Файл и файловая структура. Операции с файлами

11.09.2019

Лабораторная работа №10

ВЫВОД НА ДИСК И ПРИНТЕР

Простое отображение информации на дисплее используется практически в каждой программе, но возможности его несколько ограничены. Даже использование временной остановки выполнения программы, чтобы дать пользователю возможность ознакомиться со всеми сообщениями, не решает проблемы полностью: как только сообщение уходит за пределы экрана, его уже невозможно прочитать без повторного запуска программы.

Более того, значения, присвоенные переменным, сохраняются только на время выполнения программы. Как только работа программы завершена, вся введенная информация теряется. Это означает, что если вы, например, ввели сведения о своей коллекции компакт-дисков в массив структурных переменных, они утрачиваются после завершения работы программы, и когда вы в следующий раз обратитесь к компьютеру, все данные придется вводить заново.

Для того чтобы сохранить информацию для себя или ознакомить других людей с результатами работы своей программы, нужно распечатать эти результаты на бумаге. А чтобы иметь возможность в любой момент обратиться к однажды введенным данным, необходимо сохранить информацию в файле на диске.

Что такое файловая структура

Выводимые данные отправляются на диск или печатающее устройство в зависимости от соответствующих инструкций вывода не сразу. Вместо этого они прежде поступают в область памяти, предназначенную для временного хранения информации, которая называется буфером . И только когда буфер заполняется, данные переправляются на диск или принтер (рис.1). Вводимые с диска данные также сначала поступают в буфер, откуда могут быть выведены на экран или присвоены в качестве значения переменной.

Для того чтобы направить данные в буфер или получить их из буфера, необходимо некоторое связующее звено между вашей программой и операционной системой компьютера. Этим звеном является файловая структура.

Когда программа открывает файл для работы, она тем самым создает специальную структуру в памяти. Эта структура содержит сведения,

Рис. 1. Некоторое время данные хранятся в буфере

необходимые вашей программе и компьютеру для осуществления вывода данных в файл и ввода из файла, а также для печати информации на принтере.

Например, структура содержит адрес буфера файла, чтобы компьютер знал, где искать информацию, которую вы хотите вывести на диск, или куда поместить данные, которые вы хотите считать с диска. Кроме того, эта структура хранит сведения о количестве символов, остающихся в буфере, а также о позиции следующего символа как выводимого из буфера, так и поступающего в него (рис. 2).


Рис. 2. Файловая структура хранит информацию, необходимую для нормального выполнения файловых операций

Почти все компиляторы Си и Си++ хранят информацию, необходимую для работы с файлами, в файле заголовков STDIO.H. Этот файл содержит определения констант, которые нужны для операций с файлами. Кроме того, он может содержать описание файловой структуры. Для того, чтобы воспользоваться функциями работы с файлами, программу следует начинать с инструкции

#include,

которая сделает файловые константы и описание файловой структуры доступными в процессе компиляции и компоновки программы.

При вводе данных из дискового файла происходит их копирование в память компьютера, информация, остающаяся на диске, не изменяется во время работы программы. По этой причине программисты называют такой ввод чтением данных из файла. При выводе данных на диск в файл помещается копия данных, хранящихся в памяти. Эта процедура называется записью на диск.

Указатель на файл

Ввод или вывод информации в файлы обеспечивается с помощью так называемого указателя на файл, который является указателем на файловую структуру в памяти. При записи информации в файл или при чтении из файла программа получает необходимую информацию из структуры. Указатель на файл определяется следующим образом:

FILE *file_pointer;

Имя структуры FILE говорит программе о том, что определяемая переменная является указателем именно на файловую структуру. Звездочка предписывает создать указатель с соответствующим именем переменной.

Если вы собираетесь использовать одновременно несколько файлов, вам нужны указатели для каждого из них. Например, если вы пишете программу, в которой содержимое одного файла копируется в другой, вам необходимы два указателя на файлы. Два указателя требуются и в том случае, если вы хотите прочитать информацию с диска и распечатать ее на принтере:

FILE *infile, *outfile;

Как открыть файл

Связь между программой и файлом устанавливается при помощи функции fopen(), синтаксис которой показан на рис. 3.

