность компьютера определял именно процессор. Процессор определял всё, но сегодня это не совсем так.

Не всё определяется центральным процессором, а процессоры от Intel не всегда предпочтительны чем от AMD. В последнее время заметно возросла роль других компонентов компьютера, а в домашних условиях процессоры редко становятся самым узким местом, но также, как и другие компоненты компьютера нуждаются в дополнительном рассмотрение, по тому что без него не может существовать ни одна вычислительная машина. Сами процессоры давно не удел нескольких видов компьютера , так как и разнообразие компьютеров стало больше.

Процессор (центральный процессор) - это очень сложная микросхема обрабатывающая машинный код, отвечающая за выполнение различных операций и управление компьютерной периферии .

Для краткого обозначения центрально процессора принята аббревиатура — ЦП, а также очень распространено CPU - Central Processing Unit, что переводится как центральное обрабатывающее устройство.

Использование микропроцессоров

Такое устройство как процессор интегрируется практически в любой электронной техники, что говорить о таких устройствах как телевизор и видеоплейер, даже в игрушках, а смартфоны сами по себе уже являются компьютерами, хоть и отличающимися по конструкции.

Несколько ядер центрального процессора могут совершенно разные задачи выполнять независимо друг от друга. Если компьютер выполняет только одну задачу, то и её выполнение ускоряется за счёт распараллеливания типовых операций. Производительность может приобрести довольно чёткую черту.

Коэффициент внутреннего множителя частоты

Сигналы циркулировать внутри кристалла процессора, могут на высокой частоте, хотя обращаться с внешними составляющим компьютера на одной и тоже частоте процессоры пока не могут. В связи с этим частота, на которой работает материнская плата одна, а частота работы процессора другая, более высока.

Частоту, которую процессор получает от материнской платы можно назвать опорной, он же в свою очередь производит её умножение на внутренний коэффициент, результатом чего и является внутренняя частота, называющаяся внутренним множителем.

Возможности коэффициента внутреннего множителя частоты очень часто используют оверлокеры для освобождения разгонного потенциала процессора.

Кеш-память процессора

Данные для последующей работы процессор получает из оперативной памяти , но внутри микросхем процессора сигналы обрабатываются с очень высокой частотой, а сами обращения к модулям ОЗУ проходят с частотой в разы меньше.

Высокий коэффициент внутреннего множителя частоты становится эффективнее, когда вся информация находится внутри него, в сравнение например, чем в оперативной памяти, то есть с наружи.

В процессоре немного ячеек для обработки данных, называемые регистрами, в них он обычно почти ничего не хранит, а для ускорения, как работы процессора, так и вместе с ним компьютерной системы была интегрирована технология кеширования.

Кешем можно назвать небольшой набор ячеек памяти, в свою очередь выполняющих роль буфера. Когда происходит считывание из общей памяти, копия появляется в кеш-памяти центрального процессора. Нужно это для того, чтобы при потребности в тех же данных доступ к ним был прямо под рукой, то есть в буфере, что увеличивает быстродействие.

Кеш-память в нынешних процессорах имеет пирамидальный вид:

  1. Кеш-память 1-го уровня - самая наименьшая по объёму, но в тоже время самая быстрая по скорости, входит в состав кристалла процессора. Производится по тем же технологиям, что и регистры процессора, очень дорогая, но это стоит её скорости и надёжности. Хоть и измеряется сотнями килобайт, что очень мало, но играет огромную роль в быстродействие.
  2. Кеш-память 2-го уровня - так же, как и 1-го уровня расположена на кристалле процессора и работает с частотой его ядра. В современных процессорах измеряется от сотен килобайт до нескольких мегабайт.
  3. Кеш-память 3-го уровня медленнее предыдущих уровней этого вида памяти, но является быстродейственней оперативной памяти, что немаловажно, а измеряется десятками мегабайт.

Размеры кеш-память 1-го и 2-го уровней влияют как на производительность, так и на стоимость процессора. Третий уровень кеш-памяти — это своеобразный бонус в работе компьютера, но не один из производителей микропроцессоров им пренебрегать не спешит. Кеш-память 4-го уровня существует и оправдывает себя лиши в многопроцессорных системах, именно поэтому на обыкновенно компьютере его найти не удастся.

