Дать понятие сетевым технологиям. Сетевые технологии локальных сетей

03.04.2019

Контрольно-курсовая работа

по Информационным системам в экономике на тему №69:

«Сетевые технологии Ethernet, Token Ring, FDDI и Х.25»

Выполнил: студент гр. 720753 Авдеева Д.М.

Проверил: доцент, к.э.н. Огнянович А.В.

Введение…………………………………………………………………………...3

1. Понятие сетевых технологий……………………………………………...5

2. Технология Ethernet………………………………………………………..7

3. Технология Token Ring…………………………………………………...12

4. Технология FDDI………………………………………………………….15

5. Протокол Х.25…………………………………………………………….19

Заключение……………………………………………………………………….22

Список источников и литературы………………………………………………23

Введение

Компьютерные сети, называемые также вычислительными сетями, или сетями передачи данных, являются логическим результатом эволюции двух важнейших научно-технических отраслей современной цивилизации - компьютерных и телекоммуникационных технологий. С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Основными технологиями локальных сетей остаются Ethernet, Token Ring, FDDI, Fast и Gigabit Ethernet, Token Ring и FDDI - это функционально намного более сложные технологии, чем Ethernet на разделяемой среде. Разработчики этих технологий стремились наделить сеть на разделяемой среде многими положительными качествами: сделать механизм разделения среды предсказуемым и управляемым, обеспечить отказоустойчивость сети, организовать приоритетное обслуживание для чувствительного к задержкам трафика, например голосового. Во многом их усилия оправдались, и сети FDDI довольно долгое время успешно использовались как магистрали сетей масштаба кампуса, в особенности в тех случаях, когда нужно было обеспечить высокую надежность магистрали.



Token Ring является главным примером сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени.

Благодаря более высокой, чем в сетях Ethernet, скорости, детерминированности распределения пропускной способности сети между узлами, а также лучших эксплуатационных характеристик (обнаружение и изоляция неисправностей), сети Token Ring были предпочтительным выбором для таких чувствительных к подобным показателям приложений, как банковские системы и системы управления предприятием.

Технологию FDDI можно считать усовершенствованным вариантом Token Ring, так как в ней, как и в Token Ring, используется метод доступа к среде, основанный на передаче токена, а также кольцевая топология связей, но вместе с тем FDDI работает на более высокой скорости и имеет более совершенный механизм отказоустойчивости.

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить факт наличия отказа в сети, а затем произвести необходимое реконфигурирование. Технология FDDI расширяет механизмы обнаружения отказов технологии Token Ring за счет резервных связей, которые предоставляет второе кольцо.

Актуальность данной работы обусловлена важностью изучения технологий локальных компьютерных систем.

Целью работы является изучение характеристик сети Token Ring, Ethernet, FDDI и Х.25.

Для достижения данной цели в работе были поставлены следующие задачи:

Изучить понятия основных сетевых технологий;

Выявить специфику применения технологий;

Рассмотреть преимущества и недостатки Ethernet, Token Ring, FDDI и Х.25;

Проанализировать виды сетевых технологий.

Понятие сетевых технологий

В локальных сетях, как правило, используется разделяемая среда передачи данных (моноканал) и основная роль отводится протоколами физического и канального уровней, так как эти уровни в наибольшей степени отражают специфику локальных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token Ring, FDDI и Х.25.

Развитие компьютерных сетей началось с решение более простой задачи – доступ к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы в этом случае соединялись с компьютером через телефонные сети с помощью специальных устройств модемов. Следующим этапом в развитии компьютерных сетей стали соединения через модем не только «терминал – компьютер», но и «компьютер – компьютер». Компьютеры получили возможность обмениваться данными в автоматическом режиме, что является базовым механизмом любой компьютерной сети. Тогда впервые появились в сети возможности обмена файлами, синхронизация баз данных, использования электронной почты, т.е. те службы, являющимися в настоящее время традиционными сетевыми сервисами. Такие компьютерные сети получили название глобальных компьютерных сетей.

По своей сущности компьютерная сети является совокупностью компьютеров и сетевого оборудования, соединенных каналами связи. Поскольку компьютеры и сетевое оборудование могут быть разных производителей, то возникает проблема их совместимости. Без принятия всеми производителя общепринятых правил построения оборудования создание компьютерной сети было бы невозможно.

Для обычного пользователя сеть, это провод или несколько проводов, с помощью которых компьютер соединяется с другим компьютером или модемом, для выхода в интернет, но на самом деле все не так уж и просто. Возьмем самый обычный провод с разъемом RJ-45 (такие применяются почти везде в проводных сетях) и соединим два компьютера, в данном соединении использоваться будет Ethernet 802.3 протокол, позволяющий передавать данные со скоростью до 100 Мбит/с. Стандарт этот, как впрочем и многие другие, именно стандарт, то есть во всем мире применяется один набор инструкций и путаницы не происходит, информация передается от отправителя к адресату.

Передача информации по кабелю, как некоторые знают, осуществляется потоком битов, которые есть ничто иное, как отсутствие или прием сигнала. Биты, или нолики и единицы, интерпретируются специальными устройствами в компьютерах в удобный вид и мы видим на экране картинку или текст, а возможно даже и фильм. Чтобы вручную передать даже маленький кусочек текстовой информации посредством компьютерных сетей, человеку потребовалось бы очень много времени, а вычисления бы растянулись бы на огромные стопки бумаг. Чтобы такого не происходило, люди и придумали все эти протоколы и средства связи компьютеров в единое целое.

Технология Ethernet

Ethernet – это самый распространенный на сегодняшний день стандарт локаль­ных сетей. Общее количество сетей, работающих по протоколу Ethernet в на­стоящее время, оценивается в несколько миллионов.

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались раз­личные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коак­сиального кабеля. Эту последнюю версию фирменного стандарта Ethernet назы­вают стандартом Ethernet DIX, или Ethernet П.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, кото­рый во многом совпадает со своим предшественником, но некоторые разли­чия все же имеются. В то время как в стандарте IEEE 802.3 функции протоко­ла разделены на уровни MAC и LLC, в оригинальном стандарте Ethernet они объединены в единый канальный уровень. В Ethernet DIX определяется про­токол тестирования конфигурации (Ethernet Configuration Test Protocol), ко­торый отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

Часто для того, чтобы отличить стандарт Ethernet, определенный IEEE, и фир­менный стандарт Ethernet DIX, первый называют технологией 802.3, а за фирменным стандартом оставляют название Ethernet без дополнительных обозначений. В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - 10Base-5, 10Base-2, 10Base-T, 10Base-FL, lOBase-FB. В 1995 году был принят стандарт Fast Ethernet, который во многом не является самостоятельным стандартом, о чем говорит и тот факт, что его описание просто является дополнительным разделом к основному стандарту 802.3 - разделом 802.3b. Аналогично, принятый в 1998 году стандарт Gigabit Ethernet описан в разделе 802.3z основного документа.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код. В более скоростных версиях Ethernet приме­няются более эффективные в отношении полосы пропускания избыточные логи­ческие коды. Все виды стандартов Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используют один и тот же метод разделения среды передачи данных - метод CSMA/CD. Рассмотрим, каким образом описанные выше общие подходы к решению наибо­лее важных проблем построения сетей воплощены в наиболее популярной сете­вой технологии - Ethernet.

Сетевая технология - это согласованный набор стандартных протоколов и реа­лизующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет «достаточный» подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно по­строить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стан­дарта Ethernet применения протокола IP, а также специальных коммуникацион­ных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами техноло­гии Ethernet, которая составляет базис сети.

Термин «сетевая технология» чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набо­ра средств и правил для построения сети, например «технология сквозной мар­шрутизации», «технология создания защищенного канала», «технология IP-сетей». Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разра­ботчика сети не требуется дополнительных усилий по организации их взаимо­действия. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Примерами базовых сете­вых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей, как Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммута­торы, кабельную систему и т. п., - и соединить их в соответствии с требования­ми стандарта на данную технологию.

Основной принцип, положенный в основу Ethernet, - случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использо­ваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного досту­па к разделяемой среде, была радиосеть Aloha Гавайского университета). В стандарте Ethernet строго зафиксирована топология электрических связей. Ком­пьютеры подключаются к разделяемой среде в соответствии с типовой структу­рой «общая шина». С помощью разделяемой во времени шины любые два компьютера могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами – сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уни­кальный адрес. Передача данных происходит со скоростью 10 Мбит/с. Эта вели­чина является пропускной способностью сети Ethernet.

Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна, то есть если никакой другой компьютер в данный момент не занимается обменом. По­этому важной частью технологии Ethernet является процедура определения дос­тупности среды. После того как компьютер убеждается, что сеть свободна, он начинает передачу, при этом «захватывает» среду.

Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию, например адрес получателя и адрес отправителя. Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду пере­дачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр поме­щается во внутренний буфер сетевого адаптера.