Эта функция присваивает адрес структуры указателю. Первым параметром этой функции является имя файла, которое должно быть указано в соответствии с


Рис. 3. Синтаксис функции fopen()

определенными правилами. Например, в операционной системе MS-DOS имя файла может состоять максимум из восьми символов, плюс расширение имени, состоящее не более чем из трех символов (расширение не является обязательным элементом). Если вы хотите вывести информацию на печатающее устройство, а не в дисковый файл, в качестве имени файла в кавычках указывается "PRN". При этом автоматически осуществляется вывод данных на принтер.

В качестве второго параметра функции передается режим доступа к файлу, то есть сообщение о том, какие операции пользователь намерен производить с файлом. В Си и Си++ параметр, определяющий режим доступа, также заключается в кавычки. Возможны следующие варианты:

R - Указывает на то, что будет выполняться чтение информации из файла в память компьютера. Если файл к этому моменту не существует на диске, программа сообщит об ошибке выполнения.w - Указывает на то, что будет выполняться запись данных на диск или вывод на принтер. Если файл к этому моменту не существует, операционная система создаст его. Если файл уже существует на диске, вся записанная в нем на данный момент информация будет уничтожена.a - Указывает на то, что следует добавить информацию в конец файла. В случае отсутствия файла, операционная система создаст его. Если он существует, выводимые новые данные будут добавлены в конец файла без уничтожения текущего содержимого.

Например, если вы хотите создать файл с именем CD.DAT для хранения картотеки коллекции компакт-дисков, вы должны использовать следующие инструкции:

FILE *cdfile;cdfile = fopen("CD.DAT", "w");

Если в программе требуется осуществить чтение из файла, а не запись в него, используйте следующую запись:

FILE *cdfile;cdfile = fopen("CD.DAT", "r");

Обратите внимание, что и имя файла, и символ, определяющий режим доступа, заключены в двойные кавычки. Это обусловлено тем, что они передаются функции fopen() как строки. Имя файла можно ввести с клавиатуры, как значение строковой переменной, а затем использовать имя этой переменной в качестве аргумента, без кавычек.

Если вы хотите распечатать информацию о вашей коллекции на принтере, используйте следующую последовательность инструкций:

FILE *cdfile;cdfile = fopen("PRN", "w");

Учтите, что вывод информации на принтер возможен только с режимом доступа "w".

Как Си/Си++ работает с файлами

Си сохраняет сведения о текущей позиции чтения и записи в файле, используя специальный указатель.

При чтении информации из файла, указатель определяет следующие данные, которые должны быть считаны с диска. Когда файл открывается впервые с использованием режима доступа "r", указатель помещается на первый символ файла. При выполнении очередной операции чтения, указатель перемещается к следующей порции данных, которые должны быть прочитаны. Величина шага перемещения при этом зависит от количества информации, которая считывается за один прием (рис. 4). Если за один раз считывается только один символ, указатель передвинется на следующий символ, если читается целая структура, указатель перейдет на следующую структуру. Как только вся информация прочитана из файла, указатель попадает на специальный код, называемый символом конца файла Наличие символа конца файла на самом деле вовсе не является обязательным. Попытка продолжения чтения после достижения конца файла приведет к ошибке выполнения.

Если файл открывается с режимом доступа "w", указатель также помещается в начало файла, так что первые введенные данные будут помещены в начало файла. При закрытии файла после введенного массива данных будет добавлен символ конца файла. Если файл к моменту его открытия с использованием режима доступа "w" уже существует, все содержащиеся в нем данные затираются и «поверх» них записывается новая информация, введенная с помощью процедуры записи. Любые данные, которые могут остаться не уничтоженными, располагаются после нового символа конца файла, так что к ним уже нельзя будет обратиться при следующем чтении данных из файла. Таким образом, любая попытка записи данных в существующий файл с использованием режима доступа "w" приведет к уничтожению хранящейся в нем на данный момент информации. Это произойдет даже в том случае, если файл будет просто открыт и закрыт, без записи каких-либо данных.

