Что такое SQL.

26.06.2019
07.02.07 11.6K

Введение в управление реляционными базами данных

sql часто называют языком эсперанто для систем управления базами данных (СУБД). Действительно, в мире нет другого языка для работы с базами данных (БД), который бы настолько широко использовался в программах. Первый стандарт sol появился в 1986 г. и к настоящему времени завоевал всеобщее признание. Его можно использовать даже при работе с нереляционными СУБД. В отличие от других программных средств, таких, как языки Си и Кобол, являющихся прерогативой программистов-профессионалов, sql применяется специалистами из самых разных областей. Программисты, администраторы СУБД, бизнес-аналитики — все они с успехом обрабатывают данные с помощью sql. Знание этого языка полезно всем, кому приходится иметь дело с БД.

В этой статье мы рассмотрим основные понятия sql. Расскажем его предысторию (и развеем попутно несколько мифов). Вы познакомитесь с реляционной моделью и сможете приобрести первые навыки работы с sql, что поможет в дальнейшем освоении языка.

Трудно ли изучить sql? Это зависит от того, насколько глубоко вы собираетесь вникать в суть. Для того чтобы стать профессионалом, придется изучить очень многое. Язык sql появился в 1974 г. как предмет небольшой исследовательской работы, состоявшей из 23 страниц, и с тех пор прошел долгий путь развития. Текст действующего ныне стандарта — официального документа "the international standard database language sql" (обычно называемого sql-92) — содержит свыше шести сотен страниц, однако в нем ничего не говорится о конкретных особенностях версий sol, реализованных в СУБД фирм microsoft, oracle, sybase и др. Язык настолько развит и разнообразен, что лишь простое перечисление его возможностей потребует нескольких журнальных статей, а если собрать все, что написано на тему sol, то получится многотомная библиотека.

Однако для обычного пользователя совсем не обязательно знать sql целиком и полностью. Как туристу, оказавшемуся в стране, где говорят на непонятном языке, достаточно выучить лишь несколько употребительных выражений и правил грамматики, так и в sql — зная немногое, можно получать множество полезных результатов. В этой статье мы рассмотрим основные команды sql, правила задания критериев для отбора данных и покажем, как получать результаты. В итоге вы сможете самостоятельно создавать таблицы и вводить в них информацию, составлять запросы и работать с отчетами. Эти знания могут стать базой для дальнейшего самостоятельного освоения sql.

Что такое sql?

sql — это специализированный непроцедурный язык, позволяющий описывать данные, осуществлять выборку и обработку информации из реляционных СУБД. Специализированность означает, что sol предназначен лишь для работы с БД; нельзя создать полноценную прикладную систему только средствами этого языка — для этого потребуется использовать другие языки, в которые можно встраивать sql-команды. Поэтому sql еще называют вспомогательным языковым средством для обработки данных. Вспомогательный язык используется только в комплексе с другими языками.

В прикладном языке общего назначения обычно имеются средства для создания процедур, а в sql их нет. С его помощью нельзя указать, каким образом должна выполняться некоторая задача, а можно лишь определить, в чем именно она заключается. Другими словами, при работе с sql нас интересуют результаты, а не процедуры для их получения.

Наиболее существенным свойством sql является возможность доступа к реляционным БД. Многие даже считают, что выражения "БД, обрабатываемая средствами sql" и "реляционная БД" — синонимы. Однако скоро вы убедитесь, что между ними имеется разница. В стандарте sql-92 даже нет термина отношение (relation).

Что такое реляционная СУБД?

Если не вдаваться в подробности, то реляционная СУБД — это система, основанная на реляционной модели управления данными.

Понятие реляционной модели было впервые предложено в работе д-ра Е. Ф. Кодда, опубликованной в 1970 г. В ней был описан математический аппарат для структуризации данных и управления ими, а также предложена абстрактная модель для представления любой реальной информации. До этого при использовании БД требовалось учитывать конкретные особенности хранения в ней информации. Если внутренняя структура БД изменялась (например, с целью повышения быстродействия), приходилось перерабатывать прикладные программы, даже если на логическом уровне никаких изменений не происходило. Реляционная модель позволила отделить частные особенности хранения данных от уровня прикладной программы. В самом деле, модель никак не описывает способы хранения информации и доступа к ней. Учитывается лишь то, как эта информация воспринимается пользователем. Благодаря появлению реляционной модели качественно изменился подход к управлению данными: из искусства оно превратилось в науку, что привело к революционному развитию отрасли.

Основные понятия реляционной модели

Согласно реляционной модели, отношение (relation) — это некоторая таблица с данными. Отношение может иметь один или несколько атрибутов (признаков), соответствующих столбцам этой таблицы, и некоторое множество (возможно, пустое) данных, представляющих собой наборы этих атрибутов (их называют n-арными кортежами, или записями) и соответствующих строкам таблицы.

Для любого кортежа значения атрибутов должны принадлежать так называемым доменам. Фактически доменом является некоторый набор данных, который задает множество всех допустимых значений.

Давайте рассмотрим пример. Пусть имеется домен ДниНедели, содержащий значения от Понедельник до Воскресенье. Если отношение имеет атрибут ДеньНедели, соответствующий этому домену, то в любом кортеже отношения в столбце ДеньНедели должно присутствовать одно из перечисленных значений. Появление значений Январь или Кошка не допускается.

Обратите внимание: атрибут обязательно должен иметь одно из допустимых значений. Задание сразу нескольких значений запрещено. Таким образом, помимо требования принадлежности значений атрибута некоторому домену, должно соблюдаться условие его атомарности. Это означает, что для этих значений недопустима декомпозиция, т. е. нельзя разбить их на более мелкие части, не потеряв основного смысла. Например, если бы значение атрибута одновременно содержало Понедельник и Вторник, то можно было бы выделить две части, сохранив первоначальный смысл — ДеньНедели; следовательно, это значение атрибута не является атомарным. Однако если попробовать разбить значение "Понедельник" на части, то получится набор из отдельных букв — от "П" до "К"; исходный смысл утерян, поэтому значение "Понедельник" является атомарным.

Отношения обладают и другими свойствами. Наиболее значимое из них — математическое свойство замкнутости операций. Это означает, что в результате выполнения любой операции над отношением должно появляться новое отношение. Это свойство позволяет при выполнении математических операций над отношениями получать предсказуемые результаты. Кроме того, появляется возможность представлять операции в виде абстрактных выражений с разными уровнями вложенности.

В своей исходной работе д-р Кодд определил набор из восьми операторов, получивший название реляционной алгебры. Четыре оператора — объединение, логическое умножение, разность и Декартово произведение — были перенесены из традиционной теории множеств; остальные операторы были созданы специально для обработки отношений. В последующих работах д-ра Кодда, Криса Дейта и других исследователей были предложены дополнительные операторы. Далее в этой статье будут рассмотрены три реляционных оператора — продукция (project), ограничения (select, или restrict) и слияние (join).

sql и реляционная модель

Теперь, когда вы познакомились с реляционной моделью, давайте забудем о ней. Конечно, не навсегда, а лишь для того, чтобы объяснить следующее: хотя именно предложенная д-ром Коддом реляционная модель была использована при разработке sql, между ними нет полного или буквального соответствия (это одна из причин, почему в стандарте sql-92 отсутствует термин отношение). Например, понятия таблица sql и отношение не являются равнозначными, потому что в таблицах может быть сразу несколько одинаковых строк, тогда как в отношениях появление идентичных кортежей не разрешено. К тому же в sql не предусмотрено использование реляционных доменов, хотя в некоторой степени их роль играют типы данных (некоторые влиятельные сторонники реляционной модели предпринимают сейчас попытку добиться включения в будущий стандарт sql реляционных доменов).

К сожалению, несоответствие между sql и реляционной моделью породило множество недоразумений и споров за прошедшие годы. Но так как основная тема статьи — изучение sql, а не реляционной модели, эти проблемы здесь не рассматриваются. Просто следует запомнить, что между терминами, применяемыми в sql и в реляционной модели, имеются различия. Далее в статье будут использоваться только термины, принятые в sql. Вместо отношений, атрибутов и кортежей будем применять их sql-аналоги: таблицы, столбцы и строки.

Статический и динамический sql

Возможно, вам уже знакомы такие термины, как статический и динамический sql. sql-запрос является статическим, если он компилируется и оптимизируется на стадии, предшествующей выполнению программы. Мы уже упоминали одну из форм статического sql, когда говорили о встраивании sql-команд в программы на Си или Коболе (для таких выражений существует еще другое название — встроенный sql). Как вы, наверное, догадываетесь, динамический sql-запрос компилируется и оптимизируется в ходе исполнения программы. Как правило, обычные пользователи применяют именно динамический sql, позволяющий создавать запросы в соответствии с сиюминутными нуждами. Один из вариантов изпользования динамических sql-запросов — их интерактивный или непосредственный вызов (существует даже специальный термин — directsql), когда отправляемые на обработку запросы вводятся в интерактивном режиме с терминала. Между статическим и динамическим sql имеются определенные различия в синтаксисе применяемых конструкций и особенностях исполнения, однако эти вопросы выходят за рамки статьи. Отметим лишь, что для ясности понимания примеры даются в форме direct sql-запросов, поскольку это позволяет научиться использовать sql не только программистам, но и большинству конечных пользователей.

Как изучать sql

Теперь вы готовы к написанию своих первых sql-запросов. Если у вас имеется доступ к БД через sql и вы захотите воспользоваться нашими примерами на практике, то учтите следующее: вы должны входить в систему как пользователь с неограниченными полномочиями и вам потребуются программные средства интерактивной обработки sql-запросов (если речь идет о сетевой БД, следует переговорить с администратором БД о предоставлении вам соответствующих прав). Если доступа к БД через sql нет — не огорчайтесь: все примеры очень простые и в них можно разобраться "всухую", без выхода на машину.

Для того чтобы выполнить какие-либо действия в sql, следует выполнить выражение на языке sql. Встречается несколько типов выражений, однако среди них можно выделить три основные группы: ddl-команды (data definition language — язык описания данных), dml-команды (data manipulation language — язык манипуляций с данными) и средства контроля за данными. Таким образом, в sql в каком-то смысле объединены три различных языка.

Команды языка описания данных

Начнем с одной из основных ddl-команд — create table (Создать таблицу). В sql бывают таблицы нескольких типов, основными являются два типа: базовые (base) и выборочные (views). Базовыми являются таблицы, относящиеся к реально существующим данным; выборочные — это "виртуальные" таблицы, которые создаются на основе информации, получаемой из базовых таблиц; но для пользователей формы выглядят как обычные таблицы. Команда create table предназначена для создания базовых таблиц.

В команде create table следует задать название таблицы, указать список столбцов и типы содержащихся в них данных. В качестве параметров могут присутствовать также другие необязательные элементы, однако сначала давайте рассмотрим только основные параметры. Покажем простейшую синтаксическую форму для этой команды:

create table ИмяТаблицы (Столбец ТипДанных) ;

create и table — это ключевые слова sql; ИмяТаблицы, Столбец и ТипДанных — это формальные параметры, вместо которых пользователь каждый раз вводит фактические значения. Параметры Столбец и ТипДанных заключены в круглые скобки. В sql круглые скобки обычно используются для группировки отдельных элементов. В данном случае они позволяют объединить определения для столбца. Стоящий в конце знак "точка с запятой" является разделителем команд. Он должен завершать любое выражение на языке sql.