Разъём установки процессора (Soket)

Понимание того, что современные технологии не на столько продвинуты, что процессор сможет получать информацию на расстояние, не переменно он должен крепиться, крепиться к материнской плате, устанавливаться в неё и с ней взаимодействовать. Это место крепление называется Soket и подойдёт только для определённого типа или семейства процессоров, которое у разных производителей тоже различны.

Что такое процессор: архитектура и технологический процесс

Архитектура процессора - это его внутреннее устройство, различное расположение элементов так же обуславливает его характеристики. Сама архитектура присуща целому семейству процессоров, а изменения, внесённые и направленные на улучшения или исправления ошибок, имеют название степпинг.

Технологический процесс определяет размер комплектующих самого процессора и измеряется в нанометрах (нм), а меньшие размеры транзисторов определяют меньший размер самого процессора, на что и направлена разработка будущих CPU.

Энергопотребление и тепловыделение

Само энергопотребление на прямую зависит от технологии, по которым производятся процессоры. Меньшие размеры и повышенные частоты прямо пропорционально обуславливают энергопотребление и тепловыделение.

Для понижения энергопотребления и тепловыделения выступает энергосберегающаяавтоматическая система регулировки нагрузки на процессор, соответственно при отсутствии в производительности какой-либо необходимости. Высокопроизводительные компьютеры в обязательном порядке имеют хорошую системы охлаждения процессора.

Подводя итоги материала статьи - ответа на вопрос, что такое процессор:

Процессоры наших дней имеют возможность многоканальной работы с оперативной памятью, появляются новые инструкции, в свою очередь благодаря которым повышается его функциональный уровень. Возможность обработки графики самим процессором обеспечивает понижение стоимости, как на сами процессоры, так и благодаря им на офисные и домашние сборки компьютеров. Появляются виртуальные ядра для более практичного распределения производительности, развиваются технологи, а вместе с ними компьютер и такая его составляющая как центральный процессор.

Персональный компьютер – вещь очень сложная и многогранная, однако в каждом системном блоке мы найдём центр всех операций и процессов – микропроцессор. Из чего состоит процессор компьютера и для чего он всё-таки нужен?

Наверное, многие придут в восторг, узнав, из чего состоит микропроцессор персонального компьютера. Он почти полностью состоит из обыкновенных камней, горных пород.

Да, это так… В состав процессора входят такие вещества, как, например, кремний – тот же самый материал, из которого состоит песок и гранитные скалы.

Процессор Хоффа

Первый микропроцессор для персонального компьютера был изобретён почти пол века назад – в 1970 году Маршианом Эдвардом Хоффом и его командой инженеров из Intel.

Первый процессор Хоффа работал на частоте всего-навсего 750 кГц.

Основные характеристики процессора компьютера сегодня, конечно, не сравнимы с вышеуказанной цифрой, нынешние «камни» в несколько тысяч раз мощнее своего предка и перед тем, лучше немного ознакомиться с задачами, которые он решает.

Многие люди полагают, что процессоры могут «думать». Надо сразу сказать, что в этом нет ни доли правды. Любой сверхмощный процессор персонального компьютера состоит из множества транзисторов – своеобразных переключателей, которые выполняют одну единственную функцию – пропустить сигнал дальше или остановить. Выбор зависит от напряжения сигнала.

Если взглянуть на это с другой стороны, то можно увидеть, из чего состоит микропроцессор, а состоит он из регистров – информационных обрабатывающих ячеек.

Для связи «камня» с остальными устройствами персонального компьютера используется специальная скоростная дорога, именующаяся «шиной». По ней с молниеносной скоростью «летают» крошечные электромагнитные сигналы. В этом-то и состоит принцип работы процессора компьютера или же ноутбука.

Устройство микропроцессора

Как устроен процессор компьютера? В любом микропроцессоре можно выделить 3 составляющих:

  1. Ядро процессора (именно здесь происходит разделение нулей и единиц);
  2. Кэш-память – небольшой накопитель информации прямо внутри процессора;
  3. Сопроцессор – особый мозговой центр любого процессора, в котором происходят самые сложные операции. Здесь же идёт работа с мультимедийными файлами.

