Что такое шина в информатике. Типы, назначение и функционирование шин

07.08.2019

Системная шина - это основная интерфейсная система ПК, обеспечивающая сопряжение и связь всех его устройств между собой.

Основной функцией системной шины является передача информации между процессором и остальными устройствами ЭВМ . Все блоки, а точнее их порты ввода-вывода, через соответствующие разъемы подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры).

Управление системной шиной осуществляется непосредственно, либо, чаще через контроллер шины . Обмен информацией между ВУ и системной шиной выполняется с использованием ASCII-кодов. Системная шина состоит из трех шин: шины управления, шины данных и адресной шины. По этим шинам циркулируют управляющие сигналы, данные (числа, символы), адреса ячеек памяти и номера устройств ввода-вывода. Важнейшими функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает.

· Адресная шина.У процессоров Intel Pentium (а именно они наиболее распростра­нены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комби­нация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

· Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе про­цессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

· Шина команд . Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, из тех областей, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укла­дываются в один байт, однако, есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (напри­мер, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

Процессор.

Процессор (ЦП) выполняет логические и арифметические операции, определяет порядок выполнения операций, указывает источники данных и приемники результатов. Работа процессора происходит под управлением программы.

Процессор - основная микросхема компьютера, в которой и производятся все вычисления. Конструктивно процессор состоит из ячеек, похожих на ячейки опе­ративной памяти, но в этих ячейках данные могут не только храниться, но и изме­няться. Внутренние ячейки процессора называют регистрами. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имею­щих стандартную длину 1 байт и более низкое быстродействие);

При первом знакомстве с ЭВМ считают, что процессор состоит из пяти устройств: арифметико-логического устройства (АЛУ), устройства управления (УУ), регистров общего назначения (РОН), кэш-памяти и генератора тактовых частот.

устройство управления (УУ)- формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импуль­сы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ, т.е. отвечает за порядок выполнения команд, из которых состоит программа.

арифметико-логическое устройство (АЛУ)- предназначено для вы­полнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор), Промежуточные результаты сохраняются в РОН .

местная память (МПП) - служит для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах общего назначения (РОН) и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

· Кэш- память служит для повышения быстродействия процессора, путем уменьшения времени его непроизводительного простоя. Она применяется для кратковременного хра­нения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. Кэш- память строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо оперативная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память.

Нередко кэш-память распределяют по нескольким уровням кеш L1 (level1-первого уровня) и L2 (level2 – второго уровня). Кэш первого уровня выполняется в том же кристалле, что и сам процессор, имеет объем порядка десят­ков Кбайт и обычно работает на частоте, согласованной с частотой ядра процессора. Кэш второго уровня находится либо в кристалле процессора, либо она размещена на материнской плате вблизи процессора, тогда ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

· генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая опера­ция в машине выполняется за определенное количество тактов:

Система команд процессора. В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти. Часть данных он интерпретирует непосред­ственно как данные, часть данных - как адресные данные, а часть - как команды. Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относя­щиеся к одному семейству, имеют одинаковые или близкие системы команд. Про­цессоры, относящиеся к разным семействам, различаются по системе команд и не взаимозаменяемы.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процес­сором. Процессоры, имеющие разные системы команд, как правило, несовмести­мы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86.

Основные параметры процессоров. Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты (множитель) и размер кэш-памяти.

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенно! понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В, а в настоящее время оно составляет менее 3 В. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 был 16-разрядными. Начиная с процессора 80386, они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяете не разрядностью шины данных, а разрядностью командной шины).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов. В настенных часах такты колебаний задает маятник, а в персональном компью­тере тактовые импульсы задает одна из микросхем, входящая в микропроцессор­ный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в еди­ницу времени, тем выше его производительность.

По чисто физическим причинам, так как она представляет собой не кристалл кремния, а большой набор проводни­ков и микросхем, материнская плата не может рабо­тать со столь высокими частотами, как процессор. Сегодня ее предел составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внут­реннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более, т.о. если частота системной шины 133 Мгц, а коэффициент (множитель ядра) равен 8, то рабочая тактовая частота составит 1Ггц.

Вся история IBM PC связана с процессорами фирмы Intel, которая выпускает эти микросхемы с 1970г, начиная с четырехразрядного 4004. Дадим неформальную характеристику основных параметров этих процессоров.