Рассмотрим пример. Пусть нужно создать таблицу для хранения данных обо всех встречах (appointments). Для этого в sql следует ввести команду:

create table appointments (appointment_date date) ;

После выполнения этой команды будет создана таблица с именем appointments, где имеется один столбец appointment_date, в котором могут записываться данные типа date. Поскольку на текущий момент данные еще не вводились, количество строк в таблице равно нулю (с помощью команды create table только дается определение таблицы; реальные значения вводятся командой insert, которая рассматривается далее).

Параметры appointments и appointment_date называются идентификаторами, поскольку они задают имена для конкретных объектов БД, в данном случае — имена для таблицы и столбца соответственно. В sql встречаются идентификаторы двух типов: обычные (regular) и выделенные (delimited). Выделенные идентификаторы заключаются в двойные кавычки, и в них учитывается регистр используемых символов. Обычные идентификаторы не выделяются никакими ограниченными символами, в их написании регистр не учитывается. В этой статье применяются только обычные идентификаторы.

Символы, используемые для построения идентификаторов, должны удовлетворять определенным правилам. В обычных идентификаторах могут использоваться только буквы (не обязательно латинские, но и других алфавитов), цифры и символ подчеркивания. Идентификатор не должен содержать знаков пунктуации, пробелов или специальных символов (#, @, % или!); кроме того, он не может начинаться с цифры или знака подчеркивания. Для идентификаторов можно использовать отдельные ключевые слова sql, но делать это не рекомендуется. Идентификатор предназначен для обозначения некоторого объекта, поэтому у него должно быть уникальное (в рамках определенного контекста) имя: нельзя создать таблицу с именем, которое уже встречается в БД; в одной таблице нельзя иметь столбцы с одинаковыми именами. Кстати, имейте в виду, что appointments и appointments — это одинаковые имена для sql. Одним лишь изменением регистра букв создать новый идентификатор нельзя.

Хотя таблица может иметь всего один столбец, на практике обычно требуются таблицы с несколькими столбцами. Команда для создания такой таблицы в общем виде выглядит так:

create table ИмяТаблицы (Столбец ТипДанных [ { , Столбец ТипДанных } ]) ;

Квадратные скобки использованы для обозначения необязательных элементов, фигурные содержат элементы, которые могут представлять собой перечень однопутных конструкций (при вводе реальной sql-команды ни те ни другие скобки не ставятся). Такой синтаксис позволяет задать любое число столбцов. Обратите внимание, что перед вторым элементом стоит запятая. Если в списке имеется несколько параметров, то они отделяются друг от друга запятыми.

create table appointments2 (appointment_date date , appointment_time time , description varchar (256)) ;

Данная команда создает таблицу appointments2 (новая таблица должна иметь иное имя, так как таблица appointments уже присутствует в БД). Как и в первой таблице, в ней имеется столбец appointment_date для записи даты встреч; кроме того, появился столбец appointment_time для записи времени этих встреч. Параметр description (описание) является текстовой строкой, где может содержаться до 256 символов. Для этого параметра указан тип varchar (сокращение от character varying), поскольку заранее не известно, сколько места потребуется для записи, но ясно, что описание займет не более 256 символов. При описании параметро в типа символьная строка (и некоторых других типов) указывается длина параметра. Ее значение задается в круглых скобках справа от названия типа.

Возможно, вы обратили внимание, что в двух рассмотренных примерах запись команды оформлена по-разному. Если в первом случае команда полностью размещена в одной строке, то во втором после первой открытой круглой скобки запись продолжена с новой строки, и определение каждого следующего столбца начинается с новой строки. В sql нет специальных требований к оформлению записи. Разбиение записи на строки делает ее чтение удобнее. Язык sql позволяет при написании команд не только разбивать команду по строкам, но и вставлять отступы в начале строк и пробелы между элементами записи.

Теперь, когда вы знаете основные правила, давайте рассмотрим более сложный пример создания таблицы с несколькими столбцами. В начале статьи была показана таблица employees (Сотрудники). В ней содержатся следующие столбцы: фамилия, имя, дата приема на работу, подразделение, категория и зарплата за год. Для определения этой таблицы используется следующая команда sql:

create table employees (last_name character (13) not null, first_name character (10) not null, hire_date date , branch_office character (15) , grade_level smallint , salary decimal (9 , 2)) ;

В команде встречаются несколько новых элементов. Прежде всего, это выражение not null, стоящее в конце определения столбцов last_name и first_name. С помощью подобных конструкций задаются требования, подлежащие обязательному соблюдению. В данном случае указано, что поля last_name и first_name должны обязательно заполняться при вводе; оставлять эти столбцы пустыми нельзя (это вполне логично: как можно идентифицировать сотрудника, не зная его имени?).

Кроме того, в примере присутствуют три новых типа данных: character, smallint и decimal. До сих пор мы почти не говорили о типах. Хотя в sql нет реляционных доменов, однако имеется набор основных типов данных. Эта информация используется при выделении памяти и сравнении величин; в определенной степени сужает список возможных значений при вводе, однако контроль типов в sql менее строгий, чем в других языках.

Все имеющиеся в sql типы данных можно разбить на шесть групп: символьные строки, точные числовые значения, приближенные числовые значения, битовые строки, датовремя и интервалы. Мы перечислили все разновидности, однако в этой статье подробно будут рассматриваться лишь отдельные из них (битовые строки, например, не представляют особого интереса для обычных пользователей).

Кстати, если вы подумали, что датовремя — это опечатка, то ошиблись. К данной группе (datetime) относится большинство используемых в sql типов данных, связанных со временем (такие параметры, как временные интервалы, выделены в отдельную группу). В предыдущем примере уже встречались два типа данных из группы датовремя — date и time.

Следующий тип данных, с которым вы уже знакомы, — character varying (или просто varchar); он относится к группе символьных строк. Если varchar служит для хранения строк переменной длины, то встретившийся в третьем примере тип char предназначен для записи строк, имеющих фиксированное число символов. Например, в столбце last_name будут записываться строки из 13 символов вне зависимости от реально вводимых фамилий, будь то poe или penworth-chickering (в случае с poe оставшиеся 10 символов заполнятся пробелами).

С точки зрения пользователя, varchar и char имеют одинаковый смысл. Зачем нужно было вводить два типа? Дело в том, что на практике обычно приходится искать компромисс между быстродействием и экономией пространства на диске. Как правило, применение строк с фиксированной длиной дает некоторый выигрыш в скорости доступа, однако при слишком большой длине строк пространство на диске расходуется неэкономно. Если в appointments2 для каждой строки комментария резервировать по 256 символов, то это может оказаться нерационально; чаще всего строки будут значительно короче. С другой стороны, фамилии также имеют разную длину, но для них, как правило, требуется около 13 символов; в этом случае потери будут минимальными. Существует хорошее правило: если известно, что длина строки меняется незначительно либо она сравнительно невелика, то используйте char; в остальных случаях — varchar.

Следующие два новых типа данных — smallint и decimal — относятся к группе точных числовых значений. smallint — это сокращенное название от small integer (малое целое). В sql также предусмотрен тип данных integer. Наличие двух схожих типов и в этом случае объясняется соображением экономии пространства. В нашем примере значения параметра grade_level могут быть представлены с помощью двузначного числа, поэтому использован тип smallint; однако на практике не всегда известно, какие максимальные значения могут быть у параметров. Если такой информации нет, то применяйте integer. Реальный объем, выделяемый для хранения параметров типа smallint и integer, и соответствующий диапазон значений для этих параметров индивидуальны для каждой платформы.

Тип данных decimal, обычно используемый для учета финансовых показателей, позволяет задать шаблон с требуемым числом десятичных знаков. Поскольку этот тип служит для точной числовой записи, он гарантирует точность при выполнении математических операций над десятичными данными. Если для десятичных значений использовать типы данных из группы приближенной числовой записи, например float (floating point number — число с плавающей точкой), это приведет к погрешностям округления, поэтому для финансовых расчетов этот вариант не подходит. Для определения параметров типа decimal используется следующая форма записи:

где p — это число десятичных знаков, d — количество разрядов после запятой. Вместо p следует записывать общее число значащих цифр в используемых значениях, а вместо d — количество цифр после запятой.

Во врезке "Создание таблицы" показан полный вариант обобщенной записи команды create table. В нем присутствуют новые элементы и показан формат для всех рассмотренных типов данных (В принципе встречаются и другие типы данных, но пока мы их не рассматриваем).

На первых порах может показаться, что синтаксис sql-команд слишком сложен. Но вы легко в нем разберетесь, если внимательно изучили приведенные выше примеры. На схеме появился дополнительный элемент — вертикальная черта; он служит для разграничения альтернативных конструкций. Другими словами, при определении каждого столбца нужно выбрать подходящий тип данных (как вы помните, в квадратные скобки заключаются необязательные параметры, а в фигурные скобки — конструкции, которые могут повторяться многократно; в реальных sql-командах эти специальные символы не пишутся). В первой части схемы приведены полные названия для типов данных, во второй — их сокращенные названия; на практике можно использовать любые из них.

Первая часть статьи завершена. Вторая будет посвящена изучению dml-команд insert, select, update и delete. Также будут рассмотрены условия выборки данных, операторы сравнения и логические операторы, использование null-значений и троичная логика.

Создание таблицы. Синтаксис команды create table: в квадратных скобках указаны необязательные параметры, в фигурных — повторяющиеся конструкции.

create table table (column character (length) [ constraint ] | character varying (length) [ constraint ] | date [ constraint ] | time [ constraint ] | integer [ constraint ] | smallint [ constraint ] | decimal (precision, decimal places) [ constraint ] | float (precision) [ constraint ] [{ , column char (length) [ constraint ] | varchar (length) [ constraint ] | date [ constraint ] | time [ constraint ] | int [ constraint ] | smallint [ constraint ] | dec (precision, decimal places) [ constraint ] | float (precision) [ constraint ] }]) ;

Секрет названия sql

В начале 1970-х гг. в ibm приступили к практическому воплощению модели реляционных БД, предложенной д-ром Коддом. Дональд Чамберлин и группа других сотрудников подразделения перспективных исследований создали прототип языка, получивший название structured english query language (язык структурированных англоязычных запросов), или просто sequel. В дальнейшем он был расширен и подвергнут доработке. Новый вариант, предложенный ibm, получил название sequel/2. Его использовали как программный интерфейс (api) для проектирования первой реляционной системы БД фирмы ibm — system/r. Из соображений, связанных с правовыми нюансами, в ibm решили изменить название: вместо sequel/2 использовать sql (structured query language). Эту аббревиатуру часто произносят как "си-ку-эл".

Между ранними прототипами sequel и признанным ныне в различных организациях стандартом sql имеются существенные различия. Джим Мелтон, занимавшийся подготовкой стандарта sql-92, даже заявил, что многие ошибаются, считая, будто слово "структурированные" правильно отражает специфику этого языка (jim melton and alan r. simon "understanding the new sql: a complete guide". san francisco: morgan kaufmann, 1993. isbn: 1-55860-245-3). Поэтому фактически sql — это просто название, последовательность букв s-q-l и ничего более.

Хорошо Плохо

ЯЗЫК SQL: МАНИПУЛИРОВАНИЕ ДАННЫМИ

В ЭТОЙ ЛЕКЦИИ...

· Назначение языка Structure Query Language (SQL) и его особая роль при работе с базами данных.

· История возникновения и развития языка SQL.

· Запись операторов языка SQL.

· Выборка информации из баз данных с помощью оператора SELECT.