Схема процессора компьютера в упрощенном варианте выглядит следующим образом:

Один из основных показателей микропроцессора – тактовая частота. Она показывает, сколько тактов «камень» совершает в секунду. Мощность процессора компьютера зависит от совокупности показателей, приведенных выше.

Следует отметить, что когда-то запусками ракет и работой спутников руководили микропроцессоры с тактовой частотой в тысячи раз меньшей, чем та, которой обладают «собратья» нынешние. А размер одного транзистора составляет 22нм, прослойка транзисторов – всего 1 нм. Для справки, 1 нм – толщина 5 атомов!

Вот теперь вы знаете, как устроен процессор компьютера и каких успехов добились учёные, работающие на фирмах по производству персональных компьютеров.

Инструмент проще, чем машина. Зачастую инструментом работают руками, а машину приводит в действие паровая сила или животное.

Чарльз Бэббидж

Компьютер тоже можно назвать машиной, только вместо паровой силы здесь электричество. Но программирование сделало компьютер таким же простым, как любой инструмент.

Процессор - это сердце/мозг любого компьютера. Его основное назначение - арифметические и логические операции, и прежде чем погрузиться в дебри процессора, нужно разобраться в его основных компонентах и принципах их работы.

Два основных компонента процессора

Устройство управления

Устройство управления (УУ) помогает процессору контролировать и выполнять инструкции. УУ сообщает компонентам, что именно нужно делать. В соответствии с инструкциями он координирует работу с другими частями компьютера, включая второй основной компонент - арифметико-логическое устройство (АЛУ). Все инструкции вначале поступают именно на устройство управления.

Существует два типа реализации УУ:

  • УУ на жёсткой логике (англ. hardwired control units). Характер работы определяется внутренним электрическим строением - устройством печатной платы или кристалла. Соответственно, модификация такого УУ без физического вмешательства невозможна.
  • УУ с микропрограммным управлением (англ. microprogrammable control units). Может быть запрограммирован для тех или иных целей. Программная часть сохраняется в памяти УУ.

УУ на жёсткой логике быстрее, но УУ с микропрограммным управлением обладает более гибкой функциональностью.

Арифметико-логическое устройство

Это устройство, как ни странно, выполняет все арифметические и логические операции, например сложение, вычитание, логическое ИЛИ и т. п. АЛУ состоит из логических элементов, которые и выполняют эти операции.

Большинство логических элементов имеют два входа и один выход.

Ниже приведена схема полусумматора, у которой два входа и два выхода. A и B здесь являются входами, S - выходом, C - переносом (в старший разряд).

Схема арифметического полусумматора

Хранение информации - регистры и память

Как говорилось ранее, процессор выполняет поступающие на него команды. Команды в большинстве случаев работают с данными, которые могут быть промежуточными, входными или выходными. Все эти данные вместе с инструкциями сохраняются в регистрах и памяти.

Регистры

Регистр - минимальная ячейка памяти данных. Регистры состоят из триггеров (англ. latches/flip-flops). Триггеры, в свою очередь, состоят из логических элементов и могут хранить в себе 1 бит информации.

Прим. перев. Триггеры могут быть синхронные и асинхронные. Асинхронные могут менять своё состояние в любой момент, а синхронные только во время положительного/отрицательного перепада на входе синхронизации.

По функциональному назначению триггеры делятся на несколько групп:

  • RS-триггер: сохраняет своё состояние при нулевых уровнях на обоих входах и изменяет его при установке единице на одном из входов (Reset/Set - Сброс/Установка).
  • JK-триггер: идентичен RS-триггеру за исключением того, что при подаче единиц сразу на два входа триггер меняет своё состояние на противоположное (счётный режим).
  • T-триггер: меняет своё состояние на противоположное при каждом такте на его единственном входе.
  • D-триггер: запоминает состояние на входе в момент синхронизации. Асинхронные D-триггеры смысла не имеют.

Для хранения промежуточных данных ОЗУ не подходит, т. к. это замедлит работу процессора. Промежуточные данные отсылаются в регистры по шине. В них могут храниться команды, выходные данные и даже адреса ячеек памяти.