Таким образом компьютер-адре­сат получает предназначенные ему данные. Иногда может возникать ситуация, когда одновременно два или более компью­тера решают, что сеть свободна, и начинают передавать информацию. Такая си­туация, называемая коллизией, препятствует правильной передаче данных по сети. В стандарте Ethernet предусмотрен алгоритм обнаружения и корректной обра­ботки коллизий. Вероятность возникновения коллизии зависит от интенсивно­сти сетевого трафика. После обнаружения коллизии сетевые адаптеры, которые пытались передать свои кадры, прекращают передачу и после паузы случайной длительности пытаются снова получить доступ к среде и передать тот кадр, который вызвал коллизию.

Главным достоинством сетей Ethernet, благодаря которому они стали такими по­пулярными, является их экономичность. Для построения сети достаточно иметь по одному сетевому адаптеру для каждого компьютера плюс один физический сегмент коаксиального кабеля нужной длины. Другие базовые технологии, на­пример Token Ring, для создания даже небольшой сети требуют наличия допол­нительного устройства - концентратора. Кроме того, в сетях Ethernet реализованы достаточно простые алгоритмы досту­па к среде, адресации и передачи данных. Простая логика работы сети ведет к упрощению и, соответственно, удешевлению сетевых адаптеров и их драйверов. По той же причине адаптеры сети Ethernet обладают высокой надежностью.

И, наконец, еще одним замечательным свойством сетей Ethernet является их хо­рошая расширяемость, то есть легкость подключения новых узлов. Другие базовые сетевые технологии - Token Ring, FDDI, - хотя и обладают многими индивидуальными чертами, в то же время имеют много общих свойств с Ethernet. В первую очередь - это применение регулярных фиксированных то­пологий (иерархическая звезда и кольцо), а также разделяемых сред передачи данных. Существенные отличия одной технологии от другой связаны с особен­ностями используемого метода доступа к разделяемой среде. Так, отличия тех­нологии Ethernet от технологии Token Ring во многом определяются специфи­кой заложенных в них методов разделения среды – случайного алгоритма доступа в Ethernet и метода доступа путем передачи маркера в Token Ring.


Технология Token Ring

Token Ring - технология локальной вычислительной сети (LAN) кольца с «маркерным доступом» - протокол локальной сети, который находится на канальном уровне (DLL) модели OSI. Он использует специальный трехбайтовый фрейм, названный маркером, который перемещается вокруг кольца. Владение маркером предоставляет право обладателю передавать информацию на носителе. Кадры кольцевой сети с маркерным доступом перемещаются в цикле.

Станции на локальной вычислительной сети (LAN) Token Ring логически организованы в кольцевой топологии с данными, передаваемыми последовательно от одной кольцевой станции до другой с управляющим маркером, циркулирующим вокруг кольцевого доступа управления. Этот механизм передачи маркера совместно использован ARCNET, маркерной шиной, и FDDI, и имеет теоретические преимущества перед стохастическим CSMA/CD Ethernet.

Изначально технология была разработана компанией IBM в 1984 году. В 1985 комитет IEEE 802 на основе этой технологии принял стандарт IEEE 802.5. В последнее время даже в продукции IBM доминируют технологии семейства Ethernet, несмотря на то, что ранее в течение долгого времени компания использовала Token Ring в качестве основной технологии для построения локальных сетей.

Данная технология предлагает вариант решения проблемы коллизий, которая возникает при работе локальной сети. В технологии Ethernet, такие коллизии возникают при одновременной передаче информации несколькими рабочими станциями, находящимися в пределах одного сегмента, то есть использующих общий физический канал данных.

Если у станции, владеющей маркером, имеется информации для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность «начало блока данных»), дополняет информацией, которую он хочет передать и отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает «раннего освобождения маркера» - early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.

В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркера являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет, прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах. Применяется как более дешевая технология, получила распространение везде, где есть ответственные приложения, для которых важна не столько скорость, сколько надежная доставка информации. В настоящее время Ethernet по надежности не уступает Token Ring и существенно выше по производительности.

Сети стандарта Token Ring, также как и сети Ethernet, используют разделяемую среду передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему используется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциями права на использование кольца в определенном порядке. Право на использование кольца передается с помощью кадра специального формата, называемого маркером или токеном.

Стандарт Token Ring был принят комитетом 802.5 в 1985 году. В это же время компания IBM приняла стандарт Token Ring в качестве своей основной сетевой технологии. В настоящее время именно компания IBM является основным законодателем моды технологии Token Ring, производя около 60% сетевых адаптеров этой технологии.

Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Сети Token Ring, работающие со скоростью 16 Мб/с, имеют и некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мб/с.


Технология FDDI

Технология Fiber Distributed Data Interface – первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Попытки применения света в качестве среды, несущей информацию, предпринимались давно – еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми волнами и модулировавшего отраженный свет.

В 1960-е годы появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокнах были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам.

В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволоконных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации – ANSI, в рамках созданного для этой цели комитета X3T9.5.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование – сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

· повысить битовую скорость передачи данных до 100 Мб/с;

· повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода – повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т.п.;

· максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.

Использование двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru – «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному – по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке. Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.

Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции. В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.

После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее. При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.


Протокол Х.25

X.25 - семейство протоколов сетевого уровня сетевой модели OSI. Предназначалось для организации WAN на основе телефонных сетей с линиями с достаточно высокой частотой ошибок, поэтому содержит развитые механизмы коррекции ошибок. Ориентирован на работу с установлением соединений. Исторически является предшественником протокола Frame Relay.

X.25 обеспечивает множество независимых виртуальных каналов (Permanent Virtual Circuits, PVC и Switched Virtual Circuits, SVC) в одной линии связи, идентифицируемых в X.25-сети по идентификаторам подключения к соединению (идентификаторы логического канала (Logical Channel Identifyer, LCI) или номера логического канала (Logical Channel Number, LCN).

Благодаря надёжности протокола и его работе поверх телефонных сетей общего пользования X.25 широко использовался как в корпоративных сетях, так и во всемирных специализированных сетях предоставления услуг, таких как SWIFT (банковская платёжная система) и SITA (фр. Société Internationale de Télécommunications Aéronautiques - система информационного обслуживания воздушного транспорта), однако в настоящее время X.25 вытесняется другими технологиями канального уровня (Frame Relay, ISDN, ATM) и протоколом IP, оставаясь, однако, достаточно распространённым в странах и территориях с неразвитой телекоммуникационной инфраструктурой.

Разработан Study Group VII Международного союза электросвязи (ITU) в качестве пакетного протокола передачи данных в телефонных сетях принят в 1976 г. и стал основой всемирной системы PSPDN (англ. Packet-Switched Public Data Networks), то есть WAN. Существенные дополнения к протоколу были приняты в 1984 г., в настоящее время действует стандарт ISO 8208 протокола X.25, стандартизовано также и применение X.25 в локальных сетях (стандарт ISO 8881).

Х.25 определяет характеристики телефонной сети для передачи данных. Чтобы начать связь, один компьютер обращается к другому с запросом о сеансе связи. Вызванный компьютер может принять или отклонить связь. Если вызов принят, то обе системы могут начать передачу информации с полным дублированием. Любая сторона может в любой момент прекратить связь.

Спецификация Х.25 определяет двухточечное взаимодействие между терминальным оборудованием (DTE) и оборудованием завершения действия информационной цепи (DCE). Устройства DTE (терминалы и главные вычислительные машины в аппаратуре пользователя) подключаются к устройствам DCE (модемы, коммутаторы пакетов и другие порты в сеть PDN, обычно расположенные в аппаратуре этой сети), которые соединяются с «коммутаторами переключения пакетов» (packet switching exchange) (PSE или просто switches) и другими DCE внутри PSN и, наконец, к другому устройству DTE.

DTE может быть терминалом, который не полностью реализует все функциональные возможности Х.25. Такие DTE подключаются к DCE через трансляционное устройство, называемое пакетный ассемблер/дизассемблер - packet assembler/disassembler – PAD. Действие интерфейса терминал/PAD, услуги, предлагаемые PAD и взаимодействие между PAD и главной вычислительной машиной определены соответственно CCITT Recommendations X.28, X3 и Х.29.

Спецификация Х.25 составляет схемы Уровней 1-3 эталонной модели OSI. Уровень 3 Х.25 описывает форматы пакетов и процедуры обмена пакетами между равноправными объектами Уровня 3. Уровень 2 Х.25 реализован Протоколом Link Access Procedure, Balanced (LAPB). LAPB определяет кадрирование пакетов для звена DTE/DCE. Уровень 1 Х.25 определяет электрические и механические процедуры активации и дезактивации физической среды, соединяющей данные DTE и DCE. Необходимо отметить, что на Уровни 2 и 3 также ссылаются как на стандарты ISO - ISO 7776 (LAPB) и ISO 8208 (пакетный уровень Х.25).