Микропроцессор Начало выпуска Разрядность Тактовая частота, Мгц. Быстродействие Примечание
8июня 1978г. 16 бит 0,33 MIPS 0,66 MIPS 0,75 MIPS
февраль1982г 16 бит 0,9 MIPS 1,5 MIPS 2,66 MIPS
80386DX 17.10.1985г. 32 бита 5-6 MIPS 6-7 MIPS 8,5 MIPS
11,4 MIPS 16 Kb кеш–памяти второго уровня (впервые)
80386SX 16июня1988г 16 бит 2,5 MIPS 2,5 MIPS 2,7 MIPS 2,9 MIPS
80386SL 15октября1989 16 бит 4,2 MIPS 5,3 MIPS Первый процессор специально предназначенный для персональных компьютеров
80486DX 10апреля1989г 32 бит 20 MIPS 7,4 MFLOPS 27 MIPS 22,4 MFLOPS 41 MIPS 14,5 MFLOPS Производительность возросла в 50 раз по сравнению с 8086
80486SX 22апреля1991г 32 бита 13 MIPS 20 MIPS 27 MIPS Аналог 80486 но без сопроцессора.
Pentium 22марта 1993г 32 бита 100 MIPS 55,1 MFLOPS 112 MIPS 63,6 MFLOPS 126,5 MIPS 2,02 GFLOPS 203 MIPS 2,81 GFLOPS 3,92GFLOPS
Pentium PRO 1ноября1995г
Pentium с технологией MMX 2июня 1997г. 32 бита 5,21 GFLOPS Технология MMX обеспечивает увеличение производительности процессора при работе с мультимедийными и трехмерными приложениями.
Pentium II 7 мая 1997г
Celeron 12апреля1998г Удешевленная версия Pentium II за счет изъятия кэш 2-го уровня
Xeon
PentiumIII Расширенный PentiumII за счет 70 дополнительных команд, позволяющих ускорить расчеты, применяемые в трехмерной графике. Благодаря этому выполняет до 4 операций над числами с плавающей точкой одновременно.
PentiumIV

Шиной (Bus ) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом . На рис. 1 дана структура шины.

Шина имеет места для подключения внешних устройств – слоты , которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

Рис. 1. Структура шины

Шины в ПК различаются по своему функциональному назначению :

  • системная шина (или шина CPU) используется микросхемами Cipset для пересылки информации к и обратно (см. также рис. 1);
  • шина предназначена для обмена информацией между CPU и кэш-памятью (см. также рис. 1);
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port ).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контролер шины.

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес ) отправителя и (или) получателя данных.

Для ускорения обмена данными используется устройство промежуточного хранения данных – оперативная память RAM . При этом решающую роль играет объем данных, которые могут временно храниться в ней. Объем зависит от разрядности адресной шины (числа линий) и тем самым от максимально возможного числа адресов, генерируемых процессором на адресной шине, т.е. от количества ячеек RAM, которым может быть присвоен адрес. Количество ячеек RAM не должно превышать 2 n , где n – разрядность адресной шины. В противном случае часть ячеек не будет использоваться, поскольку процессор не сможет адресоваться к ним.

В двоичной системе счисления максимально адресуемый объем памяти равен 2 n , где n – число линий шины адреса.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х) или четыре (режим 4 х) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

  • GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;
  • EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2 . Характеристики шин ввода/вывода

Шина Разрядность, бит Тактовая частота, МГц Пропускная способность, Мбайт/с
ISA 8-разрядная 08 8,33 0008,33
ISA 16-разрядная 16 8,33 0016,6
EISA 32 8,33 0033,3
VLB 32 33 0132,3
PCI 32 33 0132,3
PCI 2.1 64-разрядная 64 66 0528,3
AGP (1 x) 32 66 0262,6
AGP (2 x) 32 66х2 0528,3
AGP (4 x) 32 66х2 1056,6

Шина VESA , или VLB , предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом , или концентратором , с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter ). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

Шины персонального компьютера

Средний процент в баллах: 100%
всего голосов: 1
среднее: 5

Помогая проекту BEST-EXAM, вы делаете образование более доступным для каждого человека, внесите и вы свой вклад -
поделитесь этой статьей в социальных сетях!