Если файл открывается с использованием режима доступа "a", указатель помещается на символ конца файла. Новые данные, которые записываются в файл, размещаются после уже существующих данных, а затем добавляется символ конца файла.

Как закрыть файл

После окончания записи в файл или чтения из файла необходимо его закрыть, то есть прервать связь между файлом и программой. Это осуществляется с помощью инструкции

Fclose(file_pointer);

Закрывая файл, мы получаем гарантию, что вся информация, имевшаяся в буфере, действительно записана в файл. Если выполнение программы заканчивается до закрытия файла, какая-то не попавшая на диск часть информации может остаться в буфере, в результате чего она будет утрачена. Кроме того, не будет надлежащим образом записан символ конца файла, и в следующий раз программа не сможет получить доступ к файлу.

Следует добавить, что закрытие файла освобождает указатель, после чего он может быть использован с другим файлом или для выполнения других операций с тем же файлом. В качестве примера предположим, что вы хотите создать файл, записать в него данные, а затем убедиться, что информация записана правильно. Для этого в программе можно использовать структуру, приведенную в Листинге1.

Листинг 1. Использование одного указателя файла в двух операциях.

FILE *cdfile;if((cdfile = fopen("CD.DAT", "w")) == NULL) { puts("Невозможно открыть файл"); exit(); }/* Здесь должны располагаться инструкции записи в файл */fclose(cdfile);if((cdfile = fopen("CD.DAT", "r")) == NULL) { puts("Невозможно открыть файл"); exit(); }/* В этом месте должны быть записаны инструкции чтения из файла */fclose(cdfile);

Здесь файл сначала открывается с использованием режима доступа "w", затем в него записывают данные. Во второй раз файл открывается с использованием режима доступа "r", что позволяет прочитать данные и вывести их на экран.

Некоторые компиляторы позволяют обеспечить запись всех данных в файл путем очистки буфера с помощью функции

Эта функция позволяет без закрытия файла очистить буфер и записать все имеющиеся в нем данные на диск или направить их на принтер.

Функции ввода и вывода

Существует несколько способов передачи данных в файл и получения их из файла в зависимости от используемой функции:

· посимвольная запись данных в файл или вывод их на принтер с использованием функции putc() или fputc();

· посимвольное чтение данных из файла с использованием функции getc() или fgetc();

· построчная запись данных в файл или вывод их на принтер с использованием функции fputs();

· построчное чтение данных из файла с использованием функции fgets();

· форматированный вывод символов, строк или чисел на диск или на принтер с помощью функции fprintf();

· форматированный ввод символов, строк или чисел из файла с помощью функции fscanf();

· запись целой структуры с использованием функции fwrite();

· чтение целой структуры с использованием функции fread().

Работа с символами

Посимвольная передача данных является самой основной формой файловых операций. Хоть она и не принадлежит к числу широко распространенных на практике способов обращения с информацией, тем не менее, она хорошо иллюстрирует основные принципы работы с файлами. В приведенной ниже программе происходит посимвольная запись данных в файл, которая продолжается до тех пор, пока не нажата клавиша Enter :

/*fputc.c*/#include main() { FILE *fp; char letter; if((fp = fopen("MYFILE","w"))==NULL) { puts("Невозможно открыть файл"); exit(); } do { letter=getchar(); fputc(letter, fp); } while(letter != "\r"); fclose(fp); }

Файл открывается с режимом доступа "w". Если файл с именем MYFILE не существует к моменту выполнения программы, он будет создан. В цикле do, с помощью функции getchar(), осуществляется ввод последовательности символов, которые затем записываются в файл с помощью функции putc(). Синтаксис записи putc() таков:

Putc(char_variable, file_pointer);

С теми же аргументами может использоваться и функция fputc().

Цикл выполняется до тех пор, пока не нажата клавиша Enter , которая вводит код «возврат каретки» (\r), после чего файл закрывается.

Работа со строками

Вместо того, чтобы работать с отдельными символами, можно читать из файла и записывать в него целые строки текста. Построчная запись и чтение осуществляются с использованием функций fputs() и fgets().