Сквозная передача между устройствами DTE выполняется через двунаправленную связь, называемую виртуальной цепью. Виртуальные цепи позволяют осуществлять связь между различными элементами сети через любое число промежуточных узлов без назначения частей физической среды, что является характерным для физических цепей. Виртуальные цепи могут быть либо перманентными, либо коммутируемыми (временно). Перманентные виртуальные цепи обычно называют PVC; переключаемые виртуальные цепи – SVC. PVC обычно применяются для наиболее часто используемых передач данных, в то время как SVC применяются для спорадических передач данных. Уровень 3 Х.25 отвечает за сквозную передачу, включающую как PVC, так и SVC.

После того, как виртуальная цепь организована, DTE отсылает пакет на другой конец связи путем отправки его в DCE, используя соответствующую виртуальную цепь. DCE просматривает номер виртуальной цепи для определения маршрута этого пакета через сеть Х.25. Протокол Уровня 3 Х.25 осуществляет мультиплексную передачу между всеми DTE, которые обслуживает устройство DCE, расположенное в сети со стороны пункта назначения, в результате чего пакет доставлен к DTE пункта назначения.


Заключение

Развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

Информационные сетевые технологии ориентированы в основном на предоставление информационных услуг пользователям.

Все сетевые технологии, как-то: Ethernet, Token Ring, FDDI или Х.25 – можно сказать одно из самых значительных и ярких демократических достижений технологического процесса. С их появлением информация, и право на правду и свободу слова становится потенциальным достоянием и возможностью большинства жителей планеты, люди могут объединяться и взаимодействовать вне зависимости от временных, расстояния, государственных и многих других границ.

В настоящее время весь мир охвачен глобальной сетью Интернет. Именно Интернет стирает все границы и обеспечивает распространение информации для практически не­ограниченного круга людей. Позволяет людям в любой точке планеты без всякого труда включиться в обсуждение насущных проблем. Главная особенность и назначение Интернета – это свободное распространение информации и установление связи между людьми.


Список источников и литературы:

1) Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник для экон. вузов / А.М.Вендров. – М.: Финансы и статистика, 2000. – 352с.: ил.

2) Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- 336с.

3) Карпенков, С.Х. Современные средства информационных технологий: учеб. пособие для вузов / С.Х. Карпенков. - 2-е изд., испр. и доп. - М.: Кнорус, 2009. - 400 с.

4) Коноплева, И.А. Информационные технологии [Электронный ресурс]: электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

5) Корнеев, И.К. Информационные технологии: учебник / И.К. Корнеев, Г.Н. Ксандопуло, В.А. Машурцев. - М.: Проспект, 2009. – 222 с.

6) Петров В.Н. Информационные системы / Петров В.Н. – СПб.: Питер, 2008. – 688с.: ил.

7) Информационные системы и технологии: Учебник. – 3-е изд. /Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – 591 с.

8) Трофимов В. В. Информационные технологии. Учебник для вузов / Трофимов В. В. Издательство: Москва, ЮРАЙТ, 2011. – 624 с.

9) http://nwzone.ru/ - «Современные технологии»: новости со всего мира: hi-tech инновации, гаджеты, мобильная электроника, интернет, дизайн, наука.


Информационные системы и технологии: Учебник. – 3-е изд. / Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – с. 176, 177.

Карпенков, С.Х. Современные средства информационных технологий: учеб. пособие для вузов / С.Х. Карпенков. - 2-е изд., испр. и доп. - М.: Кнорус, 2009. – с. 140 с.

Корнеев, И.К. Информационные технологии: учебник / И.К. Корнеев, Г.Н. Ксандопуло, В.А. Машурцев. - М.: Проспект, 2009. – с. 87.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.33.

Http://nwzone.ru/ - «Современные технологии»: новости со всего мира: hi-tech инновации, гаджеты.

Петров В.Н. Информационные системы / Петров В.Н. – СПб.: Питер, 2008. – с.68.

Вендров А.М. Проектирование программного обеспечения экономических информационных систем: Учебник для экон. вузов / А.М.Вендров. – М.: Финансы и статистика, 2000. – с.35.

Коноплева, И.А. Информационные технологии [Электронный ресурс] : электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.95.

Гейн А.Г., Сенокосов А.И. Информатика и ИКТ: учеб. / Рекомендовано Министерством образования и науки РФ.- М: Московские учебники, 2010.- с.99.

Информационные системы и технологии: Учебник. – 3-е изд. /Под ред. Г.А.Титоренка. – М.: Юнити-Дана, 2010. – с.91, 92.

Коноплева, И.А. Информационные технологии [Электронный ресурс] : электронный учебник / И.А. Коноплева, О.А. Хохлова, А.В. Денисов. - М.: Проспект, 2009.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет «достаточный» подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно построить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стандарта Ethernet применения протокола IP, а также специальных коммуникационных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами технологии Ethernet, которая составила базис сети.

Термин «сетевая технология» чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набора средств и правил для построения сети, например, «технология сквозной маршрутизации», «технология создания защищенного канала», «технология IP-сетей».

Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разработчика сети не требуется дополнительных усилий по организации их взаимодействия. Иногда сетевые технологии называют базовыми технологиями , имея в виду то, что на их основе строится базис любой сети. Примерами базовых сетевых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей как, Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммутаторы, кабельную систему и т. п., - и соединить их в соответствии с требованиями стандарта на данную технологию.

Создание стандартных технологий локальных сетей

В середине 80-х годов положение дел в локальных сетях стало кардинально меняться. Утвердились стандартные технологии объединения компьютеров в сеть - Ethernet, Arcnet, Token Ring. Мощным стимулом для их развития послужили персональные компьютеры. Эти массовые продукты явились идеальными элементами для построения сетей - с одной стороны, они были достаточно мощными для работы сетевого программного обеспечения, а с другой - явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

Стандартные сетевые технологии превратили процесс построения локальной сети из искусства в рутинную работу. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, например, NetWare. После этого сеть начинала работать и присоединение каждого нового компьютера не вызывало никаких проблем - естественно, если на нем был установлен сетевой адаптер той же технологии.

Локальные сети в сравнении с глобальными сетями внесли много нового в способы организации работы пользователей. Доступ к разделяемым ресурсам стал гораздо удобнее - пользователь мог просто просматривать списки имеющихся ресурсов, а не запоминать их идентификаторы или имена. После соединения с удаленным ресурсом можно было работать с ним с помощью уже знакомых пользователю по работе с локальными ресурсами команд. Последствием и одновременно движущей силой такого прогресса стало появление огромного числа непрофессиональных пользователей, которым совершенно не нужно было изучать специальные (и достаточно сложные) команды для сетевой работы. А возможность реализовать все эти удобства разработчики локальных сетей получили в результате появления качественных кабельных линий связи, на которых даже сетевые адаптеры первого поколения обеспечивали скорость передачи данных до 10 Мбит/с.

Конечно, о таких скоростях разработчики глобальных сетей не могли даже мечтать - им приходилось пользоваться теми каналами связи, которые были в наличии, так как прокладка новых кабельных систем для вычислительных сетей протяженностью в тысячи километров потребовала бы колоссальных капитальных вложений. А «под рукой» были только телефонные каналы связи, плохо приспособленные для высокоскоростной передачи дискретных данных - скорость в 1200 бит/с была для них хорошим достижением. Поэтому экономное расходование пропускной способности каналов связи часто являлось основным критерием эффективности методов передачи данных в глобальных сетях. В этих условиях различные процедуры прозрачного доступа к удаленным ресурсам, стандартные для локальных сетей, для глобальных сетей долго оставались непозволительной роскошью.

Современные тенденции

Сегодня вычислительные сети продолжают развиваться, причем достаточно быстро. Разрыв между локальными и глобальными сетями постоянно сокращается во многом из-за появления высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам локальных сетей. В глобальных сетях появляются службы доступа к ресурсам, такие же удобные и прозрачные, как и службы локальных сетей. Подобные примеры в большом количестве демонстрирует самая популярная глобальная сеть - Internet.

Изменяются и локальные сети. Вместо соединяющего компьютеры пассивного кабеля в них в большом количестве появилось разнообразное коммуникационное оборудование - коммутаторы, маршрутизаторы, шлюзы. Благодаря такому оборудованию появилась возможность построения больших корпоративных сетей, насчитывающих тысячи компьютеров и имеющих сложную структуру. Возродился интерес к крупным компьютерам - в основном из-за того, что после спада эйфории по поводу легкости работы с персональными компьютерами выяснилось, что системы, состоящие из сотен серверов, обслуживать сложнее, чем несколько больших компьютеров. Поэтому на новом витке эволюционной спирали мэйнфреймы стали возвращаться в корпоративные вычислительные системы, но уже как полноправные сетевые узлы, поддерживающие Ethernet или Token Ring, а также стек протоколов TCP/IP, ставший благодаря Internet сетевым стандартом де-факто.