· построение операторов SQL, характеризующихся следующими особенностями:

· применение конструкции WHERE для выборки строк, удовлетворяющих различным условиям;

· сортировка результатов выполнения запроса с помощью конструкции ORDER BY;

· использование агрегирующих функций языка SQL;

· группирование выбранных данных с помощью конструкции GROUP BY;

· применение подзапросов;

· применение соединений таблиц;

· применение операций с множествами (UNION, INTERSECT, EXCEPT).

· Внесение изменений в базу данных с помощью операторов INSERT, UPDATE и DELETE.

Одним из языков, появившихся в результате разработки реляционной модели данных, является SQL, который в настоящее время получил очень широкое распространение и фактически превратился в стандартный язык реляционных баз данных. Стандарт на язык SQL был выпущен Национальным институтом стандартизации США (ANSI) в 1986 году, а в 1987 году Международная организация по стандартизации (ISO) приняла этот стандарт в качестве международного. В настоящее время язык SQL поддерживается сотнями СУБД различных типов, разработанных для самых разнообразных вычислительных платформ, начиная от персональных компьютеров и заканчивая мэйнфреймами.

В этой лекции используется определение языка SQL, данное в стандарте ISO.

Введение в язык SQL

В этой части рассмотрим назначение языка SQL, познакомимся с его историей и проанализируем причины, по которым он приобрел в настоящее время столь большое значение для приложений баз данных.

Назначение языка SQL

Любой язык, предназначенный для работы с базами данных, должен предоставлять пользователю следующие возможности:

· создавать базы данных и таблицы с полным описанием их структуры;



· выполнять основные операции манипулирования данными, такие как вставка, модификация и удаление данных из таблиц;

· выполнять простые и сложные запросы.

Кроме того, язык работы с базами данных должен решать все указанные выше задачи при минимальных усилиях со стороны пользователя, а структура и синтаксис его команд должны быть достаточно просты и доступны для изучения.

И, наконец, язык должен быть универсальным, т.е. отвечать некоторому признанному стандарту, что позволит использовать один и тот же синтаксис и структуру команд при переходе от одной СУБД, к другой. Современный стандарт языка SQL удовлетворяет практически всем этим требованиям.

SQL является примером языка преобразования данных, или же языка, предназначенного для работы с таблицами с целью преобразования входных данных к требуемому выходному виду. Язык SQL, который определен стандартом ISO, имеет два основных компонента:

· язык Data Definition Language (DDL), предназначенный для определения структур базы данных и управления доступом к данным;

· язык Data Manipulation Language (DML), предназначенный для выборки и обновления данных.

До появления стандарта SQL3 язык SQL включал только команды определения и манипулирования данными; в нем отсутствовали какие-либо команды управления ходом вычислений. Другими словами, в этом языке не было команд IF ... THEN ...ELSE, GO TO, DO ... WHILE и любых других, предназначенных для управления ходом вычислительного процесса. Подобные задачи должны были решаться программным путем, с помощью языков программирования или управления заданиями, либо интерактивно, в результате действий, выполняемых самим пользователем. По причине подобной незавершенности, с точки зрения организации вычислительного процесса, язык SQL мог использоваться двумя способами. Первый предусматривал интерактивную работу, заключающуюся во вводе пользователем с терминала отдельных операторов SQL. Второй состоял во внедрении операторов SQL в программы на процедурных языках.

Достоинства языка SQL3, формальное определение которого принято в 1999 году:

· Язык SQL относительно прост в изучении.

· Это непроцедурный язык, поэтому в нем необходимо указывать, какая информация должна быть получена, а не как ее можно получить. Иначе говоря, язык SQL не требует указания методов доступа к данным.

· Как и большинство современных языков, SQL поддерживает свободный формат записи операторов. Это означает, что при вводе отдельные элементы операторов не связаны с фиксированными позициями на экране.

· Структура команд задается набором ключевых слов, представляющих собой обычные слова английского языка, такие как CREATE TABLE -Создать таблицу, INSERT - Вставить, SELECT -Выбрать.

Например:

CREATE TABLE [Продажи] ( (S), [Наименование объекта] VARCHAR(15), [Стоимость] DECIMAL(7,2));

INSERT INTO [Объект] VALUES ("SG16", "Brown", 8300);

SELECT , [Наименование объекта], [Стоимость];

FROM [Продажи]

WHERE [Стоимость] > 10000;

· Язык SQL может использоваться широким кругом пользователей, включая администраторов баз данных (АБД), руководящий персонал компании, прикладных программистов и множество других конечных пользователей разных категорий.

В настоящее время для языка SQL существуют международные стандарты, формально определяющие его как стандартный язык создания и манипулирования реляционными базами данных, каковым он фактически и является.

История языка SQL

История реляционной модели данных, и косвенно языка SQL, началась в 1970 году с публикации основополагающей статьи Е. Ф. Кодда, который в то время работал в исследовательской лаборатории корпорации IBM в Сан-Хосе. В 1974 году Д. Чемберлен, работавший в той же лаборатории, публикует определение языка, получившего название "Structured English Query Language", или SEQUEL. В 1976 году была выпущена переработанная версия этого языка, SEQUEL/2; впоследствии его название пришлось изменить на SQL по юридическим соображениям - аббревиатура SEQUEL уже использовалась филологами. Но до настоящего времени многие по-прежнему произносят аббревиатуру SQL как "сиквэл", хотя официально ее рекомендуется читать как "эс-кю-эл".

В 1976 году на базе языка SEQUEL/2 корпорация IBM выпустила прототип СУБД, имевший название "System R". Назначение этой пробной версии состояло в проверке осуществимости реализации реляционной модели. Помимо прочих положительных аспектов, важнейшим из результатов выполнения этого проекта можно считать разработку собственно языка SQL, Однако корни этого языка уходят в язык SQUARE (Specifying Queries as Rational Expressions), который являлся предшественником проекта System R. Язык SQUARE был разработан как исследовательский инструмент для реализации реляционной алгебры посредством фраз, составленных на английском языке.

В конце 1970-х годов, компанией, которая ныне превратилась в корпорацию Oracle, была выпущена СУБД Oracle. Пожалуй, это самая первая из коммерческих реализаций реляционной СУБД, построенной на использовании языка SQL.

Чуть позже появилась СУБД INGRES, использовавшая язык запросов QUEL.

Этот язык был более структурированным, чем SQL, но семантика его менее близка к обычному английскому языку. Позднее, когда SQL был принят как стандартный язык реляционных баз данных, СУБД INGRES была полностью переведена на его использование. В 1981 году корпорация IBM выпустила свою первую коммерческую реляционную СУБД под названием SQL/DS (для среды DOS/VSE). В 1982 году вышла в свет версия этой системы для среды VM/CMS, а в 1983 году - для среды MVS, но уже под названием DB2.

В 1982 году Национальный институт стандартизации США (ANSI) начал работу над языком Relation Database Language (RDL), руководствуясь концептуальными документами, полученными от корпорации IBM. В 1983 году к этой работе подключилась Международная организация по стандартизации (ISO). Совместные усилия обеих организаций увенчались выпуском стандарта языка SQL. От названия RDL в 1984 году отказались, а черновой проект языка был переработан с целью приближения к уже существующим реализациям языка SQL.

Исходный вариант стандарта, который был выпущен ISO в 1987 году, вызвал волну критических замечаний. В частности, Дейт, известный исследователь в этой области, указывал, что в стандарте опущены важнейшие функции, включая средства обеспечения ссылочной целостности, и некоторые реляционные операторы.

Кроме того, он отметил чрезмерную избыточность языка - один и тот же запрос можно было записать в нескольких различных вариантах. Большая часть критических замечаний была признана справедливой, и необходимые коррективы были внесены в стандарт еще до его публикации. Однако было решено, что важнее выпустить стандарт как можно быстрее, чтобы он смог исполнять роль общей основы, на которой и сам язык, и его реализации могли бы развиваться далее, чем дожидаться, пока будут определены и согласованы все функции, которые разные специалисты считают обязательными для подобного языка.

В 1989 году ISO опубликовала дополнение к стандарту, в котором определялись функции поддержки целостности данных. В 1992 году была выпущена первая, существенно пересмотренная версия стандарта ISO, которую иногда называют SQL2 или SQL-92. Хотя некоторые из функций были определены в этом стандарте впервые, многие из них уже были полностью или частично реализованы в одной или нескольких коммерческих реализациях языка SQL.

А следующая версия стандарта, которую принято называть SQL3, была выпущена только в 1999 году. Эта версия содержит дополнительные средства поддержки объектно-ориентированных функций управления данными.

Функции, которые добавляются к стандарту языка разработчиками коммерческих реализаций, принято называть расширениями. Например, в стандарте языка SQL определено шесть различных типов данных, которые могут храниться в базах данных. Во многих реализациях этот список дополняется разнообразными расширениями. Каждая из реализаций языка называется диалектом. Не существует двух совершенно идентичных диалектов, как в настоящее время не существует и ни одного диалекта, полностью соответствующего стандарту ISO.

Более того, поскольку разработчики баз данных вводят в системы все новые функциональные средства, они постоянно расширяют свои диалекты языка SQL, в результате чего отдельные диалекты все больше и больше отличаются друг от друга. Однако основное ядро языка SQL остается более или менее стандартизованным во всех реализациях.

Хотя исходные концепции языка SQL были разработаны корпорацией IBM, его важность очень скоро подтолкнула и других разработчиков к созданию собственных реализаций. В настоящее время на рынке доступны буквально сотни продуктов, построенных на использовании языка SQL, причем постоянно приходится слышать о выпуске все новых и новых версий,

Leran2002 9 апреля 2015 в 12:31

Учебник по языку SQL (DDL, DML) на примере диалекта MS SQL Server. Часть первая

  • Microsoft SQL Server ,
  • SQL
  • Tutorial

О чем данный учебник

Данный учебник представляет собой что-то типа «штампа моей памяти» по языку SQL (DDL, DML), т.е. это информация, которая накопилась по ходу профессиональной деятельности и постоянно хранится в моей голове. Это для меня достаточный минимум, который применяется при работе с базами данных наиболее часто. Если встает необходимость применять более полные конструкции SQL, то я обычно обращаюсь за помощью в библиотеку MSDN расположенную в интернет. На мой взгляд, удержать все в голове очень сложно, да и нет особой необходимости в этом. Но знать основные конструкции очень полезно, т.к. они применимы практически в таком же виде во многих реляционных базах данных, таких как Oracle, MySQL, Firebird. Отличия в основном состоят в типах данных, которые могут отличаться в деталях. Основных конструкций языка SQL не так много, и при постоянной практике они быстро запоминаются. Например, для создания объектов (таблиц, ограничений, индексов и т.п.) достаточно иметь под рукой текстовый редактор среды (IDE) для работы с базой данных, и нет надобности изучать визуальный инструментарий заточенный для работы с конкретным типом баз данных (MS SQL, Oracle, MySQL, Firebird, …). Это удобно и тем, что весь текст находится перед глазами, и не нужно бегать по многочисленным вкладкам для того чтобы создать, например, индекс или ограничение. При постоянной работе с базой данных, создать, изменить, а особенно пересоздать объект при помощи скриптов получается в разы быстрее, чем если это делать в визуальном режиме. Так же в скриптовом режиме (соответственно, при должной аккуратности), проще задавать и контролировать правила наименования объектов (мое субъективное мнение). К тому же скрипты удобно использовать в случае, когда изменения, делаемые в одной базе данных (например, тестовой), необходимо перенести в таком же виде в другую базу (продуктивную).