Функция fputs() имеет следующий синтаксис:

Fputs(string_variable, file_pointer);

Эта функция выполняет построчную запись данных в файл или вывод на принтер, но не добавляет код «новая строка». Для того чтобы каждая строка записывалась на диск (или печаталась на принтере) действительно как отдельная строка, необходимо вводить код «новая строка» вручную. Например, в приведенной ниже программе создается файл имен:

/*fputc.c*/#include main() { FILE *fp; char flag; char name; if((fp = fopen("MYFILE","w"))==NULL) { puts("Невозможно открыть файл"); exit(); } flag = "y"; while(flag != "n") { puts("Введите имя"); gets(name); fputs(name, fp); fputs("\n",fp); printf("Желаете ввести другое имя?"); flag=getchar(); putchar("\n"); } fclose(fp); }

Выполнение цикла while продолжается до тех пор, пока в ответ на подсказку не будет введен символ n. В этом цикле осуществляется ввод имени с клавиатуры с помощью функции gets(), после чего имя записывается на диск с помощью функции fputs(). Далее в файл записывается код «новая строка», и, наконец, программа спрашивает пользователя, желает ли он продолжить ввод имен.

Если ваш компилятор может использовать функцию strlen(), можно несколько упростить процедуру ввода, используя следующие инструкции:

Printf("Пожалуйста, введите имя: ");gets(name);while(strlen(name) > 0) { fputs(name, fp); fputs("\n", fp); printf("Пожалуйста, введите имя: "); gets(name); }

Символы, которые вы набираете на клавиатуре, присваиваются строковой переменной name, а затем проверяется, не оказалась ли длина строки равной 0. Если на запрос сразу же нажать клавишу Enter, строка будет иметь нулевую длину и выполнение цикла прекратится. Если до нажатия Enter ввести хотя бы один символ, строка и код «новая строка» будут записаны на диск.

Некоторые компиляторы позволяют еще более упростить алгоритм ввода строки, например, так:

Printf("Пожалуйста, введите имя: ");while(strlen(gets(name)) > 0) { fputs(name, fp); fputs("\n", fp); printf("Пожалуйста, введите имя: "); }

где ввод строки выполняется внутри условия while.

Для того чтобы напечатать строку на принтере, вместо записи ее на диск используется имя файла "prn". Чтобы открыть файл, требуется указать:

If ((fp = fopen("prn", "w")) == NULL)

Для создания программы печати длина строки определяется равной 81 символу, чтобы строка могла уместиться во всю ширину экрана, прежде чем будет нажата клавиша Enter . В Листинге 2 приводится текст программы, которая демонстрирует, как можно написать простой текстовый процессор. Строка не посылается на принтер до тех пор, пока не нажата клавиша Enter , что позволяет с помощью клавиши Backspace корректировать ошибки ввода строки.

Листинг 2. Программа вывода строки на печатающее устройство.

/*wp.c*/#include "stdio.h"main() { FILE *fp; char line; if ((fp = fopen("prn", "w")) == NULL) { puts("Принтер не готов к работе"); exit(); } puts("Введите текст, после ввода каждой строки нажимайте Enter\n"); puts("Для прекращения ввода нажмите Enter в начале новой строки\n"); gets(line); while (strlen(line) > 0) { fputs(line, fp); fputs("\n", fp); gets(line); } fclose(fp); }

Чтение строк

Чтение строк из файла осуществляется с помощью функции fgets(). Синтаксис функции:

Fgets(string_variable, lenght, file_pointer);

Функция вводит строку целиком до символа новой строки, если ее длина не превышает значения, указанного в параметре lenght минус один символ. Параметр lenght является целым числом либо целочисленной константой или переменной, указывающей максимально возможное количество символов в строке.

Ниже приведена программа, в которой осуществляется чтение имен из файла, созданного в предыдущем примере:

/*fgets.c"/#include "stdio.h"main() { FILE *fp; char name; if ((fp = fopen("MYFILE", "r")) == NULL) { puts("Невозможно открыть файл"); exit(); } while(fgets(name, 12, fp) != NULL) { printf(name); } fclose(fp); }

Ввод выполняется внутри цикла while до тех пор, пока значение читаемого символа не равно NULL. Как только указатель достигнет конца файла, строковой переменной присваивается значение NULL. При построчном чтении из файла для указания конца файла всегда используется NULL, а EOF используют при посимвольном чтении.