Проявилась еще одна очень важная тенденция, затрагивающая в равной степени как локальные, так и глобальные сети. В них стала обрабатываться несвойственная ранее вычислительным сетям информация - голос, видеоизображения, рисунки. Это потребовало внесения изменений в работу протоколов, сетевых операционных систем и коммуникационного оборудования. Сложность передачи такой мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных - задержки обычно приводят к искажению такой информации в конечных узлах сети. Так как традиционные службы вычислительных сетей - такие как передача файлов или электронная почта - создают малочувствительный к задержкам трафик и все элементы сетей разрабатывались в расчете на него, то появление трафика реального времени привело к большим проблемам.

Сегодня эти проблемы решаются различными способами, в том числе и с помощью специально рассчитанной на передачу различных типов трафика технологии АТМ, Однако, несмотря на значительные усилия, предпринимаемые в этом направлении, до приемлемого решения проблемы пока далеко, и в этой области предстоит еще много сделать, чтобы достичь заветной цели - слияния технологий не только локальных и глобальных сетей, но и технологий любых информационных сетей - вычислительных, телефонных, телевизионных и т. п. Хотя сегодня эта идея многим кажется утопией, серьезные специалисты считают, что предпосылки для такого синтеза уже существуют, и их мнения расходятся только в оценке примерных сроков такого объединения - называются сроки от 10 до 25 лет. Причем считается, что основой для объединения послужит технология коммутации пакетов, применяемая сегодня в вычислительных сетях, а не технология коммутации каналов, используемая в телефонии, что, наверно, должно повысить интерес к сетям этого типа.

Сетевые компьютерные технологии бурно развиваются. Если раньше основной заботой сетевого администратора была локальная вычислительная сеть предприятия или организации, то теперь эта сеть все чаще становится территориально распределенной. Пользователи должны иметь возможность получать доступ к ресурсам сети предприятия практически из любого места. При этом они хотят не только просматривать и отправлять электронную почту, но и иметь возможность обращаться к файлам, базам данных и другим ресурсам сети предприятия. В рамках организации часто создаются удаленно расположенные отделения со своими локальными сетями, которые необходимо соединить с сетью основного подразделения с помощью надежной, защищенной и прозрачной для пользователей связи. Такие сети называются корпоративными. Учитывая сегодняшние реалии, пользователям корпоративной сети предприятия также необходимо предоставить возможность доступа к ресурсам глобальной мировой сети Internet, обезопасив при этом внутреннюю сеть от несанкционированного доступа извне.

Таким образом, корпоративная сеть - это аппаратно-программная система, обеспечивающая надежную передачу информации между различными приложениями, используемыми в организации. Часто узлы корпоративной сети оказываются расположенными в различных городах. Принципы, по которым строится подобная сеть, достаточно сильно отличаются от тех, которые используются при создании локальной сети, даже охватывающей несколько зданий. Основное отличие состоит в том, что территориально распределенные сети используют достаточно медленные (на сегодня это чаще десятки и сотни килобит в секунду, иногда 2 Мбит/с и выше) арендованные линии связи. Если при создании локальной сети основные затраты приходятся на закупку оборудования и прокладку кабеля, то в территориально распределенных сетях наиболее существенным элементом стоимости оказывается арендная плата за использование каналов, которая быстро растет с увеличением качества и скорости передачи данных. В остальном же корпоративная сеть не должна накладывать ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию. Основная проблема, которую приходится решать при создании корпоративной сети, - организация каналов связи. Если в пределах одного города можно рассчитывать на аренду выделенных линий, в том числе высокоскоростных, то при переходе к географически удаленным узлам стоимость аренды каналов становится очень большой, а качество и надежность их часто оказываются весьма невысокими. Естественным решением этой проблемы является использование уже существующих глобальных сетей. В этом случае достаточно обеспечить каналы от офисов до ближайших узлов сети. Задачу доставки информации между узлами глобальная сеть при этом возьмет на себя.

Идеальным вариантом для корпоративной сети было бы создание каналов связи только на тех участках, где это необходимо, и передача по ним любых сетевых протоколов, которые требуются работающим приложениям. На первый взгляд это возврат к арендованным линиям связи. Однако существуют технологии построения сетей передачи данных, позволяющие организовать внутри них каналы, возникающие только в нужное время и в нужном месте. Такие каналы называются виртуальными. Систему, объединяющую удаленные ресурсы с помощью виртуальных каналов, естественно назвать виртуальной сетью. На сегодня существуют две основные технологии виртуальных сетей - сети с коммутацией каналов и сети с коммутацией пакетов. К первым относится обычная телефонная сеть, ISDN и ряд других более экзотических технологий. Сети с коммутацией пакетов представлены технологиями X.25, Frame Relay и в последнее время ATM. Остальные типы виртуальных (в различных сочетаниях) сетей широко используются при построении корпоративных информационных систем. Сети с коммутацией каналов обеспечивают абоненту несколько каналов связи с фиксированной пропускной способностью на каждое подключение. Обычная телефонная сеть дает один канал связи между абонентами. При необходимости увеличить количество одновременно доступных ресурсов приходится устанавливать дополнительные телефонные номера. Даже если забыть о низком качестве связи, видно, что ограничение количества каналов и длительное время установления соединения не позволяют использовать телефонную связь в качестве основы корпоративной сети. Для подключения же отдельных удаленных пользователей это достаточно удобный и часто единственно доступный метод.

Альтернативой сетям с коммутацией каналов являются сети с коммутацией пакетов. При использовании пакетной коммутации один канал связи используется в режиме разделения времени многими пользователями - примерно так же, как и в Internet. Однако в отличие от сетей типа Internet, где каждый пакет маршрутизируется отдельно, сети пакетной коммутации перед передачей информации требуют установления соединения между конечными ресурсами. После установления соединения сеть «запоминает» маршрут (виртуальный канал), по которому должна передаваться информация между абонентами, и помнит его, пока не получит сигнала о разрыве связи. Для приложений, работающих в сети пакетной коммутации, виртуальные каналы выглядят как обычные линии связи - с той только разницей, что их пропускная способность и вносимые задержки меняются в зависимости от загруженности сети. Рассмотрим основные технологии, которые используются для построения корпоративных сетей.

ISDN

Широко распространенным примером виртуальной сети с коммутацией каналов является ISDN (цифровая сеть с интеграцией услуг). ISDN обеспечивает цифровые каналы (64 Кбит/с), по которым могут передаваться как голос, так и данные. Базовое подключение ISDN (Basic Rate Interface) включает два таких канала и дополнительный канал управления со скоростью 16 Кбит/с (такая комбинация обозначается как 2B+D ). Возможно использование большего числа каналов - до тридцати (Primary Rate Interface, 30B+D ). Это существенно увеличивает полосу пропускания, но приводит к соответствующему удорожанию аппаратуры и каналов связи. Кроме того, пропорционально увеличиваются затраты на аренду и использование сети. В целом ограничения количества одновременно доступных ресурсов, налагаемые ISDN, приводят к тому, что этот тип связи оказывается удобным использовать в основном как альтернативу телефонным сетям. В системах с небольшим количеством узлов ISDN может использоваться также и как основной протокол сети. Следует только иметь в виду, что доступ к ISDN в нашей стране пока, скорее, исключение, чем правило.

X.25

Классической технологией коммутации пакетов является протокол X.25 . Сегодня практически не существует сетей X.25, использующих скорости выше 128 Кбит/с, что достаточно медленно. Но протокол X.25 включает мощные средства коррекции ошибок, обеспечивая надежную доставку информации даже на плохих линиях и широко используется там, где нет качественных каналов связи. (В нашей стране их нет почти повсеместно.) Естественно, за надежность приходится платить - в данном случае быстродействием оборудования сети и сравнительно большими, но предсказуемыми задержками распространения информации. В то же время X.25 - универсальный протокол, позволяющий передавать практически любые типы данных. «Естественной» для сетей X.25 является работа приложений, использующих стек протоколов OSI . К ним относятся системы, использующие стандарты X.400 (электронная почта) и FTAM (обмен файлами), а также некоторые другие. Доступны средства, позволяющие реализовать на базе протоколов OSI взаимодействие Unix-систем. Другая стандартная возможность сетей X.25 - связь через обычные асинхронные COM-порты. Образно говоря, сеть X.25 «удлиняет» кабель, подключенный к последовательному порту, донося его разъем до удаленных ресурсов. Таким образом, практически любое приложение, допускающее обращение к нему через COM-порт, может быть легко интегрировано в сеть X.25. В качестве примеров таких приложений следует упомянуть не только терминальный доступ к удаленным хост-компьютерам, например Unix-машинам, но и взаимодействие Unix-компьютеров друг с другом (cu, uucp), системы на базе Lotus Notes, электронную почту cc:Mail и MS Mail и т.п. Для объединения LAN в узлах, имеющих подключение к сети X.25, существуют методы инкапсуляции пакетов информации из локальной сети в пакеты X.25. Часть служебной информации при этом не передается, поскольку она может быть однозначно восстановлена на стороне получателя. Стандартным механизмом инкапсуляции считается описанный в документе RFC 1356. Он позволяет передавать различные протоколы локальных сетей (IP, IPX и т.д.) одновременно через одно виртуальное соединение. Этот механизм (или более старая его реализация RFC 877, допускающая только передачу IP) реализован практически во всех современных маршрутизаторах. Существуют также методы передачи по X.25 и других коммуникационных протоколов, в частности SNA , используемого в сетях мэйнфреймов IBM, а также ряда частных протоколов различных производителей. Таким образом, сети X.25 предлагают универсальный транспортный механизм для передачи информации между практически любыми приложениями. При этом разные типы трафика передаются по одному каналу связи, ничего «не зная» друг о друге. При объединении локальных сетей через X.25 можно изолировать друг от друга отдельные фрагменты корпоративной сети, даже если они используют одни и те же линии связи.