Язык SQL подразделяется на несколько частей, здесь я рассмотрю 2 наиболее важные его части:
  • DML – Data Manipulation Language (язык манипулирования данными), который содержит следующие конструкции:
    • SELECT – выборка данных
    • INSERT – вставка новых данных
    • UPDATE – обновление данных
    • DELETE – удаление данных
    • MERGE – слияние данных
Т.к. я являюсь практиком, как таковой теории в данном учебнике будет мало, и все конструкции будут объясняться на практических примерах. К тому же я считаю, что язык программирования, а особенно SQL, можно освоить только на практике, самостоятельно пощупав его и поняв, что происходит, когда вы выполняете ту или иную конструкцию.

Данный учебник создан по принципу Step by Step, т.е. необходимо читать его последовательно и желательно сразу же выполняя примеры. Но если по ходу у вас возникает потребность узнать о какой-то команде более детально, то используйте конкретный поиск в интернет, например, в библиотеке MSDN.

При написании данного учебника использовалась база данных MS SQL Server версии 2014, для выполнения скриптов я использовал MS SQL Server Management Studio (SSMS).

Кратко о MS SQL Server Management Studio (SSMS)

SQL Server Management Studio (SSMS) - утилита для Microsoft SQL Server для конфигурирования, управления и администрирования компонентов базы данных. Данная утилита содержит редактор скриптов (который в основном и будет нами использоваться) и графическую программу, которая работает с объектами и настройками сервера. Главным инструментом SQL Server Management Studio является Object Explorer, который позволяет пользователю просматривать, извлекать объекты сервера, а также управлять ими. Данный текст частично позаимствован с википедии.

Для создания нового редактора скрипта используйте кнопку «New Query/Новый запрос»:

Для смены текущей базы данных можно использовать выпадающий список:

Для выполнения определенной команды (или группы команд) выделите ее и нажмите кнопку «Execute/Выполнить» или же клавишу «F5». Если в редакторе в текущий момент находится только одна команда, или же вам необходимо выполнить все команды, то ничего выделять не нужно.

После выполнения скриптов, в особенности создающих объекты (таблицы, столбцы, индексы), чтобы увидеть изменения, используйте обновление из контекстного меню, выделив соответствующую группу (например, Таблицы), саму таблицу или группу Столбцы в ней.

Собственно, это все, что нам необходимо будет знать для выполнения приведенных здесь примеров. Остальное по утилите SSMS несложно изучить самостоятельно.

Немного теории

Реляционная база данных (РБД, или далее в контексте просто БД) представляет из себя совокупность таблиц, связанных между собой. Если говорить грубо, то БД – файл в котором данные хранятся в структурированном виде.

СУБД – Система Управления этими Базами Данных, т.е. это комплекс инструментов для работы с конкретным типом БД (MS SQL, Oracle, MySQL, Firebird, …).

Примечание
Т.к. в жизни, в разговорной речи, мы по большей части говорим: «БД Oracle», или даже просто «Oracle», на самом деле подразумевая «СУБД Oracle», то в контексте данного учебника иногда будет употребляться термин БД. Из контекста, я думаю, будет понятно, о чем именно идет речь.

Таблица представляет из себя совокупность столбцов. Столбцы, так же могут называть полями или колонками, все эти слова будут использоваться как синонимы, выражающие одно и тоже.

Таблица – это главный объект РБД, все данные РБД хранятся построчно в столбцах таблицы. Строки, записи – тоже синонимы.

Для каждой таблицы, как и ее столбцов задаются наименования, по которым впоследствии к ним идет обращение.
Наименование объекта (имя таблицы, имя столбца, имя индекса и т.п.) в MS SQL может иметь максимальную длину 128 символов.

Для справки – в БД ORACLE наименования объектов могут иметь максимальную длину 30 символов. Поэтому для конкретной БД нужно вырабатывать свои правила для наименования объектов, чтобы уложиться в лимит по количеству символов.

SQL - язык позволяющий осуществлять запросы в БД посредством СУБД. В конкретной СУБД, язык SQL может иметь специфичную реализацию (свой диалект).

DDL и DML - подмножество языка SQL:

  • Язык DDL служит для создания и модификации структуры БД, т.е. для создания/изменения/удаления таблиц и связей.
  • Язык DML позволяет осуществлять манипуляции с данными таблиц, т.е. с ее строками. Он позволяет делать выборку данных из таблиц, добавлять новые данные в таблицы, а так же обновлять и удалять существующие данные.

В языке SQL можно использовать 2 вида комментариев (однострочный и многострочный):

Однострочный комментарий
и

/* многострочный комментарий */

Собственно, все для теории этого будет достаточно.

DDL – Data Definition Language (язык описания данных)

Для примера рассмотрим таблицу с данными о сотрудниках, в привычном для человека не являющимся программистом виде:

В данном случае столбцы таблицы имеют следующие наименования: Табельный номер, ФИО, Дата рождения, E-mail, Должность, Отдел.

Каждый из этих столбцов можно охарактеризовать по типу содержащемся в нем данных:

  • Табельный номер – целое число
  • ФИО – строка
  • Дата рождения – дата
  • E-mail – строка
  • Должность – строка
  • Отдел – строка
Тип столбца – характеристика, которая говорит о том какого рода данные может хранить данный столбец.

Для начала будет достаточно запомнить только следующие основные типы данных используемые в MS SQL:

Значение Обозначение в MS SQL Описание
Строка переменной длины varchar(N)
и
nvarchar(N)
При помощи числа N, мы можем указать максимально возможную длину строки для соответствующего столбца. Например, если мы хотим сказать, что значение столбца «ФИО» может содержать максимум 30 символов, то необходимо задать ей тип nvarchar(30).
Отличие varchar от nvarchar заключается в том, что varchar позволяет хранить строки в формате ASCII, где один символ занимает 1 байт, а nvarchar хранит строки в формате Unicode, где каждый символ занимает 2 байта.
Тип varchar стоит использовать только в том случае, если вы на 100% уверены, что в данном поле не потребуется хранить Unicode символы. Например, varchar можно использовать для хранения адресов электронной почты, т.к. они обычно содержат только ASCII символы.
Строка фиксированной длины char(N)
и
nchar(N)
От строки переменной длины данный тип отличается тем, что если длина строка меньше N символов, то она всегда дополняется справа до длины N пробелами и сохраняется в БД в таком виде, т.е. в базе данных она занимает ровно N символов (где один символ занимает 1 байт для char и 2 байта для типа nchar). На моей практике данный тип очень редко находит применение, а если и используется, то он используется в основном в формате char(1), т.е. когда поле определяется одним символом.
Целое число int Данный тип позволяет нам использовать в столбце только целые числа, как положительные, так и отрицательные. Для справки (сейчас это не так актуально для нас) – диапазон чисел который позволяет тип int от -2 147 483 648 до 2 147 483 647. Обычно это основной тип, который используется для задания идентификаторов.
Вещественное или действительное число float Если говорить простым языком, то это числа, в которых может присутствовать десятичная точка (запятая).
Дата date Если в столбце необходимо хранить только Дату, которая состоит из трех составляющих: Числа, Месяца и Года. Например, 15.02.2014 (15 февраля 2014 года). Данный тип можно использовать для столбца «Дата приема», «Дата рождения» и т.п., т.е. в тех случаях, когда нам важно зафиксировать только дату, или, когда составляющая времени нам не важна и ее можно отбросить или если она не известна.
Время time Данный тип можно использовать, если в столбце необходимо хранить только данные о времени, т.е. Часы, Минуты, Секунды и Миллисекунды. Например, 17:38:31.3231603
Например, ежедневное «Время отправления рейса».
Дата и время datetime Данный тип позволяет одновременно сохранить и Дату, и Время. Например, 15.02.2014 17:38:31.323
Для примера это может быть дата и время какого-нибудь события.
Флаг bit Данный тип удобно применять для хранения значений вида «Да»/«Нет», где «Да» будет сохраняться как 1, а «Нет» будет сохраняться как 0.

Так же значение поля, в том случае если это не запрещено, может быть не указано, для этой цели используется ключевое слово NULL.

Для выполнения примеров создадим тестовую базу под названием Test.

Простую базу данных (без указания дополнительных параметров) можно создать, выполнив следующую команду:

CREATE DATABASE Test
Удалить базу данных можно командой (стоит быть очень осторожным с данной командой):

DROP DATABASE Test
Для того, чтобы переключиться на нашу базу данных, можно выполнить команду:

USE Test
Или же выберите базу данных Test в выпадающем списке в области меню SSMS. При работе мною чаще используется именно этот способ переключения между базами.

Теперь в нашей БД мы можем создать таблицу используя описания в том виде как они есть, используя пробелы и символы кириллицы:

CREATE TABLE [Сотрудники]([Табельный номер] int, [ФИО] nvarchar(30), [Дата рождения] date, nvarchar(30), [Должность] nvarchar(30), [Отдел] nvarchar(30))
В данном случае нам придется заключать имена в квадратные скобки […].

Но в базе данных для большего удобства все наименования объектов лучше задавать на латинице и не использовать в именах пробелы. В MS SQL обычно в данном случае каждое слово начинается с прописной буквы, например, для поля «Табельный номер», мы могли бы задать имя PersonnelNumber. Так же в имени можно использовать цифры, например, PhoneNumber1.

На заметку
В некоторых СУБД более предпочтительным может быть следующий формат наименований «PHONE_NUMBER», например, такой формат часто используется в БД ORACLE. Естественно при задании имя поля желательно чтобы оно не совпадало с ключевыми словами используемые в СУБД.

По этой причине можете забыть о синтаксисе с квадратными скобками и удалить таблицу [Сотрудники]:

DROP TABLE [Сотрудники]
Например, таблицу с сотрудниками можно назвать «Employees», а ее полям можно задать следующие наименования:

  • ID – Табельный номер (Идентификатор сотрудника)
  • Name – ФИО
  • Birthday – Дата рождения
  • Email – E-mail
  • Position – Должность
  • Department – Отдел
Очень часто для наименования поля идентификатора используется слово ID.

Теперь создадим нашу таблицу:

CREATE TABLE Employees(ID int, Name nvarchar(30), Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Для того, чтобы задать обязательные для заполнения столбцы, можно использовать опцию NOT NULL.

Для уже существующей таблицы поля можно переопределить при помощи следующих команд:

Обновление поля ID ALTER TABLE Employees ALTER COLUMN ID int NOT NULL -- обновление поля Name ALTER TABLE Employees ALTER COLUMN Name nvarchar(30) NOT NULL

На заметку
Общая концепция языка SQL для большинства СУБД остается одинаковой (по крайней мере, об этом я могу судить по тем СУБД, с которыми мне довелось поработать). Отличие DDL в разных СУБД в основном заключаются в типах данных (здесь могут отличаться не только их наименования, но и детали их реализации), так же может немного отличаться и сама специфика реализации языка SQL (т.е. суть команд одна и та же, но могут быть небольшие различия в диалекте, увы, но одного стандарта нет). Владея основами SQL вы легко сможете перейти с одной СУБД на другую, т.к. вам в данном случае нужно будет только разобраться в деталях реализации команд в новой СУБД, т.е. в большинстве случаев достаточно будет просто провести аналогию.