Если вы пишете программу, предназначенную для чтения любого текстового файла, указывайте значение аргумента lenght равным 80.

Кстати, обратите внимание, что функция printf() используется в этом примере для вывода содержимого строковой переменной без указателей формата. Каждая строка, читаемая из файла, включает код «новая строка», который был записан в файл в инструкции fputs("\n", fp);, и никаких дополнительных кодов «новая строка» в параметры функции printf() включать не требуется.

Листинг 3. Форматированный вывод.

/*fprintf.c*/#include "stdio.h"main() { FILE *fp; char name; int quantity; float cost; if ((fp = fopen("MYFILE", "w")) == NULL) { puts("Невозможно открыть файл"); exit(); } printf("Введите наименование товара: "); gets(name); while (strlen(name) > 0) { printf("Введите цену товара: "); scanf("%f", &cost); printf("Введите количество единиц товара: "); scanf("%d", &quantity); fprintf(fp, "%s %f %d\n", name, cost, quantity); printf("Введите наименование товара: "); gets(name); } fclose(fp); }

Обратите внимание, что в последней строке цикла происходит ввод следующего имени. Это позволяет прекратить повторение цикла простым нажатием клавиши Enter . Некоторые начинающие программисты, вероятно, написали бы этот цикл таким образом:

Do { printf("Введите наименование товара: "); gets(name); printf("Введите цену: "); scanf("%f", &cost); printf("Введите количество единиц товара: "); scanf("%d", &quantity); fprintf(fp, "%s %f %d\n", name, cost, quantity); }while (strlen(name) > 0);

и эта программа работала бы столь же успешно, не считая того, что для окончания цикла требовалось бы нажать клавишу Enter трижды: первый раз при вводе названия и еще два раза в ответ на просьбу ввести цену и количество товара.

Внутри цикла while данные о цене и количестве каждого наименования товара вводятся с использованием функции scanf(), а затем записываются на диск с помощью инструкции

Fprintf(fp, "%s %f %d\n", name, cost, quantity);

Обратите внимание, что код «новая строка» записывается в файл в конце каждой строки. Если просмотреть содержимое файла с помощью команды TYPE операционной системы MS-DOS, то каждая строка инвентарной описи и на экране будет начинаться с новой строки:

Если бы код «новая строка» не был записан на диск, текст выводился бы подряд, в одну строку на экране, и выглядел примерно так:

Дискеты 1.120000 100лента 7.340000 150картридж 75.000000 3

Заметьте, что при этом отсутствует пробел между числом, показывающим количество единиц одного товара, и наименованием следующего. Даже при таком способе записи можно без проблем осуществлять чтение из этого файла, так как компилятор в состоянии различить конец числового значения и начало строки, но что произойдет, если последним значением для каждого наименования товара окажется строка с названием фирмы-производителя? Информация в файле будет выглядеть примерно таким образом:

Дискеты 1.120000 Memoryexлента 7.340000 Okaydataкартридж 75.000000 HP

и тогда при чтении данных из файла программа присоединит начало данных о следующем товаре к концу описания предыдущего. Например, данные о первом наименовании товара при этом выглядели бы так:

Дискеты 1.120000 Memoryexлента

Все выведенные на диск данные, даже значения типа int или float, хранятся в виде текстовых символов. Об этом мы будем говорить чуть позже.

Листинг 4. Чтение форматированного текста из файла.

/*fscanf.c*/#include "stdio.h"main() { FILE *fp; char name; int quantity; float cost; if ((fp = fopen("MYFILE", "r")) == NULL) { puts("Невозможно открыть файл"); exit(); } while (fscanf(fp, "%s%f%d", name, &cost, &quantity) != EOF) { printf("Наименование товара: %s\n", name); printf("Цена: %.2f\n", cost); printf("Количество единиц: %d\n", quantity); } fclose(fp); }

Работа со структурами

Одним из способов преодолеть ограничения функции scanf() является объединение элементов данных в структуру с тем, чтобы впоследствии осуществлять ввод и вывод структур целиком. Структуру можно записать на диск с помощью функции fwrite() и прочитать из файла с помощью функции fread().