Сегодня в мире насчитываются десятки глобальных сетей X.25 общего пользования, их узлы имеются практически во всех крупных деловых, промышленных и административных центрах. В России услуги X.25 предлагают «Спринт Сеть», Infotel, «Роспак», «Роснет», Sovam Teleport и ряд других поставщиков. Кроме объединения удаленных узлов в сетях X.25 всегда предусмотрены средства доступа для конечных пользователей. Для того чтобы подключиться к любому ресурсу сети X.25, пользователю достаточно иметь компьютер с асинхронным последовательным портом и модем. При этом проблем с авторизацией доступа в географически удаленных узлах не возникает; если ваш ресурс подключен к сети X.25, вы можете получить доступ к нему как с узлов вашего поставщика, так и через узлы других сетей - то есть практически из любой точки мира. Недостатком технологии X.25 является наличие ряда принципиальных ограничений скорости. Первое из них связано именно с развитыми возможностями коррекции и восстановления. Эти средства вызывают задержки передачи информации и требуют от аппаратуры X.25 большой вычислительной мощности и производительности, в результате чего она просто «не успевает» за быстрыми линиями связи. Хотя существует оборудование, имеющее высокоскоростные порты, реально обеспечиваемая им скорость не превышает 250-300 Кбит/с на порт. В то же время для современных скоростных линий связи средства коррекции X.25 оказываются избыточными и при их использовании мощности оборудования часто работают вхолостую. Вторая особенность, заставляющая рассматривать сети X.25 как медленные, состоит в особенностях инкапсуляции протоколов локальных сетей (в первую очередь IP и IPX). При прочих равных условиях связь локальных сетей по X.25 оказывается в зависимости от параметров сети на 15-40% медленнее, чем при использовании HDLC по выделенной линии.

Все-таки на линиях связи невысокого качества сети X.25 вполне эффективны и дают значительный выигрыш в цене и возможностях по сравнению с выделенными линиями.

Frame Relay

Технология Frame Relay появилась как средство, позволяющее реализовать преимущества пакетной коммутации на скоростных линиях связи. Основное отличие сетей Frame Relay от X.25 состоит в том, что в них исключена коррекция ошибок между узлами сети. Задачи восстановления потока информации возлагаются на оконечное оборудование и программное обеспечение пользователей. Естественно, это требует использования достаточно качественных каналов связи. Считается, что для успешной работы с Frame Relay вероятность ошибки в канале должна быть не выше 10-6-10-7. Качество, обеспечиваемое обычными аналоговыми линиями, обычно на один-три порядка ниже. Вторым отличием сетей Frame Relay является то, что в настоящее время практически во всех них реализован только механизм постоянных виртуальных соединений (PVC ). Это означает, что, подключаясь к порту Frame Relay, вы должны заранее определить, к каким именно удаленным ресурсам будете иметь доступ. Принцип пакетной коммутации - множество независимых виртуальных соединений в одном канале связи - здесь остается, однако вы не можете выбрать адрес любого абонента сети. Все доступные вам ресурсы определяются при настройке порта. Таким образом, на базе технологии Frame Relay удобно строить замкнутые виртуальные сети, используемые для передачи других протоколов, средствами которых осуществляется маршрутизация. «Замкнутость» виртуальной сети означает, что она полностью недоступна для других пользователей, работающих в той же сети Frame Relay. Например, в США сети Frame Relay широко применяются в качестве опорных для работы Internet. Однако ваша частная сеть может использовать виртуальные каналы Frame Relay в тех же линиях, что и трафик Inernet, - и быть абсолютно от него изолированной. Как и сети X.25, Frame Relay предоставляет универсальную среду передачи практически для любых приложений. Основной областью применения Frame Relay сегодня является объединение удаленных LAN. При этом коррекция ошибок и восстановление информации производятся на уровне транспортных протоколов LAN - TCP, SPX и т.п. Потери на инкапсуляцию трафика LAN во Frame Relay не превышают двух-трех процентов. Отсутствие коррекции ошибок и сложных механизмов коммутации пакетов, характерных для X.25, позволяет передавать информацию по Frame Relay с минимальными задержками. Дополнительно возможно включение механизма приоритезации, позволяющего пользователю иметь гарантированную минимальную скорость передачи информации для виртуального канала. Такая возможность позволяет использовать Frame Relay для передачи критичной к задержкам информации, например голоса и видео в реальном времени. Эта сравнительно новая возможность приобретает все большую популярность и часто является основным аргументом в пользу выбора Frame Relay как основы корпоративной сети. Следует помнить, что сегодня услуги сетей Frame Relay доступны в нашей стране не более чем в полутора десятках городов, в то время как X.25 - примерно в двухстах. Есть все основания полагать, что по мере развития каналов связи технология Frame Relay будет становиться все более распространенной - прежде всего там, где сейчас существуют сети X.25. К сожалению, не существует единого стандарта, описывающего взаимодействие различных сетей Frame Relay, поэтому пользователи оказываются привязаны к одному поставщику услуг. При необходимости расширить географию возможно подключение в одной точке к сетям разных поставщиков - с соответствующим увеличением расходов. Существуют также частные сети Frame Relay, работающие в пределах одного города или использующие междугородние (как правило, спутниковые) выделенные каналы. Построение частных сетей на базе Frame Relay позволяет сократить количество арендуемых линий и интегрировать передачу голоса и данных.

Ethernet/Fast Ethernet

Ethernet - наиболее популярная топология локальных сетей. В ее основе лежит стандарт IEEE 802.3. За годы своего существования Ethernet претерпел значительную эволюцию, и теперь эта технология обеспечивает поддержку новых сред передачи данных и обладает рядом таких характеристик, которые не были предусмотрены в исходном стандарте. Имеющаяся полоса пропускания может либо разделяться между несколькими пользователями с помощью концентраторов, либо полностью предоставляться индивидуальным ПК с помощью коммутаторов. Не так давно сформировалась отчетливо выраженная тенденция к предоставлению пользователям настольных станций полнодуплексных каналов связи на 10 Мбит/с. Такая тенденция смогла укорениться благодаря появлению недорогих коммутаторов Ethernet, позволивших без больших затрат создавать высокопроизводительные многофункциональные сети.

Технология Fast Ethernet была разработана с целью предоставить более широкую полосу пропускания устройствам, которые в этом нуждались, - в первую очередь серверам и коммутаторам для настольных станций. В основе Fast Ethernet лежит стандарт Ethernet; это означает, что для внедрения этой скоростной технологии не требуется перестройки существующей инфраструктуры, замены системы управления и переподготовки сотрудников отдела информационных технологий. Сейчас это одна из самых популярных высокоскоростных технологий - она недорога, стабильна и полностью совместима с существующими сетями Ethernet. В сетях Fast Ethernet можно использовать оптоволоконные (100Base-FX) или медные (100Base-TX) кабели. Поддерживается полнодуплексная связь.

Все администраторы информационных систем сталкиваются с проблемой предоставления каналов Fast Ethernet для подключения наиболее мощных настольных станций и серверов без нарушения работы тех пользователей, которым хватает Ethernet 10Base-T. Именно для этого нужна технология автоматического распознавания скорости работы сети Ethernet/Fast Ethernet. В соответствии с этой технологией одно и то же устройство поддерживает и 10Base-T, и 100Base-TX. Один и тот же коммутатор обеспечит поддержку Ethernet и Fast Ethernet, предоставляя настольным станциям более широкую полосу пропускания, объединяя концентраторы на 10 и 100 Мбит/с и не внося никаких изменений в условия работы тех пользователей, которые полностью удовлетворены каналами 10 Мбит/с. Кроме того при работе с коммутатором, автоматически распознающим скорость передачи данных, нет необходимости конфигурировать каждый из портов отдельно. Это - один из наиболее эффективных способов избирательного наращивания полосы пропускания в местах возникновения перегрузок с полным сохранением возможностей дальнейшего расширения полосы пропускания в будущем.