Создание таблицы CREATE TABLE Employees(ID int, -- в ORACLE тип int - это эквивалент(обертка) для number(38) Name nvarchar2(30), -- nvarchar2 в ORACLE эквивалентен nvarchar в MS SQL Birthday date, Email nvarchar2(30), Position nvarchar2(30), Department nvarchar2(30)); -- обновление полей ID и Name (здесь вместо ALTER COLUMN используется MODIFY(…)) ALTER TABLE Employees MODIFY(ID int NOT NULL,Name nvarchar2(30) NOT NULL); -- добавление PK (в данном случае конструкция выглядит как и в MS SQL, она будет показана ниже) ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY(ID);
Для ORACLE есть отличия в плане реализации типа varchar2, его кодировка зависит настроек БД и текст может сохраняться, например, в кодировке UTF-8. Помимо этого длину поля в ORACLE можно задать как в байтах, так и в символах, для этого используются дополнительные опции BYTE и CHAR, которые указываются после длины поля, например:

NAME varchar2(30 BYTE) -- вместимость поля будет равна 30 байтам NAME varchar2(30 CHAR) -- вместимость поля будет равна 30 символов
Какая опция будет использоваться по умолчанию BYTE или CHAR, в случае простого указания в ORACLE типа varchar2(30), зависит от настроек БД, так же она иногда может задаваться в настройках IDE. В общем порой можно легко запутаться, поэтому в случае ORACLE, если используется тип varchar2 (а это здесь порой оправдано, например, при использовании кодировки UTF-8) я предпочитаю явно прописывать CHAR (т.к. обычно длину строки удобнее считать именно в символах).

Но в данном случае если в таблице уже есть какие-нибудь данные, то для успешного выполнения команд необходимо, чтобы во всех строках таблицы поля ID и Name были обязательно заполнены. Продемонстрируем это на примере, вставим в таблицу данные в поля ID, Position и Department, это можно сделать следующим скриптом:

INSERT Employees(ID,Position,Department) VALUES (1000,N"Директор",N"Администрация"), (1001,N"Программист",N"ИТ"), (1002,N"Бухгалтер",N"Бухгалтерия"), (1003,N"Старший программист",N"ИТ")
В данном случае, команда INSERT также выдаст ошибку, т.к. при вставке мы не указали значения обязательного поля Name.
В случае, если бы у нас в первоначальной таблице уже имелись эти данные, то команда «ALTER TABLE Employees ALTER COLUMN ID int NOT NULL» выполнилась бы успешно, а команда «ALTER TABLE Employees ALTER COLUMN Name int NOT NULL» выдала сообщение об ошибке, что в поле Name имеются NULL (не указанные) значения.

Добавим значения для полю Name и снова зальем данные:


Так же опцию NOT NULL можно использовать непосредственно при создании новой таблицы, т.е. в контексте команды CREATE TABLE.

Сначала удалим таблицу при помощи команды:

DROP TABLE Employees
Теперь создадим таблицу с обязательными для заполнения столбцами ID и Name:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Можно также после имени столбца написать NULL, что будет означать, что в нем будут допустимы NULL-значения (не указанные), но этого делать не обязательно, так как данная характеристика подразумевается по умолчанию.

Если требуется наоборот сделать существующий столбец необязательным для заполнения, то используем следующий синтаксис команды:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(30) NULL
Или просто:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(30)
Так же данной командой мы можем изменить тип поля на другой совместимый тип, или же изменить его длину. Для примера давайте расширим поле Name до 50 символов:

ALTER TABLE Employees ALTER COLUMN Name nvarchar(50)

Первичный ключ

При создании таблицы желательно, чтобы она имела уникальный столбец или же совокупность столбцов, которая уникальна для каждой ее строки – по данному уникальному значению можно однозначно идентифицировать запись. Такое значение называется первичным ключом таблицы. Для нашей таблицы Employees таким уникальным значением может быть столбец ID (который содержит «Табельный номер сотрудника» - пускай в нашем случае данное значение уникально для каждого сотрудника и не может повторяться).

Создать первичный ключ к уже существующей таблице можно при помощи команды:

ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY(ID)
Где «PK_Employees» это имя ограничения, отвечающего за первичный ключ. Обычно для наименования первичного ключа используется префикс «PK_» после которого идет имя таблицы.

Если первичный ключ состоит из нескольких полей, то эти поля необходимо перечислить в скобках через запятую:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY(поле1,поле2,…)
Стоит отметить, что в MS SQL все поля, которые входят в первичный ключ, должны иметь характеристику NOT NULL.

Так же первичный ключ можно определить непосредственно при создании таблицы, т.е. в контексте команды CREATE TABLE. Удалим таблицу:

DROP TABLE Employees
А затем создадим ее, используя следующий синтаксис:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30), CONSTRAINT PK_Employees PRIMARY KEY(ID) -- описываем PK после всех полей, как ограничение)
После создания зальем в таблицу данные:

INSERT Employees(ID,Position,Department,Name) VALUES (1000,N"Директор",N"Администрация",N"Иванов И.И."), (1001,N"Программист",N"ИТ",N"Петров П.П."), (1002,N"Бухгалтер",N"Бухгалтерия",N"Сидоров С.С."), (1003,N"Старший программист",N"ИТ",N"Андреев А.А.")
Если первичный ключ в таблице состоит только из значений одного столбца, то можно использовать следующий синтаксис:

CREATE TABLE Employees(ID int NOT NULL CONSTRAINT PK_Employees PRIMARY KEY, -- указываем как характеристику поля Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
На самом деле имя ограничения можно и не задавать, в этом случае ему будет присвоено системное имя (наподобие «PK__Employee__3214EC278DA42077»):

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30), PRIMARY KEY(ID))
Или:

CREATE TABLE Employees(ID int NOT NULL PRIMARY KEY, Name nvarchar(30) NOT NULL, Birthday date, Email nvarchar(30), Position nvarchar(30), Department nvarchar(30))
Но я бы рекомендовал для постоянных таблиц всегда явно задавать имя ограничения, т.к. по явно заданному и понятному имени с ним впоследствии будет легче проводить манипуляции, например, можно произвести его удаление:

ALTER TABLE Employees DROP CONSTRAINT PK_Employees
Но такой краткий синтаксис, без указания имен ограничений, удобно применять при создании временных таблиц БД (имя временной таблицы начинается с # или ), которые после использования будут удалены.

Подытожим

На данный момент мы рассмотрели следующие команды:
  • CREATE TABLE имя_таблицы (перечисление полей и их типов, ограничений) – служит для создания новой таблицы в текущей БД;
  • DROP TABLE имя_таблицы – служит для удаления таблицы из текущей БД;
  • ALTER TABLE имя_таблицы ALTER COLUMN имя_столбца … – служит для обновления типа столбца или для изменения его настроек (например для задания характеристики NULL или NOT NULL);
  • ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY (поле1, поле2,…) – добавление первичного ключа к уже существующей таблице;
  • ALTER TABLE имя_таблицы DROP CONSTRAINT имя_ограничения – удаление ограничения из таблицы.

Немного про временные таблицы

Вырезка из MSDN. В MS SQL Server существует два вида временных таблиц: локальные (#) и глобальные (). Локальные временные таблицы видны только их создателям до завершения сеанса соединения с экземпляром SQL Server, как только они впервые созданы. Локальные временные таблицы автоматически удаляются после отключения пользователя от экземпляра SQL Server. Глобальные временные таблицы видны всем пользователям в течение любых сеансов соединения после создания этих таблиц и удаляются, когда все пользователи, ссылающиеся на эти таблицы, отключаются от экземпляра SQL Server.

Временные таблицы создаются в системной базе tempdb, т.е. создавая их мы не засоряем основную базу, в остальном же временные таблицы полностью идентичны обычным таблицам, их так же можно удалить при помощи команды DROP TABLE. Чаще используются локальные (#) временные таблицы.

Для создания временной таблицы можно использовать команду CREATE TABLE:

CREATE TABLE #Temp(ID int, Name nvarchar(30))
Так как временная таблица в MS SQL аналогична обычной таблице, ее соответственно так же можно удалить самому командой DROP TABLE:

DROP TABLE #Temp

Так же временную таблицу (как собственно и обычную таблицу) можно создать и сразу заполнить данными возвращаемые запросом используя синтаксис SELECT … INTO:

SELECT ID,Name INTO #Temp FROM Employees

На заметку
В разных СУБД реализация временных таблиц может отличаться. Например, в СУБД ORACLE и Firebird структура временных таблиц должна быть определена заранее командой CREATE GLOBAL TEMPORARY TABLE с указанием специфики хранения в ней данных, дальше уже пользователь видит ее среди основных таблиц и работает с ней как с обычной таблицей.

Нормализация БД – дробление на подтаблицы (справочники) и определение связей

Наша текущая таблица Employees имеет недостаток в том, что в полях Position и Department пользователь может ввести любой текст, что в первую очередь чревато ошибками, так как он у одного сотрудника может указать в качестве отдела просто «ИТ», а у второго сотрудника, например, ввести «ИТ-отдел», у третьего «IT». В итоге будет непонятно, что имел ввиду пользователь, т.е. являются ли данные сотрудники работниками одного отдела, или же пользователь описался и это 3 разных отдела? А тем более, в этом случае, мы не сможем правильно сгруппировать данные для какого-то отчета, где, может требоваться показать количество сотрудников в разрезе каждого отдела.

Второй недостаток заключается в объеме хранения данной информации и ее дублированием, т.е. для каждого сотрудника указывается полное наименование отдела, что требует в БД места для хранения каждого символа из названия отдела.

Третий недостаток – сложность обновления данных полей, в случае если изменится название какой-то должности, например, если потребуется переименовать должность «Программист», на «Младший программист». В данном случае нам придется вносить изменения в каждую строчку таблицы, у которой Должность равняется «Программист».

Чтобы избежать данных недостатков и применяется, так называемая, нормализация базы данных – дробление ее на подтаблицы, таблицы справочники. Не обязательно лезть в дебри теории и изучать что из себя представляют нормальные формы, достаточно понимать суть нормализации.

Давайте создадим 2 таблицы справочники «Должности» и «Отделы», первую назовем Positions, а вторую соответственно Departments:

CREATE TABLE Positions(ID int IDENTITY(1,1) NOT NULL CONSTRAINT PK_Positions PRIMARY KEY, Name nvarchar(30) NOT NULL) CREATE TABLE Departments(ID int IDENTITY(1,1) NOT NULL CONSTRAINT PK_Departments PRIMARY KEY, Name nvarchar(30) NOT NULL)
Заметим, что здесь мы использовали новую опцию IDENTITY, которая говорит о том, что данные в столбце ID будут нумероваться автоматически, начиная с 1, с шагом 1, т.е. при добавлении новых записей им последовательно будут присваиваться значения 1, 2, 3, и т.д. Такие поля обычно называют автоинкрементными. В таблице может быть определено только одно поле со свойством IDENTITY и обычно, но необязательно, такое поле является первичным ключом для данной таблицы.

На заметку
В разных СУБД реализация полей со счетчиком может делаться по своему. В MySQL, например, такое поле определяется при помощи опции AUTO_INCREMENT. В ORACLE и Firebird раньше данную функциональность можно было съэмулировать при помощи использования последовательностей (SEQUENCE). Но насколько я знаю в ORACLE сейчас добавили опцию GENERATED AS IDENTITY.

Давайте заполним эти таблицы автоматически, на основании текущих данных записанных в полях Position и Department таблицы Employees:

Заполняем поле Name таблицы Positions, уникальными значениями из поля Position таблицы Employees INSERT Positions(Name) SELECT DISTINCT Position FROM Employees WHERE Position IS NOT NULL -- отбрасываем записи у которых позиция не указана
То же самое проделаем для таблицы Departments:

INSERT Departments(Name) SELECT DISTINCT Department FROM Employees WHERE Department IS NOT NULL
Если теперь мы откроем таблицы Positions и Departments, то увидим пронумерованный набор значений по полю ID:

SELECT * FROM Positions

SELECT * FROM Departments

Данные таблицы теперь и будут играть роль справочников для задания должностей и отделов. Теперь мы будем ссылаться на идентификаторы должностей и отделов. В первую очередь создадим новые поля в таблице Employees для хранения данных идентификаторов:

Добавляем поле для ID должности ALTER TABLE Employees ADD PositionID int -- добавляем поле для ID отдела ALTER TABLE Employees ADD DepartmentID int
Тип ссылочных полей должен быть каким же, как и в справочниках, в данном случае это int.