Синтаксис функции fwrite() такой:

Fwrite(&structure_variable, structure_size, number_of_structures, file_pointer);

На первый взгляд, эта инструкция выглядит несколько устрашающей, но на самом деле использовать ее очень легко:

· &structure_variable - имя структурной переменной с оператором получения адреса, сообщающим компилятору стартовый адрес информации, которую мы хотим записать на диск;

· structure_size - это количество символов в структуре; не обязательно подсчитывать его самому, для этого можно использовать библиотечную функцию sizeof(), записанную следующим образом:

Sizeof(structure_variable)

которая автоматически определит размер указанной структуры;

· number_of_structures - это целое число, определяющее количество структур, которые мы хотим записать в один прием; здесь всегда следует указывать число 1, если только вы не собираетесь создать массив структур и записать его одним большим блоком;

· file_pointer - указатель на файл.

В качестве примера предположим, что вы хотите записать на диск сведения о своей коллекции компакт-дисков. Используя структуру CD, которую мы подробно разбирали ранее, пишем инструкцию: fwrite(&disc, sizeof(disc), 1, fp);

Выполнение этой инструкции иллюстрирует рис. 5.

Текст программы, которая вводит данные в структуру CD, а затем сохраняет ее на диске, приведен в Листинге12.5. Для ввода имени создаваемого файла используется функция gets(). Переменная, в которой хранится имя файла, используется функцией fopen() для того, чтобы открыть файл.

Информация о каждой структуре CD вводится с клавиатуры, после чего структура целиком записывается на диск.



Рис. 5. Синтаксис функции fwrite() в инструкции записи структуры CD

Листинг 5. Запись структуры CD.

/*fwrite.c*/#include "stdio.h"main() { FILE *fp; struct CD { char name; char description; char category; float cost; int number; } disc; char filename; printf("Введите имя файла, который вы желаете создать: "); gets(filename); if ((fp = fopen(filename, "w")) == NULL) { printf("Невозможно открыть файл %s\n", filename); exit(); } puts("Введите сведения о диске\n"); printf("Введите название диска: "); gets(disc.name); while (strlen(disc.name) > 0) { printf("Введите описание: "); gets(disc.description); printf("Введите категорию: "); gets(disc.category); printf("Введите цену: "); scanf("%f", &disc.cost); printf("Введите номер ячейки: "); scanf("%d", &disc.number); fwrite(&disc, sizeof(disc), 1, fp); printf("Введите название: "); gets(disc.name); } fclose(fp); }

Чтение структур

Fread(&structure_variable, structure_size, number_of_structures, file_pointer);

За исключением имени функции эта инструкция полностью совпадает с записью функции fwrite(). Программа, в которой из файла считывается структура CD, приведена в Листинге 6. Для чтения данных используется цикл while:

While (fread(&disc, sizeof(disc), 1, fp) == 1)

Функция fread() возвращает значение, соответствующее количеству успешно прочитанных структур. Так как в аргументе функции мы указали, что читать следует по одной структуре, функция возвращает значение 1. Цикл while будет выполняться до тех пор, пока считывание структур с диска проходит успешно. Если чтение структуры становится невозможным, например потому, что достигнут конец файла, функция возвращает значение 0, и выполнение цикла прекращается.

Листинг 6. Чтение структуры CD с диска.

/*fread.c*/#include "stdio.h"main() { FILE *fp; struct CD { char name; char description; char category; float cost; int number; } disc; char filename; printf("Введите имя файла, который желаете открыть: "); gets(filename); if ((fp = fopen(filename, "r")) == NULL) { printf("Невозможно открыть файл %s\n", filename); exit(); } while (fread(&disc, sizeof(disc), 1, fp) == 1) { puts(disc.name); putchar("\n"); puts(disc.description); putchar("\n"); puts(disc.category); putchar("\n"); printf("%f", disc.cost); putchar("\n"); printf("%d", disc.number); } fclose(fp); }

В табл. 1 собраны все описанные способы ввода и вывода данных и показаны значения, которые возвращает каждая функция при невозможности продолжения чтения или записи данных.