Gigabit Ethernet

В технологии Gigabit Ethernet полностью сохраняется традиционная простота и управляемость Ethernet и Fast Ethernet, поэтому ее легко интегрировать в существующие локальные сети. Использование этой технологии позволяет на порядок увеличить полосу пропускания магистральной сети по сравнению с Fast Ethernet. Дополнительная полоса пропускания позволяет справиться с проблемами, связанными с незапланированным изменением структуры сети и добавлением к ней новых устройств, и избавляет от необходимости постоянно корректировать работу сети. Технология Gigabit Ethernet прекрасно подходит для магистральных участков сети и каналов связи с сервером, поскольку она дает широкую полосу пропускания без больших затрат, не требует отказа от традиционного формата кадров Ethernet и поддерживается существующими системами управления сетью.

Появление стандарта 802.3ab, позволяющего в качестве среды Gigabit Ethernet использовать медный кабель (правда на расстояния не более 100 метров), является еще одним важным аргументом в пользу данной технологии. Нельзя не отметить и работу IEEE над новым стандартом на 10 Гбит/с.

ATM

ATM - популярная технология для магистралей локальных вычислительных сетей. Ее использование сулит значительные выгоды большим организациям, поскольку обеспечивает тесную интеграцию между локальными и территориально распределенными сетями и характеризуется высоким уровнем отказоустойчивости и резервирования. Для передачи данных по сети используются каналы связи OC-3 (155 Мбит/с) и OC-12 (622 Мбит/с). Если просто сравнивать цифры, то эти значения меньше, чем для Gigabit Ethernet, однако в ATM используются альтернативные методы выделения полосы пропускания; задав тот или иной уровень качества услуг (Quality of Service, QoS), можно гарантировать предоставление полосы пропускания, необходимой для работы приложения. Средства управления трафиком, предоставляемые технологией АТМ, позволяют добиться полной определенности в работе приложений и обеспечении услуг в сложных сетях. Технология АТМ обладает важными преимуществами перед существующими методами передачи данных в локальных и глобальных сетях, которые должны обусловить ее широкое распространение во всем мире. Одно из важнейших достоинств АТМ - обеспечение высокой скорости передачи информации (широкой полосы пропускания). АТМ устраняет различия между локальными и глобальными сетями, превращая их в единую интегрированную сеть. Сочетая в себе масштабируемость и эффективность аппаратной передачи информации, присущие телефонным сетям, метод АТМ обеспечивает более дешевое наращивание мощности сети. Это техническое решение, способное удовлетворить грядущие потребности, поэтому многие пользователи часто выбирают АТМ больше ради ее будущей, нежели сегодняшней значимости. Стандарты АТМ унифицируют процедуры доступа, коммутации и передачи информации различного типа (данных, речи, видеоизображений и т.д.) в одной сети связи с возможностью работы в реальном масштабе времени. В отличие от ранних технологий локальных и глобальных сетей ячейки АТМ могут передаваться по широкому спектру носителей - от медного провода и волоконно-оптического кабеля до спутниковых линий связи, при любых скоростях передачи, достигающих сегодняшнего предела 622 Мбит/с. Технология АТМ обеспечивает возможность одновременного обслуживания потребителей, предъявляющих различные требования к пропускной способности телекоммуникационной системы. Технология АТМ уже в течение нескольких лет постепенно прокладывает путь в инфраструктуры корпораций. Пользователи строят сеть АТМ поэтапно, эксплуатируя ее параллельно с уже существующими у них системами. Конечно, в первую очередь технология АТМ окажет влияние на глобальные сети, в меньшей степени - на магистральные линии связи, соединяющие несколько локальных вычислительных сетей. Недавний опрос, проведенный компанией Sege Research, в котором приняли участие 175 пользователей, касался вопроса о том, какие технологии они намерены использовать в своих сетях в 1999 году. АТМ обогнал по популярности Ethernet. Более 40% пользователей хотели бы установить Ethernet на 100 Мбит/с, а около 45% планируют использовать АТМ на 155 Мбит/с. Совершенно неожиданно оказалось, что 28% опрошенных намерены использовать АТМ на 622 Мбит/с. Несколько слов о взаимоотношениях АТМ и Gigabit Ethernet. У каждой из этих технологий своя, достаточно четко определенная ниша. Для АТМ - это опорные сети группы зданий, объединенных в корпоративную сеть, и магистрали глобальных сетей. Для Gigabit Ethernet - это магистрали локальных сетей и линии связи с высокопроизводительными серверами. Успешно решаются проблемы обмена трафиком между Gigabit Ethernet и ATM и проблемы прозрачной маршрутизации. Компания Cisco Systems недавно разработала специальный АТМ-модуль для маршрутизирующего коммутатора Catalyst 8500. Этот модуль позволяет проводить маршрутизацию между портами АТМ и Ethernet.

Построение корпоративной сети

При построении территориально распределенной корпоративной сети могут использоваться все описанные выше технологии. На уровне локальных сетей альтернативы технологиям Ethernet, включая Fast Ethernet и Gigabit Ethernet, не существует; в качестве физической среды передачи предпочтительнее витая пара категории 5. Для подключения удаленных пользователей самым простым и доступным вариантом является использование телефонной связи. Там, где это возможно, могут использоваться сети ISDN. Для объединения узлов сети в большинстве случаев используются глобальные сети передачи данных. Даже там, где возможна прокладка выделенных линий, использование технологий пакетной коммутации позволяет уменьшить количество необходимых каналов связи и, что немаловажно, обеспечить совместимость системы с существующим оборудованием глобальных сетей. Подключение корпоративной сети к Internet оправданно, если вам нужен доступ к соответствующим услугам. Использовать Internet как среду передачи данных имеет смысл только тогда, когда другие способы недоступны и финансовые соображения перевешивают требования надежности и безопасности. Если вы будете использовать Internet только в качестве источника информации, лучше пользоваться технологией «соединение по запросу», то есть таким способом подключения, когда соединение с узлом Internet устанавливается только по вашей инициативе и на нужное время. Это резко снижает риск несанкционированного проникновения в вашу сеть извне. Простейший способ обеспечить такое подключение - использовать дозвон до узла Internet по телефонной линии или, если возможно, через ISDN. Другой более надежный способ обеспечить соединение по запросу - использовать выделенную линию и протокол Frame Relay. В этом случае маршрутизатор с вашей стороны должен быть настроен так, чтобы разрывать виртуальное соединение при отсутствии данных в течение определенного времени и вновь устанавливать его тогда, когда требуется доступ к данным. Широко распространенные способы подключения с использованием PPP или HDLC такой возможности не дают. Если же вы хотите предоставлять свою информацию в Internet (например, установить WWW- или FTP-сервер), соединение по запросу оказывается неприменимым. В этом случае следует не только использовать ограничение доступа с помощью Firewall, но и максимально изолировать сервер Internet от остальных ресурсов. Хорошим решением является использование единственной точки подключения к Internet для всей территориально распределенной сети, узлы которой связаны друг с другом с помощью виртуальных каналов X.25 или Frame Relay. В этом случае доступ из Internet возможен к единственному узлу, пользователи же в остальных узлах могут попасть в Internet с помощью соединения по запросу. Для передачи данных внутри корпоративной сети также стоит использовать виртуальные каналы сетей пакетной коммутации. Основные достоинства такого подхода - универсальность, гибкость, безопасность. В качестве виртуальной сети при построении корпоративной информационной системы может использоваться как X.25, так и Frame Relay или АТМ. Выбор между ними определяется качеством каналов связи, доступностью услуг в точках подключения и не в последнюю очередь - финансовыми соображениями. Сегодня затраты при использовании Frame Relay для междугородной связи оказываются в несколько раз выше, чем для сетей X.25. В то же время более высокая скорость передачи информации и возможность одновременно передавать данные и голос могут оказаться решающими аргументами в пользу Frame Relay. На тех участках корпоративной сети, где доступны арендованные линии, более предпочтительной является технология Frame Relay. Кроме того, по этой же сети возможна телефонная связь между узлами. Для Frame Relay лучше использовать цифровые каналы связи, однако даже на физических линиях или каналах тональной частоты можно создать вполне эффективную сеть, установив соответствующее канальное оборудование. Там, где необходимо организовать широкополосную связь, например при передаче видеоинформации, целесообразно применение АТМ. Для подключения удаленных пользователей к корпоративной сети могут использоваться узлы доступа сетей X.25, а также собственные коммуникационные узлы. В последнем случае требуется выделение нужного количества телефонных номеров (или каналов ISDN), что может оказаться слишком дорого.

При подготовке этой статьи использованы материалы сайтов www.3com.ru и www.race.ru

КомпьютерПресс 10"1999

Ежедневно для получения доступа к сервисам, доступным по сети Интернет, мы обращаемся к тысячам серверов, расположенных в различных географических точках. Каждому из этих серверов присваивается уникальный IP-адрес, по которому он идентифицируется в подключенной локальной сети.