Так же добавить в таблицу сразу несколько полей можно одной командой, перечислив поля через запятую:

ALTER TABLE Employees ADD PositionID int, DepartmentID int
Теперь пропишем ссылки (ссылочные ограничения - FOREIGN KEY) для этих полей, для того чтобы пользователь не имел возможности записать в данные поля, значения, отсутствующие среди значений ID находящихся в справочниках.

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID)
И то же самое сделаем для второго поля:

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID)
Теперь пользователь в данные поля сможет занести только значения ID из соответствующего справочника. Соответственно, чтобы использовать новый отдел или должность, он первым делом должен будет добавить новую запись в соответствующий справочник. Т.к. должности и отделы теперь хранятся в справочниках в одном единственном экземпляре, то чтобы изменить название, достаточно изменить его только в справочнике.

Имя ссылочного ограничения, обычно является составным, оно состоит из префикса «FK_», затем идет имя таблицы и после знака подчеркивания идет имя поля, которое ссылается на идентификатор таблицы-справочника.

Идентификатор (ID) обычно является внутренним значением, которое используется только для связей и какое значение там хранится, в большинстве случаев абсолютно безразлично, поэтому не нужно пытаться избавиться от дырок в последовательности чисел, которые возникают по ходу работы с таблицей, например, после удаления записей из справочника.

ALTER TABLE таблица ADD CONSTRAINT имя_ограничения FOREIGN KEY(поле1,поле2,…) REFERENCES таблица_справочник(поле1,поле2,…)
В данном случае в таблице «таблица_справочник» первичный ключ представлен комбинацией из нескольких полей (поле1, поле2,…).

Собственно, теперь обновим поля PositionID и DepartmentID значениями ID из справочников. Воспользуемся для этой цели DML командой UPDATE:

UPDATE e SET PositionID=(SELECT ID FROM Positions WHERE Name=e.Position), DepartmentID=(SELECT ID FROM Departments WHERE Name=e.Department) FROM Employees e
Посмотрим, что получилось, выполнив запрос:

SELECT * FROM Employees

Всё, поля PositionID и DepartmentID заполнены соответствующие должностям и отделам идентификаторами надобности в полях Position и Department в таблице Employees теперь нет, можно удалить эти поля:

ALTER TABLE Employees DROP COLUMN Position,Department
Теперь таблица у нас приобрела следующий вид:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID
1000 Иванов И.И. NULL NULL 2 1
1001 Петров П.П. NULL NULL 3 3
1002 Сидоров С.С. NULL NULL 1 2
1003 Андреев А.А. NULL NULL 4 3

Т.е. мы в итоге избавились от хранения избыточной информации. Теперь, по номерам должности и отдела можем однозначно определить их названия, используя значения в таблицах-справочниках:

SELECT e.ID,e.Name,p.Name PositionName,d.Name DepartmentName FROM Employees e LEFT JOIN Departments d ON d.ID=e.DepartmentID LEFT JOIN Positions p ON p.ID=e.PositionID

В инспекторе объектов мы можем увидеть все объекты, созданные для в данной таблицы. Отсюда же можно производить разные манипуляции с данными объектами – например, переименовывать или удалять объекты.

Так же стоит отметить, что таблица может ссылаться сама на себя, т.е. можно создать рекурсивную ссылку. Для примера добавим в нашу таблицу с сотрудниками еще одно поле ManagerID, которое будет указывать на сотрудника, которому подчиняется данный сотрудник. Создадим поле:

ALTER TABLE Employees ADD ManagerID int
В данном поле допустимо значение NULL, поле будет пустым, если, например, над сотрудником нет вышестоящих.

Теперь создадим FOREIGN KEY на таблицу Employees:

ALTER TABLE Employees ADD CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID)
Давайте, теперь создадим диаграмму и посмотрим, как выглядят на ней связи между нашими таблицами:

В результате мы должны увидеть следующую картину (таблица Employees связана с таблицами Positions и Depertments, а так же ссылается сама на себя):

Напоследок стоит сказать, что ссылочные ключи могут включать дополнительные опции ON DELETE CASCADE и ON UPDATE CASCADE, которые говорят о том, как вести себя при удалении или обновлении записи, на которую есть ссылки в таблице-справочнике. Если эти опции не указаны, то мы не можем изменить ID в таблице справочнике у той записи, на которую есть ссылки из другой таблицы, так же мы не сможем удалить такую запись из справочника, пока не удалим все строки, ссылающиеся на эту запись или, же обновим в этих строках ссылки на другое значение.

Для примера пересоздадим таблицу с указанием опции ON DELETE CASCADE для FK_Employees_DepartmentID:

DROP TABLE Employees CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, ManagerID int, CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID) ON DELETE CASCADE, CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID)) INSERT Employees (ID,Name,Birthday,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219",2,1,NULL), (1001,N"Петров П.П.","19831203",3,3,1003), (1002,N"Сидоров С.С.","19760607",1,2,1000), (1003,N"Андреев А.А.","19820417",4,3,1000)
Удалим отдел с идентификатором 3 из таблицы Departments:

DELETE Departments WHERE ID=3
Посмотрим на данные таблицы Employees:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID ManagerID
1000 Иванов И.И. 1955-02-19 NULL 2 1 NULL
1002 Сидоров С.С. 1976-06-07 NULL 1 2 1000

Как видим, данные по отделу 3 из таблицы Employees так же удалились.

Опция ON UPDATE CASCADE ведет себя аналогично, но действует она при обновлении значения ID в справочнике. Например, если мы поменяем ID должности в справочнике должностей, то в этом случае будет производиться обновление DepartmentID в таблице Employees на новое значение ID которое мы задали в справочнике. Но в данном случае это продемонстрировать просто не получится, т.к. у колонки ID в таблице Departments стоит опция IDENTITY, которая не позволит нам выполнить следующий запрос (сменить идентификатор отдела 3 на 30):

UPDATE Departments SET ID=30 WHERE ID=3
Главное понять суть этих 2-х опций ON DELETE CASCADE и ON UPDATE CASCADE. Я применяю эти опции очень в редких случаях и рекомендую хорошо подумать, прежде чем указывать их в ссылочном ограничении, т.к. при нечаянном удалении записи из таблицы справочника это может привести к большим проблемам и создать цепную реакцию.

Восстановим отдел 3:

Даем разрешение на добавление/изменение IDENTITY значения SET IDENTITY_INSERT Departments ON INSERT Departments(ID,Name) VALUES(3,N"ИТ") -- запрещаем добавление/изменение IDENTITY значения SET IDENTITY_INSERT Departments OFF
Полностью очистим таблицу Employees при помощи команды TRUNCATE TABLE:

TRUNCATE TABLE Employees
И снова перезальем в нее данные используя предыдущую команду INSERT:

INSERT Employees (ID,Name,Birthday,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219",2,1,NULL), (1001,N"Петров П.П.","19831203",3,3,1003), (1002,N"Сидоров С.С.","19760607",1,2,1000), (1003,N"Андреев А.А.","19820417",4,3,1000)

Подытожим

На данным момент к нашим знаниям добавилось еще несколько команд DDL:
  • Добавление свойства IDENTITY к полю – позволяет сделать это поле автоматически заполняемым (полем-счетчиком) для таблицы;
  • ALTER TABLE имя_таблицы ADD перечень_полей_с_характеристиками – позволяет добавить новые поля в таблицу;
  • ALTER TABLE имя_таблицы DROP COLUMN перечень_полей – позволяет удалить поля из таблицы;
  • ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения FOREIGN KEY (поля) REFERENCES таблица_справочник(поля) – позволяет определить связь между таблицей и таблицей справочником.

Прочие ограничения – UNIQUE, DEFAULT, CHECK

При помощи ограничения UNIQUE можно сказать что значения для каждой строки в данном поле или в наборе полей должно быть уникальным. В случае таблицы Employees, такое ограничение мы можем наложить на поле Email. Только предварительно заполним Email значениями, если они еще не определены:

UPDATE Employees SET Email="[email protected]" WHERE ID=1000 UPDATE Employees SET Email="[email protected]" WHERE ID=1001 UPDATE Employees SET Email="[email protected]" WHERE ID=1002 UPDATE Employees SET Email="[email protected]" WHERE ID=1003
А теперь можно наложить на это поле ограничение-уникальности:

ALTER TABLE Employees ADD CONSTRAINT UQ_Employees_Email UNIQUE(Email)
Теперь пользователь не сможет внести один и тот же E-Mail у нескольких сотрудников.

Ограничение уникальности обычно именуется следующим образом – сначала идет префикс «UQ_», далее название таблицы и после знака подчеркивания идет имя поля, на которое накладывается данное ограничение.

Соответственно если уникальной в разрезе строк таблицы должна быть комбинация полей, то перечисляем их через запятую:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения UNIQUE(поле1,поле2,…)
При помощи добавления к полю ограничения DEFAULT мы можем задать значение по умолчанию, которое будет подставляться в случае, если при вставке новой записи данное поле не будет перечислено в списке полей команды INSERT. Данное ограничение можно задать непосредственно при создании таблицы.

Давайте добавим в таблицу Employees новое поле «Дата приема» и назовем его HireDate и скажем что значение по умолчанию у данного поля будет текущая дата:

ALTER TABLE Employees ADD HireDate date NOT NULL DEFAULT SYSDATETIME()
Или если столбец HireDate уже существует, то можно использовать следующий синтаксис:

ALTER TABLE Employees ADD DEFAULT SYSDATETIME() FOR HireDate
Здесь я не указал имя ограничения, т.к. в случае DEFAULT у меня сложилось мнение, что это не столь критично. Но если делать по-хорошему, то, думаю, не нужно лениться и стоит задать нормальное имя. Делается это следующим образом:

ALTER TABLE Employees ADD CONSTRAINT DF_Employees_HireDate DEFAULT SYSDATETIME() FOR HireDate
Та как данного столбца раньше не было, то при его добавлении в каждую запись в поле HireDate будет вставлено текущее значение даты.

При добавлении новой записи, текущая дата так же будет вставлена автоматом, конечно если мы ее явно не зададим, т.е. не укажем в списке столбцов. Покажем это на примере, не указав поле HireDate в перечне добавляемых значений:

INSERT Employees(ID,Name,Email)VALUES(1004,N"Сергеев С.С.","[email protected]")
Посмотрим, что получилось:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID ManagerID HireDate
1000 Иванов И.И. 1955-02-19 [email protected] 2 1 NULL 2015-04-08
1001 Петров П.П. 1983-12-03 [email protected] 3 4 1003 2015-04-08
1002 Сидоров С.С. 1976-06-07 [email protected] 1 2 1000 2015-04-08
1003 Андреев А.А. 1982-04-17 [email protected] 4 3 1000 2015-04-08
1004 Сергеев С.С. NULL [email protected] NULL NULL NULL 2015-04-08

Проверочное ограничение CHECK используется в том случае, когда необходимо осуществить проверку вставляемых в поле значений. Например, наложим данное ограничение на поле табельный номер, которое у нас является идентификатором сотрудника (ID). При помощи данного ограничения скажем, что табельные номера должны иметь значение от 1000 до 1999:

ALTER TABLE Employees ADD CONSTRAINT CK_Employees_ID CHECK(ID BETWEEN 1000 AND 1999)
Ограничение обычно именуется так же, сначала идет префикс «CK_», затем имя таблицы и имя поля, на которое наложено это ограничение.