Таблица 1. Функции ввода в файл и вывода из файла.

Чтение в массив

Во всех программах, приведенных до настоящего момента в качестве примера, выполнялось чтение данных из файла и отображение вводимой информации на экране. Однако если считывать данные в переменные, с ними можно выполнять любые операции, например, использовать их для записи в массив.

В Листинге 7 приведен текст программы, осуществляющей чтение информации из файла, содержащего данные о коллекции компакт-дисков, в массив структур CD (предполагается, что их количество не превышает 20). Индекс используется для того, чтобы каждая считанная из файла структура сохранялась в отдельном элементе массива disc. После того как очередная структура прочитана и выведена на экран, стоимость очередного диска добавляется к сумме, отражающей общую стоимость коллекции, а значение индекса и счетчика увеличивается за счет выполнения следующих инструкций:

Total = total + disc.cost;index++;count++;

Если бы нас интересовала только информация об общей стоимости и количестве экземпляров коллекции, можно было бы читать данные в структурную переменную, не используя массив, и просто подсчитывать значения переменных total и count. Однако если данные будут считаны в массив, вы сможете произвольным образом обращаться к структурам и печатать любую информацию.

Заметьте, что запрос о вводе имени файла в программе повторяется до тех пор, пока не будет введено имя файла, который действительно можно открыть.

Листинг 7. Чтение структуры в массив.

/*rarray.c*/#include "stdio.h"main() { FILE *fp; struct CD { char name; char description; char category; float cost; int number; } disc; int index, count; float total; count = 0; total = 0; char filename; printf("Введите имя файла данных: "); gets(filename); while ((fp = fopen(filename, "r")) == NULL) { printf("Невозможно открыть файл %s\n", filename); printf("Введите имя файла данных: "); gets(filename); } index = 0; while (fread(&disc, sizeof(disc), 1, fp) == 1) { puts(disc.name); putchar("\n"); puts(disc.description); putchar("\n"); puts(disc.category); putchar("\n"); printf("%f", disc.cost); putchar("\n"); printf("%d", disc.number); total = total + disc.cost; index++; count++; } fclose(fp); printf("Общая стоимость коллекции составляет %.2f\n", total); printf("Коллекция содержит %.d дисков\n", count); }

Листинг 8. Программа копирования содержимого файлов.

/*filecopy.c*/#include "stdio.h"main() { FILE *fp1, *fp2; char infile, outfile; int letter; printf("Введите имя файла для чтения: "); gets(infile); if ((fp1 = fopen(infile, "r")) == NULL) { printf("Невозможно открыть файл %s", infile); exit(); } printf("Введите имя файла для записи: "); gets(outfile); if ((fp2 = fopen(infile, "w")) == NULL) { printf("Невозможно открыть файл %s", outfile); fclose(fp1); exit(); } while ((letter = fgetc(fp1)) != EOF) { putchar(letter); fputc(letter, fp2); } fclose(fp1); fclose(fp2); }

Первый файл открывается с режимом доступа "r", чтобы можно было прочитать из него данные. Если файл невозможно открыть, программа завершается. Второй файл открывается с режимом доступа "w", что позволяет записывать в


Рис. 6. Функция fprintf() записывает числовые значения в виде текстовых символов

него данные. Если второй файл невозможно открыть, то перед завершением программы сначала закрывается первый файл. Это дает нам гарантию того, что первый файл, если он был успешно открыт, не окажется поврежден в момент выхода из программы.

Функция fprintf() записывает все данные в виде текста. Например, если использовать fprintf() для записи числа 34.23 на диск, пять символов будут записаны так, как это показано на рис. 6. Если в дальнейшем для чтения данных из файла используется функция fscanf(), символы будут преобразованы в числовое значение и в таком виде записаны в переменную.