Для успешного взаимодействия между узлами необходимо эффективное взаимодействие целого ряда протоколов. Эти протоколы реализованы на уровне оборудования и программного обеспечения каждого сетевого устройства. Взаимодействие между протоколами можно представить в виде стека протоколов. Протоколы в стеке представляют собой многоуровневую иерархию, в которой протокол верхнего уровня зависит от сервисов протоколов на более низких уровнях.

На графике ниже показан стек протоколов с набором первичных протоколов, необходимых для запуска веб-сервера по сети Ethernet. Нижние уровни стека отвечают за перемещение данных по сети и предоставление сервисов верхним уровням. Верхние уровни в большей степени отвечают за наполнение пересылаемых сообщений и пользовательский интерфейс.

Было бы невозможно запомнить все IP-адреса всех серверов, предоставляющих различные сервисы по сети Интернет. Вместо этого предлагается более простой способ поиска серверов – сопоставить имя с некоторым IP-адресом. Система имен доменов (DNS) позволяет использовать имя узла для запроса IP-адреса отдельного сервера. Регистрация и организация имен в этой системе выполняется по специальным высокоуровневым группам, именуемых доменами. К числу наиболее популярных высокоуровневых доменов сети Интернет относятся.com, .edu и.net. В DNS-сервере записана специальная таблица, ассоциирующая имена узлов в домене с соответствующим IP-адресом. Если клиент знает имя сервера, например, веб-сервера, но требуется найти IP-адрес, он направляет запрос на этот DNS-сервер через порт 53. Клиент использует этот IP-адрес DNS-сервера, прописанного в настройках DNS раздела конфигурации IP этого узла. По получении запроса DNS-сервер выясняет по своей таблице, имеется ли соответствие между запрашиваемым IP-адресом и веб-сервером. Если на DNS-сервере отсутствует запись о запрашиваемом имени, он опрашивает другой DNS-сервер в пределах своего домена. После распознавания IP-адреса DNS-сервер отправляет результат обратно к клиенту. Если DNS-серверу не удалось определить IP-адрес, клиент не сможет установить связь с этим веб-сервером и получит сообщение об истечении времени ожидания. Процесс определения IP-адреса по DNS-протоколу из клиентского программного обеспечения достаточно прост и прозрачен для пользователя.

В процессе обмена информацией веб-сервер и веб-клиент используют специальные протоколы и стандарты, гарантирующие прием и прочтение информации. К этим протоколам относятся следующие: протоколы уровня приложения, транспортные протоколы, протоколы межсетевого взаимодействия и сетевого доступа.

Протокол уровня приложения

Протокол передачи гипертекстовых файлов (HTTP) управляет взаимодействием между веб-сервером и веб-клиентом. Протокол HTTP задает формат запросов и ответов на запросы, пересылаемых между клиентом и сервером. Для управления процессом передачи сообщений между клиентом и сервером HTTP обращается к другим протоколам.

Транспортный протокол

Протокол управления передачей (TCP) – это транспортный протокол, управляющий отдельными сеансами связи между веб-серверами и веб-клиентами. Протокол TCP делит гипертекстовые сообщения (HTTP) на сегменты и отправляет их на конечный узел. Он также осуществляет управление потоками данных и подтверждает обмен пакетами между узлами.

Межсетевой протокол

Из протоколов межсетевого взаимодействия чаще всего применяется Интернет-протокол (IP). Протокол IP отвечает за прием форматированных сегментов от TCP, присвоение им локальных адресов, их инкапсуляцию в пакеты для маршрутизации на конечный узел.

Протоколы сетевого доступа

В локальных сетях чаще всего применяется протокол Ethernet. Протоколы сетевого доступа выполняют две основных функции - управление каналами передачи данных и физическая передача данных по сети.

Протоколы управления каналами передачи данных принимают пакеты от протокола IP, инкапсулируют их в соответствующий формат кадров локальной сети. Эти протоколы отвечают за назначение физических адресов кадрам данных и их подготовку к передаче по сети.

Стандарты и протоколы физической передачи данных отвечают за представление битов в тракте передачи, выбор способа передачи сигналов и их преобразование на принимающем узле. Сетевые интерфейсные платы поддерживают соответствующие протоколы тракта передачи данных.

Каждая служба, доступная по сети, имеет собственные протоколы уровня приложения, поддерживаемые программным обеспечением сервера и клиента. Помимо протоколов уровня приложения во всех общих Интернет-службах используется протокол Интернет (Internet Protocol, IP), отвечающий за адресацию и маршрутизацию сообщений между исходными и конечными узлами.

Протокол IP отвечает только за структуру, адресацию и маршрутизацию пакетов. IP не определяет способ доставки или транспортировки пакетов. Транспортные протоколы предписывают способ передачи сообщений между узлами. Наиболее популярными из транспортных протоколов являются протокол управления передачей (TCP) и протокол пользовательских датаграмм (UDP). Протокол IP использует эти транспортные протоколы для обеспечения связи и передачи данных между узлами.

Если приложению требуется подтверждение доставки сообщения, оно использует протокол TCP. Это аналогично процессу отправки заказного письма в обычной почтовой системе, когда для подтверждения получения письма получатель ставит свою подпись на квитанции.

TCP разбивает сообщение на фрагменты меньшего размера, именуемые сегментами. Эти сегменты последовательно нумеруются и передаются протоколу IP, который затем осуществляет сборку пакетов. TCP отслеживает количество сегментов, отправленных на тот или иной узел тем или иным приложением. Если отправитель не получает подтверждения в течение определенного периода времени, то TCP рассматривает эти сегменты как потерянные и повторяет их отправку. Повторно отправляется только потерянная часть сообщения, а не все сообщение целиком.

Протокол TCP на принимающем узле отвечает за повторную сборку сегментов сообщений и их передачу к соответствующему приложению.

FTP и HTTP – это примеры приложений, в которых для обеспечения доставки данных применяется протокол TCP.

В некоторых случаях протокол подтверждения доставки (TCP) не требуется, так как это замедляет скорость передачи данных. В таких случаях более приемлемым из транспортных протоколов является UDP.

Протокол UDP выполняет негарантированную доставку данных и не запрашивает подтверждения от получателя. Это аналогично отправке письма обычной почтой без уведомления о доставке. Доставка письма не гарантируется, но шансы его доставки достаточно высоки.

Протокол UDP более предпочтителен для передачи потокового аудио, видео и голосовой связи по IP-протоколу (VoIP). Подтверждение доставки лишь замедлит процесс передачи данных, и при этом повторная доставка нежелательна.

Примером использования протокола UDP является Интернет-радио. Если какое-либо сообщение затерялось в пути доставки по сети, оно не будет отправляться повторно. Пропадание нескольких пакетов будет восприниматься слушателем как кратковременное пропадание звука. Если для этого использовать протокол TCP, предусматривающий повторную доставку потерянных пакетов, то процесс передачи данных приостановится для приема потерянных пакетов, что заметно ухудшит качество воспроизведения.

Простой протокол электронной почты (SMTP)

Протокол SMTP используется программой почтового клиента для отправки сообщений на локальный почтовый сервер. Далее локальный сервер определяет, кому адресовано сообщение - локальному почтовому ящику или почтовому ящику на другом сервере.

Протокол SMTP применяется при взаимодействии с разными серверами, например, если требуется отправка сообщения на другие серверы. SMTP-запросы направляются на порт 25.

Почтовый протокол (POP3)

POP-сервер принимает и хранит сообщения для своих пользователей. После того, как установлено соединение между клиентом и почтовым сервером, сообщения будут загружены на компьютер клиента. По умолчанию сообщения не сохраняются на сервере после их прочтения клиентом. Клиенты обращаются к серверам POP3 через порт 110.

Протокол IMAP4

IMAP-сервер также принимает и сохраняет сообщения, адресованные его пользователям. Тем не менее, сообщения могут храниться в почтовых ящиках пользователей, если они не будут явно удалены самими пользователями. В самой последней версии протокола IMAP - IMAP4 запросы от клиентов прослушиваются через порт 143.

В разных платформах сетевых операционных систем используются различные почтовые серверы.

Обмен мгновенными сообщениями (Instant Messaging, IM) - это на сегодня один из наиболее популярных инструментов обмена информацией. Программное обеспечение мгновенного обмена сообщениями (IM), выполняемое на локальных компьютерах, обеспечивает взаимодействие пользователей в окнах передачи сообщений или в чат-сеансах по сети Интернет в реальном времени. На рынке сегодня предлагается множество программ обмена мгновенными сообщениями от различных компаний-разработчиков. В каждой службе мгновенного обмена сообщениями могут использоваться специальные протоколы и конечные порты, поэтому на двух разных узлах должно быть установлено совместимое программное обеспечение.