Попробуем вставить недопустимую запись для проверки, что ограничение работает (мы должны получить соответствующую ошибку):

INSERT Employees(ID,Email) VALUES(2000,"[email protected]")
А теперь изменим вставляемое значение на 1500 и убедимся, что запись вставится:

INSERT Employees(ID,Email) VALUES(1500,"[email protected]")
Можно так же создать ограничения UNIQUE и CHECK без указания имени:

ALTER TABLE Employees ADD UNIQUE(Email) ALTER TABLE Employees ADD CHECK(ID BETWEEN 1000 AND 1999)
Но это не очень хорошая практика и лучше задавать имя ограничения в явном виде, т.к. чтобы разобраться потом, что будет сложнее, нужно будет открывать объект и смотреть, за что он отвечает.

При хорошем наименовании много информации об ограничении можно узнать непосредственно по его имени.

И, соответственно, все эти ограничения можно создать сразу же при создании таблицы, если ее еще нет. Удалим таблицу:

DROP TABLE Employees
И пересоздадим ее со всеми созданными ограничениями одной командой CREATE TABLE:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, HireDate date NOT NULL DEFAULT SYSDATETIME(), -- для DEFAULT я сделаю исключение CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID), CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT UQ_Employees_Email UNIQUE (Email), CONSTRAINT CK_Employees_ID CHECK (ID BETWEEN 1000 AND 1999))

INSERT Employees (ID,Name,Birthday,Email,PositionID,DepartmentID)VALUES (1000,N"Иванов И.И.","19550219","[email protected]",2,1), (1001,N"Петров П.П.","19831203","[email protected]",3,3), (1002,N"Сидоров С.С.","19760607","[email protected]",1,2), (1003,N"Андреев А.А.","19820417","[email protected]",4,3)

Немного про индексы, создаваемые при создании ограничений PRIMARY KEY и UNIQUE

Как можно увидеть на скриншоте выше, при создании ограничений PRIMARY KEY и UNIQUE автоматически создались индексы с такими же названиями (PK_Employees и UQ_Employees_Email). По умолчанию индекс для первичного ключа создается как CLUSTERED, а для всех остальных индексов как NONCLUSTERED. Стоит сказать, что понятие кластерного индекса есть не во всех СУБД. Таблица может иметь только один кластерный (CLUSTERED) индекс. CLUSTERED – означает, что записи таблицы будут сортироваться по этому индексу, так же можно сказать, что этот индекс имеет непосредственный доступ ко всем данным таблицы. Это так сказать главный индекс таблицы. Если сказать еще грубее, то это индекс, прикрученный к таблице. Кластерный индекс – это очень мощное средство, которое может помочь при оптимизации запросов, пока просто запомним это. Если мы хотим сказать, чтобы кластерный индекс использовался не в первичном ключе, а для другого индекса, то при создании первичного ключа мы должны указать опцию NONCLUSTERED:

ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения PRIMARY KEY NONCLUSTERED(поле1,поле2,…)
Для примера сделаем индекс ограничения PK_Employees некластерным, а индекс ограничения UQ_Employees_Email кластерным. Первым делом удалим данные ограничения:

ALTER TABLE Employees DROP CONSTRAINT PK_Employees ALTER TABLE Employees DROP CONSTRAINT UQ_Employees_Email
А теперь создадим их с опциями CLUSTERED и NONCLUSTERED:

ALTER TABLE Employees ADD CONSTRAINT PK_Employees PRIMARY KEY NONCLUSTERED (ID) ALTER TABLE Employees ADD CONSTRAINT UQ_Employees_Email UNIQUE CLUSTERED (Email)
Теперь, выполнив выборку из таблицы Employees, мы увидим, что записи отсортировались по кластерному индексу UQ_Employees_Email:

SELECT * FROM Employees

ID Name Birthday Email PositionID DepartmentID HireDate
1003 Андреев А.А. 1982-04-17 [email protected] 4 3 2015-04-08
1000 Иванов И.И. 1955-02-19 [email protected] 2 1 2015-04-08
1001 Петров П.П. 1983-12-03 [email protected] 3 3 2015-04-08
1002 Сидоров С.С. 1976-06-07 [email protected] 1 2 2015-04-08

До этого, когда кластерным индексом был индекс PK_Employees, записи по умолчанию сортировались по полю ID.

Но в данном случае это всего лишь пример, который показывает суть кластерного индекса, т.к. скорее всего к таблице Employees будут делаться запросы по полю ID и в каких-то случаях, возможно, она сама будет выступать в роли справочника.

Для справочников обычно целесообразно, чтобы кластерный индекс был построен по первичному ключу, т.к. в запросах мы часто ссылаемся на идентификатор справочника для получения, например, наименования (Должности, Отдела). Здесь вспомним, о чем я писал выше, что кластерный индекс имеет прямой доступ к строкам таблицы, а отсюда следует, что мы можем получить значение любого столбца без дополнительных накладных расходов.

Кластерный индекс выгодно применять к полям, по которым выборка идет наиболее часто.

Иногда в таблицах создают ключ по суррогатному полю, вот в этом случае бывает полезно сохранить опцию CLUSTERED индекс для более подходящего индекса и указать опцию NONCLUSTERED при создании суррогатного первичного ключа.

Подытожим

На данном этапе мы познакомились со всеми видами ограничений, в их самом простом виде, которые создаются командой вида «ALTER TABLE имя_таблицы ADD CONSTRAINT имя_ограничения …»:
  • PRIMARY KEY – первичный ключ;
  • FOREIGN KEY – настройка связей и контроль ссылочной целостности данных;
  • UNIQUE – позволяет создать уникальность;
  • CHECK – позволяет осуществлять корректность введенных данных;
  • DEFAULT – позволяет задать значение по умолчанию;
  • Так же стоит отметить, что все ограничения можно удалить, используя команду «ALTER TABLE имя_таблицы DROP CONSTRAINT имя_ограничения».
Так же мы частично затронули тему индексов и разобрали понятие кластерный (CLUSTERED ) и некластерный (NONCLUSTERED ) индекс.

Создание самостоятельных индексов

Под самостоятельностью здесь имеются в виду индексы, которые создаются не для ограничения PRIMARY KEY или UNIQUE.

Индексы по полю или полям можно создавать следующей командой:

CREATE INDEX IDX_Employees_Name ON Employees(Name)
Так же здесь можно указать опции CLUSTERED, NONCLUSTERED, UNIQUE, а так же можно указать направление сортировки каждого отдельного поля ASC (по умолчанию) или DESC:

CREATE UNIQUE NONCLUSTERED INDEX UQ_Employees_EmailDesc ON Employees(Email DESC)
При создании некластерного индекса опцию NONCLUSTERED можно отпустить, т.к. она подразумевается по умолчанию, здесь она показана просто, чтобы указать позицию опции CLUSTERED или NONCLUSTERED в команде.

Удалить индекс можно следующей командой:

DROP INDEX IDX_Employees_Name ON Employees
Простые индексы так же, как и ограничения, можно создать в контексте команды CREATE TABLE.

Для примера снова удалим таблицу:

DROP TABLE Employees
И пересоздадим ее со всеми созданными ограничениями и индексами одной командой CREATE TABLE:

CREATE TABLE Employees(ID int NOT NULL, Name nvarchar(30), Birthday date, Email nvarchar(30), PositionID int, DepartmentID int, HireDate date NOT NULL CONSTRAINT DF_Employees_HireDate DEFAULT SYSDATETIME(), ManagerID int, CONSTRAINT PK_Employees PRIMARY KEY (ID), CONSTRAINT FK_Employees_DepartmentID FOREIGN KEY(DepartmentID) REFERENCES Departments(ID), CONSTRAINT FK_Employees_PositionID FOREIGN KEY(PositionID) REFERENCES Positions(ID), CONSTRAINT FK_Employees_ManagerID FOREIGN KEY (ManagerID) REFERENCES Employees(ID), CONSTRAINT UQ_Employees_Email UNIQUE(Email), CONSTRAINT CK_Employees_ID CHECK(ID BETWEEN 1000 AND 1999), INDEX IDX_Employees_Name(Name))
Напоследок вставим в таблицу наших сотрудников:

INSERT Employees (ID,Name,Birthday,Email,PositionID,DepartmentID,ManagerID)VALUES (1000,N"Иванов И.И.","19550219","[email protected]",2,1,NULL), (1001,N"Петров П.П.","19831203","[email protected]",3,3,1003), (1002,N"Сидоров С.С.","19760607","[email protected]",1,2,1000), (1003,N"Андреев А.А.","19820417","[email protected]",4,3,1000)
Дополнительно стоит отметить, что в некластерный индекс можно включать значения при помощи указания их в INCLUDE. Т.е. в данном случае INCLUDE-индекс чем-то будет напоминать кластерный индекс, только теперь не индекс прикручен к таблице, а необходимые значения прикручены к индексу. Соответственно, такие индексы могут очень повысить производительность запросов на выборку (SELECT), если все перечисленные поля имеются в индексе, то возможно обращений к таблице вообще не понадобится. Но это естественно повышает размер индекса, т.к. значения перечисленных полей дублируются в индексе.

Вырезка из MSDN. Общий синтаксис команды для создания индексов

CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX index_name ON (column [ ASC | DESC ] [ ,...n ]) [ INCLUDE (column_name [ ,...n ]) ]

Подытожим

Индексы могут повысить скорость выборки данных (SELECT), но индексы уменьшают скорость модификации данных таблицы, т.к. после каждой модификации системе будет необходимо перестроить все индексы для конкретной таблицы.

Желательно в каждом случае найти оптимальное решение, золотую середину, чтобы и производительность выборки, так и модификации данных была на должном уровне. Стратегия по созданию индексов и их количества может зависеть от многих факторов, например, насколько часто изменяются данные в таблице.

Заключение по DDL

Как можно увидеть, язык DDL не так сложен, как может показаться на первый взгляд. Здесь я смог показать практически все его основные конструкции, оперируя всего тремя таблицами.

Главное - понять суть, а остальное дело практики.

Удачи вам в освоении этого замечательного языка под названием SQL.

PHP и базы данных

Средства эффективного хранения и выборки больших объемов информации внесли огромный вклад в успешное развитие Интернета. Обычно для хранения информации используются базы данных. Работа таких известных сайтов, как Yahoo, Amazon и Ebay, в значительной степени зависит от надежности баз данных, хранящих громадные объемы информации. Конечно, поддержка баз данных ориентирована не только на интересы гигантских корпораций -- в распоряжении web-программистов имеется несколько мощных реализаций баз данных, распространяемых по относительно низкой цене (а то и бесплатно).

Правильная организация базы данных обеспечивает более быстрые и гибкие возможности выборки данных. Она существенно упрощает реализацию средств поиска и сортировки, а проблемы прав доступа к информации решаются при помощи средств контроля за привилегиями, присутствующими во многих системах управления базами данных (СУБД). Кроме того, упрощаются процессы репликации и архивации данных.