СИСТЕМНАЯ ШИНА СИСТЕМНАЯ ШИНА

СИСТЕМНАЯ ШИНА (system bus), совокупность линий передачи всех видов сигналов (в том числе данных, адресов и управления) между микропроцессором (см. МИКРОПРОЦЕССОР) и остальными электронными устройствами компьютера (см. КОМПЬЮТЕР) . Часть системной шины, передающая данные, называется шиной данных, адреса - адресной шиной, управляющие сигналы - шиной управления. Важной характеристикой системной шины, влияющей на производительность персонального компьютера, является тактовая частота системной шины - FSB (Frequency System Bus).
Персональный компьютер на базе x86-совместимого микропроцессора построен по следующей схеме: микропроцессор через системную шину подключается к системному контроллеру (обычно такой контроллер называют «северным мостом» - North Bridge). Системный контроллер включает в себя контроллер оперативной памяти и контроллеры шин, к которым подключаются периферийные устройства. К северному мосту обычно подключают наиболее производительные периферийные устройства (например, видеокарты (см. ВИДЕОАДАПТЕР) ), а менее производительные устройства (микросхема BIOS, устройства с шиной PCI) подключаются к «южному мосту» (South Bridge), который соединяется с северным мостом специальной высокопроизводительной шиной. Набор из «южного» и «северного» мостов называют чипсетом (см. ЧИПСЕТ) (chipset). Системная шина работает в качестве магистрального канала между процессором и чипсетом.


Энциклопедический словарь . 2009 .

Смотреть что такое "СИСТЕМНАЯ ШИНА" в других словарях:

    системная шина - магистраль системного блока ПЭВМ — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом Синонимы магистраль системного блока ПЭВМ EN system busS bus …

    - … Википедия

    шина EISA - расширенная архитектура промышленного стандарта Системная шина ПК, расширившая возможности шины ISA с 16 ти до 32 х разрядов. Была быстро вытеснена шиной PCI. Тематики информационные технологии в целом Синонимы… … Справочник технического переводчика

    шина канала ввода-вывода (ЭВМ) - Локальная системная шина процессора, обычно используемая в качестве канала ввода вывода системной платы однопроцессорного компьютера, например, в IBM PC XT, Apple Mac II, DEC Professional 325/350/380. [Е.С.Алексеев, А.А.Мячев. Англо русский… … Справочник технического переводчика

    Разъём AGP на материнской плате (обычно коричневого или зелёного цветов). AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) разработанная в 1997 году компанией системная шина для видеокарты. Появилась одновременно с чипсетами … Википедия

    шина ПЭВМ с расширенной технологией - Системная магистраль, разработанная фирмой IBM, используется в серии IBM PC XT на основе микропроцессора 8088 с 8 разрядной шиной данных. Магистраль содержит 20 разрядную шину 8 разрядную двунаправленную шину данных, 6 линий уровня прерывания,… … Справочник технического переводчика

    S 100 Универсальная интерфейсная шина спроектированная компанией MITS в 1974 году специально для Altair 8800, считающимся на сегодняшний день первым персональным компьютером. Шина S 100 была первой интерфейсной шиной для микрокомпьютерной… … Википедия

    Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… … Википедия

    FSB (англ. Front side bus, переводится как «системная шина») компьютерная шина, обеспечивающая соединение между x86 совместимым центральным процессором и внешним миром. Как правило, современный персональный компьютер на базе x86 совместимого… … Википедия

Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два и более системных компонента.

Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.

  • Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Она используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем. В системах на базе процессоров Pentium эта шина работает на частоте 66, 100, 133, 200, 266, 400, 533, 800 или 1066 МГц и имеет ширину 64 разряда (8 байт).
  • Шина AGP . Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х), 266 (AGP 4х) или 533 МГц (AGP 8x), обеспечивает пропускную способность до 2133 Мбайт/с и предназначается для подключения видеоадаптера. Она соединена с северным мостом или контроллером памяти (MCH) набора микросхем системной логики.
  • Шина PCI-Express. Третье поколение шины PCI . Шина PCI-Expres - это шина с дифференциальными сигналами, которые может передавать северный или южный мост. Быстродействие PCI-Express выражается в количестве линий. Каждая двунаправленная линия обеспечивает скорость передачи данных 2,5 или 5 Гбит/с в обоих направлениях (эффективное значение - 250 или 500 Мбайт/с). Разъем с поддержкой одной линии обозначается как PCI-Express x1. Видеоадаптеры PCI-Express обычно устанавливаются в разъем x16, который обеспечивает скорость передачи данных 4 или 8 Гбайт/с в каждом направлении.
  • Шина PCI-X. Это второе поколение шины PCI, которое обеспечивает более высокую скорость передачи данных, но при этом обратно совместимо с PCI. Данная шина преимущественно применяется в рабочих станциях и серверах. PCI-X поддерживает 64-разрядные разъемы, обратно совместимые с 64- и 32-разрядными адаптерами PCI. Шина PCI-X версии 1 работает с частотой 133 МГц, в то время как PCI-X 2.0 поддерживает частоту до 533 МГц. Обычно полоса пропускания PCI-X 2.0 разделяется между несколькими разъемами PCI-X и PCI. Хотя некоторые южные мосты поддерживают шину PCI-X, чаще всего для обеспечения ее поддержки требуется специальная микросхема.
  • Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; она используется, начиная с систем на базе процессоров 486. В настоящее время существует реализация этой шины с частотой 66 МГц. Она находится под управлением контроллера PCI - компонента северного моста или контроллера MCH набора микросхем системной логики. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. Шины PCI-X и PCI-Express представляют собой более производительные реализации шины PCI; материнские платы и системы, поддерживающие эту шину, появились на рынке в середине 2004 года.
  • Шина ISA. Эта 16-разрядная шина, работающая на частоте 8 МГц, впервые стала использоваться в системах AT в 1984 году (в первоначальном варианте IBM PC она была 8-разрядной и работала на частоте 5 МГц). Эта шина имела широкое распространение, но из спецификации PC99 была исключена. Реализуется с помощью южного моста. Чаще всего к ней подключается микросхема Super I/O.

Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя на них место для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют узкоспециализированное назначение.

В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) 8-разрядную шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. Некоторые современные наборы микросхем для рабочих станций и серверов, а также последняя серия 9xx от Intel для настольных компьютеров используют более быстродействующие версии этого hub-интерфейса. Сторонние производители наборов микросхем системной логики также реализуют свои конструкции высокоскоростных шин, соединяющих отдельные компоненты набора между собой.

Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 16,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Она позволяет полностью отказаться от использования шины ISA в системных платах.

Набор микросхем системной логики можно сравнить с дирижером, который руководит оркестром системных компонентов системы, позволяя каждому из них подключиться к собственной шине.

  • Шины ISA, EISA, VL-Bus и MCA в современных конструкциях системных плат не используются. Мбайт/с. Мегабайт в секунду.
  • ISA. Industry Standard Architecture (архитектура промышленного стандарта), известная также как 8-разрядная PC/XT или 16разрядная AT-Bus.
  • LPC. Шина Low Pin Count (шина с малым количествомконтактов).
  • VL-Bus. VESA (Video Electronics Standards Association) Local Bus (расширение ISA).
  • MCA. MicroChannel Architecture (микроканальная архитектура) (системы IBM PS/2).
  • PC-Card. 16-разрядный интерфейс PCMCIA (Personal Computer Memory Card International Association). CardBus. 32-разрядная шина PC-Card.
  • Hub Interface. Шина набора микросхем Intel серии 8xx.
  • PCI. Peripheral Component Interconnect (шина взаимодействия периферийных компонентов).
  • AGP. Accelerated Graphics Port (ускоренный графический порт).
  • RS-232. Стандартный последовательный порт, 115,2 Кбайт/с.
  • RS-232 HS. Высокоскоростной последовательный порт, 230,4 Кбайт/с.
  • IEEE-1284 Parallel. Стандартный двунаправленный параллельный порт.
  • IEEE-1284 EPP/ECP. Enhanced Parallel Port/Extended Capabilities Port (параллельный порт с расширенными возможностями).
  • USB . Universal Serial Bus (универсальная последовательная шина).
  • IEEE-1394. Шина FireWire, называемая также i.Link.
  • ATA PIO. AT Attachment (известный также как IDE) Programmed I/O (шина ATA с программируемым вводом-выводом).
  • ATA-UDMA. AT Attachment Ultra DMA (режим Ultra-DMA шины ATA).
  • SCSI. Small Computer System Interface (интерфейс малых компьютерных систем).
  • FPM. Fast Page Mode (быстрый постраничный режим).
  • EDO. Extended Data Out (расширенный ввод-вывод).
  • SDRAM. Synchronous Dynamic RAM (синхнонное динамическое ОЗУ).
  • RDRAM. Rambus Dynamic RAM (динамическое ОЗУ технологии Rambus).
  • RDRAM Dual. Двухканальная RDRAM (одновременное функционирование).
  • DDR-SDRAM. Double-Data Rate SDRAM (SDRAM с удвоенной скоростью).
  • CPU FSB. Шина процессора (или Front-Side Bus).
  • Hub-интерфейс. Шина набора микросхем Intel 8xx.
  • HyperTransport. Шина набора микросхем AMD.
  • V-link. Шина набора микросхем VIA Technologies.
  • MuTIOL. Шина набора микросхем SiS.
  • DDR2. Новое поколение памяти стандарта DDR.

Для повышения эффективности во многих шинах в течение одного такта выполняется несколько циклов передачи данных. Это означает, что скорость передачи данных выше, чем это может показаться на первый взгляд. Существует достаточно простой способ повысить быстродействие шины с помощью обратно совместимых компонентов.

Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы . Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.