Для работы приложений мгновенного обмена сообщениями достаточна минимальная конфигурация. После загрузки клиентского приложения достаточно ввести имя пользователя и пароль. Эта операция необходима для проверки подлинности клиента IM на входе в сеть мгновенного обмена сообщениями. После выполнения входа на сервер клиенты могут отправлять сообщения другим клиентам в реальном времени. Помимо текстовых сообщений IM-клиент поддерживает передачу видео, музыкальных файлов и файлов голосовой связи. В IM-клиентах поддерживается функция телефона, что позволяет пользователям устанавливать телефонные вызовы по сети Интернет. Имеются дополнительные возможности настройки "Списка контактов", а также персональных стилей оформления.

Программное обеспечение IM-клиентов можно загружать и использовать на всех типах устройств, в том числе: компьютеры, КПК и сотовые телефоны.

Сегодня все более популярными становятся телефонные вызовы по сети Интернет. В клиентских приложениях Интернет-телефонии реализована технология обмена данными между равноправными уровнями (peer-to-peer technology), что аналогично технологии обмена мгновенными сообщениями. В IP-телефонии применяется технология Voice over IP (VoIP), которая использует пакеты IP для передачи оцифрованных голосовых данных.

Чтобы начать работу с Интернет-телефоном, загрузите клиентское программное обеспечение с узла одной из компаний, предлагающих этот сервис. Ставки за пользование сервисами Интернет-телефонии меняются в зависимости от региона и поставщика.

После установки программного обеспечения пользователь должен выбрать уникальное имя. Это необходимо для приема вызовов от других пользователей. Необходимы также динамики и микрофон, встроенные или внешние. В качестве телефона часто используется гарнитура, подключаемая к компьютеру.

Вызовы устанавливаются с другими пользователями, использующими тот же сервис, путем выбора имен из списка. Для установления вызова на обычный телефон (наземной линии или сотовый телефон) требуется шлюз для доступа к коммутируемой телефонной сети общего пользования (ТфОП).

Выбор протоколов и конечных портов, применяемых в приложениях Интернет-телефонии, может меняться в зависимости от типа программного обеспечения.

Сетевые технологии и примущества их использования

4. Преимущества использования сетевых технологий

Если компьютеры работают независимо друг от друга, то приложения и ресурсы (например, принтеры или сканеры) придется дублировать для каждого из них. Например, если два аналитика хотят работать с таблицей Excel и ежедневно распечатывать результаты своей работы на принтере, оба используемых ими компьютера должны иметь свою копию программы Excel и принтер. Если бы пользователям понадобилось совместно применять свои данные, то эти данные пришлось бы непрерывно переносить между компьютерами при помощи дискет или CD-RW-дисков. А если бы пользователям понадобилось совместно применять свои компьютеры, то каждому из них пришлось бы приложить усилия, чтобы разобраться в другой системе -- ведь в каждой из них имеется своя организация рабочего стола и приложений, своя структура папок и т. д. Короче говоря, это был бы весьма неудобный, неэкономный процесс, который приводил бы к большому количеству ошибок. И чем больше пользователей подключается к этому процессу, тем быстрее наступает момент, когда им становится уже невозможно управлять. Однако, если бы те два ПК из нашего примера были соединены между собой в сеть, оба пользователя смогли бы применять одно приложение Excel, иметь доступ к одним и тем же исходным данным и потом отправлять результаты своей работы на один “общий” принтер, присоединенный к сети (хотя, нужно сказать, что в современных сетях чаще всего каждая рабочая станция имеет свои приложения, например, Excel, а данные использует совместно). Если бы к этой сети добавилось больше пользователей, то все они смогли бы совместно применять Excel, данные и ресурсы одинаковым образом. Другими словами, компьютеры, входящие в сеть, могут совместно использовать:

Документы (записки, электронные таблицы, счета и т. д.);

Электронные почтовые сообщения;

Программное обеспечение по работе с текстом;

Программное обеспечение по сопровождению проектов;

Иллюстрации, фотографии, видео- и аудиофайлы;

Живые аудио- и видеотрансляции;

Принтеры;

Дисководы CD-ROM и другие сменные запоминающие устройства (как, например, Zip-дисководы и Jaz-дисководы);

Жесткие диски.

Поскольку в одной компьютерной сети работает множество компьютеров, более эффективно управлять всей сетью из центральной точки (сетевой администратор, network administrator). Возьмем вышеприведенный пример и предположим, что нашим аналитикам дали новую версию программы Excel. Если их компьютеры не, объединены в сеть, то каждую систему придется модернизировать и проверять по отдельности. Это не так уж и сложно сделать, если систем только две. Но если в компании есть десятки или даже сотни персональных компьютеров, проводить индивидуальную модернизацию каждого из них, естественно, становится дорогим и неэффективным занятием. При наличии компьютерной сети, для того чтобы модернизировать приложение, такую модернизацию достаточно выполнить только один раз на сервере, после чего все рабочие станции данной компьютерной сети смогут сразу же начать использовать обновленное программное обеспечение (ПО). Централизованное администрирование также позволяет из одного места управлять безопасностью компьютерной сети и следить за ее работой.

Но кроме возможности совместного доступа к информации, компьютерные сети дают и другие преимущества. Сеть позволяет сохранять и защищать информацию. Например, очень трудно координировать и управлять процессом резервирования информации при большом количестве независимых друг от друга персональных компьютеров. Системы, организованные в компьютерную сеть, могут автоматически создавать резервные копии файлов в одном центральном месте (например, накопителе на магнитной ленте, подключенном к сетевому серверу). Если информация на каком-либо компьютере оказывается утраченной, ее можно будет легко найти в центральной системе резервирования и восстановить. Кроме того, повышается уровень безопасности данных. Получение доступа к отдельному персональному компьютеру, как правило, означает доступ ко всей информации, содержащейся в этом компьютере. Однако возможности безопасности, которые предоставляет компьютерная сеть, не позволят неавторизованным пользователям получить доступ к важной информации или удалить ее. Например, каждый сетевой пользователь имеет свое регистрационное (“логинное”) имя и пароль, которые дают доступ только лишь к ограниченному числу сетевых ресурсов. Наконец, компьютерные сети являются идеальными средами для общения между пользователями. Вместо того чтобы обмениваться бумажными напоминаниями и записками, электронная почта позволяет пользователям отправлять друг другу письма, отчеты, изображения -- почти все типы файлов. Это также позволяет сэкономить на распечатывании материалов и уменьшить задержки, связанные с доставкой переписки между отделами компании. Электронная почта -- это такой мощный инструмент, что он позволяет пользователям сети Интернет почти мгновенно обмениваться сообщениями, практически независимо от своего местоположения в мире.

Автоматизация процессов документооборота на предприятии ООО "Пермский фанерный комбинат"

По данным Forrester Research, 38% компаний из списка Fortune 500 считают, что приобретение современной СЭД является критически важным для успешного ведения их бизнеса. В соответствии с мнением отраслевых аналитиков (таких мнений...

Результаты упомянутых выше исследований, публикаций в журналах и трудах конференций, а также многочисленные дискуссии, посвященные вопросам разработки и использования сетевых курсов...

Беспроводная территориально-распределенная компьютерная сеть строительной компании ООО "Спецтехмонтаж"

Беспроводные сети - это довольно быстро развивающееся направление вычислительных сетей...

Возможности и преимущества использования сетевых технологий в образовании

Информационные сети в информационном обеспечении управления

Организация виртуальных сред для проведения практических занятий по направлению "сетевые технологии" в дистанционном режиме

Каждый день различные учебные центры проводят тренинги в области сетевых технологий...

Особенности выбора корпоративной информационной системы

При внедрении компьютерных информационных технологий в организацию преследуется две взаимосвязанные основные цели: - сокращение затрат в организации; - увеличение отдачи, повышение производительности. Эти эффекты, как правило...

Программа Power Point и ИКТ в обучении физике в школе

Развитие компьютерной техники и средств связи обусловило появление распространение вычислительных сетей. Школы и вузы имеют компьютерные классы и лаборатории, в которых ПК объединены в локальную сеть, допускающую вход в Интернет...

Проект корпоративной сети звукового обеспечения "Интеллектуального здания" на основе технологии Fast Ethernet

Проектирование компьютерно-коммуникационной системы предприятия на примере Провайдер сотовой связи (K-Mobile)

Используется технология FAST Ethernet. Используются две спецификации: на витой паре категории 5 (100BASE-TX) и на оптоволоконном кабеле(100BASE-FX). 100BASE-FX -- вариант Fast Ethernet с использованием волоконно-оптического кабеля...

Проектирование корпоративной информационной сети

В проектируемой локальной сети используется стандарт локальных сетей IEEE 802.3u (Fast Ethernet) использующий в качестве среды передачи данных две неэкранированные витые пары (UTP) категории 5e (спецификация физического уровня - 100Base-TX)...