Глава начинается с подробного описания выборки и обновления данных в MySQL -- вероятно, самой популярной СУБД, используемой в PHP (http://www.mysql.com). На примере MySQL будет показано, как в PHP происходят загрузка и обновление данных в базе; мы рассмотрим базовые средства поиска и сортировки, используемые во многих web-приложениях. Затем мы перейдем к реализованной в PHP поддержке ODBC (Open Data Base Connectivity) -- обобщенного интерфейса, который может использоваться для одновременного соединения с разными СУБД. Поддержка ODBC в PHP будет продемонстрирована на примере соединения и выборки данных из базы данных Microsoft Access. Глава завершается проектом, в котором PHP и СУБД MySQL используются для создания иерархического каталога с информацией об избранных сайтах. При включении в каталог новых сайтов пользователь относит их к одной из стандартных категорий, определяемых администратором сайта.

Прежде чем переходить к обсуждению MySQL, я хочу сказать несколько слов об SQL -- самом распространенном языке для работы с базами данных. Язык SQL заложен в основу практически всех существующих СУБД. Чтобы перейти к рассмотрению примеров работы с базами данных, необходимо хотя бы в общих чертах представлять, как работает SQL.

SQL обычно описывается как стандартный язык, используемый для взаимодействия с реляционными базами данных (см. ниже). Однако SQL не является языком программирования, как С, C++ или PHP. Скорее, это интерфейсное средство для выполнения различных операций с базами данных, предоставляющее в распоряжение пользователя стандартный набор команд. Возможности SQL не ограничиваются выборкой данных из базы. В SQL поддерживаются разнообразные возможности для взаимодействия с базой данных, в том числе:

  • определение структуры данных -- определение конструкций, используемых при хранении данных;
  • выборка данных -- загрузка данных из базы и их представление в формате, удобном для вывода;
  • обработка данных -- вставка, обновление и удаление информации;
  • контроль доступа -- возможность разрешения/запрета выборки, вставки, обновления и удаления данных на уровне отдельных пользователей;
  • контроль целостности данных -- сохранение структуры данных при возникновении таких проблем, как параллельные обновления или системные сбои.

Обратите внимание: в определении SQL было сказано, что этот язык предназначен для работы с реляционными базами данных. В реляционных СУБД данные организуются в виде набора взаимосвязанных таблиц. Связи между таблицами реализуются в виде ссылок на данные других таблиц. Таблицу можно представить себе как двухмерный массив, в котором расположение каждого элемента характеризуется определенными значениями строки и столбца. Пример реляционной базы данных изображен на рис. 11.1.

Рис. 11.1. Пример реляционной базы данных

Как видно из рис. 11.1, каждая таблица состоит из строк (записей) и столбцов (полей). Каждому полю присваивается уникальное (в рамках данной таблицы) имя. Обратите внимание на связь между таблицами customer и orders, обозначенную стрелкой. В информацию о заказе включается короткий идентификатор клиента, что позволяет избежать избыточного хранения имени и прочих реквизитов клиента. В изображенной базе данных существует еще одна связь -- между таблицами orders и products. Эта связь устанавливается по полю prod_id, в котором хранится идентификатор товара, заказанного данным клиентом (определяемого полем custjd). Наличие этих связей позволяет легко ссылаться на полные данные клиента и товара по простым идентификаторам. Правильно организованная база данных превращается в мощное средство организации и эффективного хранения данных с минимальной избыточностью. Запомните эту базу данных, я буду часто ссылаться на нее в дальнейших примерах.

Итак, как же выполняются операции с реляционными базами данных? Для этого в SQL существует специальный набор общих команд -- таких, как SELECT, INSERT, UPDATE и DELETE. Например, если вам потребуется получить адрес электронной почты клиента с идентификатором 2001cu (см. рис. 11.1), достаточно выполнить следующую команду SQL:

SELECT cust_email FROM customers WHERE custjd = "2001cu"

Все вполне логично, не правда ли? В обобщенном виде команда выглядит так:

SELECT имя_поля FROM имя_таблицы [ WHERE условие ]

Квадратные скобки означают, что завершающая часть команды является необязательной. Например, для получения адресов электронной почты всех клиентов из таблицы customers достаточно выполнить следующий запрос:

SELECT cust_email FROM customers

Предположим, вы хотите включить в таблицу products новую запись. Простейшая команда вставки выглядит так:

INSERT into products VALUES ("1009pr", "Red Tomatoes", "1.43");

Если позднее эти данные потребуется удалить, воспользуйтесь следующей командой:

DELETE FROM products WHERE prod_id = 1009r";

Существует много разновидностей команд SQL, и полное их описание выходит за рамки этой книги. На эту тему вполне можно написать отдельную книгу! Я постарался сделать так, чтобы команды SQL, используемые в примерах, были относительно простыми, но достаточно реальными. В Web существует много учебной информации и ресурсов, посвященных SQL. Некоторые ссылки приведены в конце этого раздела.

Записывать команды SQL символами верхнего регистра необязательно. Впрочем, я предпочитаю именно такую запись, поскольку она помогает различать компоненты запроса.

Раз вы читаете эту книгу, вероятно, вас интересует вопрос, как же организуется работа с базами данных в среде Web? Как правило, сначала при помощи какого-

либо интерфейсного языка (PHP, Java или Perl) создается соединение с базой данных, после чего программа обращается к базе с запросами, используя стандартный набор средств. Интерфейсный язык можно рассматривать как своего рода «клей», связывающий базу данных с Web. Я перехожу к своему любимому интерфейсному языку -- PHP.

Structured Query Language (структурированный язык запросов) или SQL - это декларативный язык программирования для использования в квази-реляционных баз данных. Многие из оригинальных черт SQL были взяты для кортежных исчислений, но последние расширения SQL включают все больше реляционной алгебры.
SQL изначально создан IBM , но многие производители разработали собственные диалекты. Он была принят в качестве стандарта американским Национальным институтом стандартов (ANSI) в 1986 и ISO в 1987 . В стандарте языка программирования SQL, ANSI заявил, что официальный произношение SQL является "эс кью эль". Тем не менее, многие специалисты базы данных употребляли "сленговое" произношение «Сиквель», что отражает первоначальное название языка, Sequel, которое было изменено позже из-за возникшего конфликта торговых марок и наименований у компании IBM. Программирование для начинающих.
Язык программирования SQL был пересмотрен в 1992 , и эта версия известна как SQL-92 в. Потом было вновь пересмотрено 1999 , чтобы стать SQL: 1999 (AKA SQL3). Программирование для чайников. SQL 1999 поддерживает объекты, которые ранее не поддерживается и в других версиях, но только в конце 2001 года лишь несколько систем управления базами данных поддерживали SQL реализации: 1999.
SQL, хотя определяется как ANSI и ISO, имеет множество вариаций и расширений, большинство из которых имеют собственные характеристики, такие как реализация корпорации Oracle «PL / SQL» или реализация Sybase и Microsoft под названием «Transact-SQL», что может запутать знакрмящегося с основами программирования. Также не редкость для коммерческих реализаций опустить поддержку основных особенностей стандарта, такие типы данных как дата и время, предпочитая какой-то их собственный вариант. Как результат, в отличие от ANSI C или ANSI Fortran которые обычно можно портирована с платформы на платформу без серьезных структурных изменений, запросы языка программирования SQL редко могут быть перенесены между разными системами баз данных без существенных модификаций. Большинство людей в области баз данных считают, что это отсутствие совместимости является намеренным, с тем чтобы обеспечить каждого разработчика собственной системой управления базами данных и привязать покупателя к конкретной базе данных.
Как следует из названия, язык программирования SQL предназначен для конкретных, ограниченных целей - запросов данных, содержащихся в реляционной базе данных. Как таковой, он представляет собой набор инструкций языка программирования для создания выборок данных, а не процедурный язык, такой как C или BASIC , которые предназначены для решения гораздо более широкого круга проблем. Расширения языка, таких как «PL / SQL» предназначены для решения этого ограничения, добавив процедурные элементы для SQL при сохранении преимуществ SQL. Другой подход заключается в том, что позволяется в зопросы SQL встраивать команды процедурного языка программирования и взаимодействовать с базой данных. Например, Oracle и другие поддерживают язык Java в базе данных, в то время как PostgreSQL позволяет писать функции на Perl, Tcl, или С.
Один анекдот про SQL: "SQL не является ни структурированным, ни языком." Суть шутки состоит в том, что SQL не является языком Тьюринга. .

Select * from T
C1 C2
1 a
2 b
C1 C2
1 a
2 b
Select C1 from T
C1
1
2
C1 C2
1 a
2 b
Select * from T where C1=1
C1 C2
1 a

Учитывая таблицу T, запрос Select * from T выведет на экран все элементы всех строк таблицы.
Из той же таблицы, запрос Select C1 from T выведет на экран элементы из столбца C1 всех строк таблицы.
Из той же таблицы, запрос Select * from T where C1=1 выведет на экран все элементы всех строк, где значение колонки С1 равно "1".

SQL ключевые слова

SQL слова делятся на ряд групп.

Первая - это Data Manipulation Language или DML (язык управления данными). DML является подмножеством языка, используемого для запроса к базам данных, добавления, обновления и удаления данных.

  • SELECT является одной из наиболее часто используемых команд DML и позволяет пользователю задать запрос как описание желаемого результата в виде множества. В апросе не указано, каким образом результаты должны быть расположены - перевод запроса в форму, которая может быть выполнена в базе данных, является работой системы баз данных, более конкретно оптимизатора запросво.
  • INSERT используется для добавления строк (формального набора) для существующей таблицы.
  • UPDATE используется для изменения значений данных в существующей строке таблицы.
  • DELETE определение существующих строк, которые будут удалены из таблицы.

Три другие ключевых слова, можно сказать, что попадают в группу DML:

  • BEGIN WORK (или START TRANSACTION, в зависимости от диалекта SQL) могут быть использованы, чтобы отметить начало транзакции базы данных, которые либо выполнятся все полностью или вообще не выполнятся.
  • COMMIT устанавливает, что все изменения данных в после совершения операций сохраняются.
  • ROLLBACK определяет, что все изменения данных после последней фиксации или отката должны быть уничтожены, до того момента, который был зафиксирован в БД как «откат».

COMMIT и ROLLBACK применяются в таких областях, как контроль транзакций и блокировки. Обе инструкции завершают все текущие транзакции (наборы операций над БД) и снимают все блокировки на изменение данных в таблицах. Присутствие или отсутствие BEGIN WORK или аналогичного заявления зависит от конкретной реализации SQL.

Вторая группа ключевых слов относится к группе Data Definition Language или DDL (язык определения данных) . DDL позволяет пользователю определять новые таблицы и связанные с ними элементы. Большинство коммерческих баз данных SQL имеют собственные расширения в DDL, которые позволяют осуществлять контроль над нестандартныыми, но обычно жизненно важными элементами конкретной системы.
Основные пункты DDL являются команды создавать и удалять.

  • CREATE определяет объекты (например, таблицы), которые будут созданы в базе данных.
  • DROP определяет, какие существующие объекты в базе данных будут удалены, как правило, безвозвратно.
  • Некоторые системы баз данных также поддерживают команду ALTER, которая позволяет пользователю изменять существующий объект по-разному - например, так можно произвести добавление столбцов в существующую таблицу.

Третьей группой ключевых слов SQL является Data Control Language или DCL(язык контроля данных) . DCL отвечает за права доступа к данным и позволяет пользователю контролировать, кто имеет доступ, чтобы просматривать или манипулировать данными в базе данных. Здесь два основных ключевых слова:

  • GRANT - разрешает пользователю выполнять операции
  • REVOKE - удаляет или ограничивает возможность пользователю выполнять операции.

Системы баз данных с использованием SQL

  • InterBase
  • MySQL
  • Oracle
  • PostgreSQL
  • SQL Server

Как стать профессионалом по разработке сайтов и начать зарабатывать? Недорогие видео курсы с ознакомительным введением.