Принцип действия RS-триггера

Память (ОЗУ)

ОЗУ (оперативное запоминающее устройство, англ. RAM) - это большая группа этих самых регистров, соединённых вместе. Память у такого хранилища непостоянная и данные оттуда пропадают при отключении питания. ОЗУ принимает адрес ячейки памяти, в которую нужно поместить данные, сами данные и флаг записи/чтения, который приводит в действие триггеры.

Прим. перев. Оперативная память бывает статической и динамической - SRAM и DRAM соответственно. В статической памяти ячейками являются триггеры, а в динамической - конденсаторы. SRAM быстрее, а DRAM дешевле.

Команды (инструкции)

Команды - это фактические действия, которые компьютер должен выполнять. Они бывают нескольких типов:

  • Арифметические : сложение, вычитание, умножение и т. д.
  • Логические : И (логическое умножение/конъюнкция), ИЛИ (логическое суммирование/дизъюнкция), отрицание и т. д.
  • Информационные : move , input , outptut , load и store .
  • Команды перехода : goto , if ... goto , call и return .
  • Команда останова : halt .

Прим. перев. На самом деле все арифметические операции в АЛУ могут быть созданы на основе всего двух: сложение и сдвиг. Однако чем больше базовых операций поддерживает АЛУ, тем оно быстрее.

Инструкции предоставляются компьютеру на языке ассемблера или генерируются компилятором высокоуровневых языков.

В процессоре инструкции реализуются на аппаратном уровне. За один такт одноядерный процессор может выполнить одну элементарную (базовую) инструкцию.

Группу инструкций принято называть набором команд (англ. instruction set).

Тактирование процессора

Быстродействие компьютера определяется тактовой частотой его процессора. Тактовая частота - количество тактов (соответственно и исполняемых команд) за секунду.

Частота нынешних процессоров измеряется в ГГц (Гигагерцы). 1 ГГц = 10⁹ Гц - миллиард операций в секунду.

Чтобы уменьшить время выполнения программы, нужно либо оптимизировать (уменьшить) её, либо увеличить тактовую частоту. У части процессоров есть возможность увеличить частоту (разогнать процессор), однако такие действия физически влияют на процессор и нередко вызывают перегрев и выход из строя.

Выполнение инструкций

Инструкции хранятся в ОЗУ в последовательном порядке. Для гипотетического процессора инструкция состоит из кода операции и адреса памяти/регистра. Внутри управляющего устройства есть два регистра инструкций, в которые загружается код команды и адрес текущей исполняемой команды. Ещё в процессоре есть дополнительные регистры, которые хранят в себе последние 4 бита выполненных инструкций.

Ниже рассмотрен пример набора команд, который суммирует два числа:

  1. LOAD_A 8 . Это команда сохраняет в ОЗУ данные, скажем, <1100 1000> . Первые 4 бита - код операции. Именно он определяет инструкцию. Эти данные помещаются в регистры инструкций УУ. Команда декодируется в инструкцию load_A - поместить данные 1000 (последние 4 бита команды) в регистр A .
  2. LOAD_B 2 . Ситуация, аналогичная прошлой. Здесь помещается число 2 (0010) в регистр B .
  3. ADD B A . Команда суммирует два числа (точнее прибавляет значение регистра B в регистр A). УУ сообщает АЛУ, что нужно выполнить операцию суммирования и поместить результат обратно в регистр A .
  4. STORE_A 23 . Сохраняем значение регистра A в ячейку памяти с адресом 23 .

Вот такие операции нужны, чтобы сложить два числа.

Шина

Все данные между процессором, регистрами, памятью и I/O-устройствами (устройствами ввода-вывода) передаются по шинам. Чтобы загрузить в память только что обработанные данные, процессор помещает адрес в шину адреса и данные в шину данных. Потом нужно дать разрешение на запись на шине управления.

Кэш

У процессора есть механизм сохранения инструкций в кэш. Как мы выяснили ранее, за секунду процессор может выполнить миллиарды инструкций. Поэтому если бы каждая инструкция хранилась в ОЗУ, то её изъятие оттуда занимало бы больше времени, чем её обработка. Поэтому для ускорения работы процессор хранит часть инструкций и данных в кэше.

Если данные в кэше и памяти не совпадают, то они помечаются грязными битами (англ. dirty bit).

Поток инструкций

Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.

Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.

Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.