Вследствие того, что функция fprintf() записывает данные в виде текста, чтение из файла можно осуществлять и с помощью функций getc(), fgetc() или fgets(). Однако эти функции будут читать информацию в виде «печатных» символов. Например, если использовать функцию fgets(), числа будут считываться в виде символов, являющихся частью строки. При отображении на экране или печати на принтере данных, прочитанных с использованием функции fgets() или fgetc(), вы будете лишены возможности выполнения арифметических операций над отдельными элементами данных.

Двоичный формат

Для сохранения числовых переменных в двоичном формате используется функция fwrite(). Записанные таким образом данные на диске займут столько же места, сколько и в памяти. Если просмотреть содержимое такого файла с помощью команды TYPE, мы увидим на месте числовых значений бессмысленные буквы и значки. Это ASCII-символы, эквивалентные записанным в файл значениям.

Для чтения файла, записанного с помощью fwrite(), следует использовать функцию fread(). Вводить данные следует в структуру, имеющую строение, соответствующее сохраненным ранее данным. Структура может иметь другое имя, имена членов структуры тоже могут отличаться, но порядок, типы и размеры членов обеих структур должны совпадать.

Печать данных

С технической точки зрения вывести данные на принтер можно с помощью любой функции вывода: посимвольно, построчно, форматированными строками или структурами. Единственное, что необходимо, - это указать имя файла "prn" и режим доступа "w".

Однако «поструктурная» печать с помощью функции fwrite() практически не используется, так как числовые данные при этом будут напечатаны в двоичном формате в виде загадочных символов. Вместо этого для печати структур используется функция fprintf(), как это показано в Листинге 9. В этой программе открываются два файла: дисковый файл открывается для чтения, а файл принтера - для вывода.

Листинг 9. Чтение и печать содержимого дискового файла.

Каждая структура целиком вводится функцией fread(), после чего отдельные члены структуры печатаются с использованием функции fprintf(). Функция fread() может читать строки, включающие пробелы, поэтому ее применение предпочтительнее, чем использование функции fscanf().

Инструкции

Fprintf(ptr, "\n\n");

выводят по две пустые строки между отдельными структурами CD.

Проектирование программы

Знание того, как осуществляется запись в дисковый файл и чтение из него, открывает перед вами возможность создания сложных приложений. Все программы, которые демонстрировали ввод данных из дискового файла, читали его целиком. Но можно представить себе ситуацию, когда вы захотите поступить с данными каким-либо другим образом.

Например, вам может понадобиться просмотреть дисковый файл в поисках определенной записи. В этом случае следует открыть файл с режимом доступа "r", а потом использовать цикл для постепенного ввода данных, структура за структурой или строка за строкой в зависимости от того, к какому типу относится информация, записанная в файл. Во время каждого прохождения цикла значения вводимых данных сравниваются с искомыми. Для проверки значений строк используйте функцию strcmp(), конечно, если ваш компилятор это позволяет. Как только искомые данные найдены, они выводятся на экран, после чего файл закрывается.

Доброго времени суток уважаемый пользователь, в этой статье речь пойдет о такой теме, как файлы. А именно мы рассмотрим: Управление файлами , типы файлов , файловая структура , атрибуты файла .

Файловая система

Одной из основных задач ОС является предоставление удобств пользователю при работе с данными, хранящимися на дисках. Для этого ОС подменяет физическую структуру хранящихся данных некоторой удобной для пользователя логической моделью, которая реализуется в виде дерева каталогов, выводимого на экран такими утилитами, как Norton Commander, Far Manager или Windows Explorer. Базовым элементом этой модели является файл , который так же, как и файловая система в целом, может характеризоваться как логической, так и физической структурой.

Управление файлами

Файл – именованная область внешней памяти, предназначенная для считывания и записи данных.

Файлы хранятся в памяти, не зависящей от энергопитания. Исключением является электронный диск, когда в ОП создается структура, имитирующая файловую систему.

Файловая система (ФС) - это компонент ОС, обеспечивающий организацию создания, хранения и доступа к именованным наборам данных — файлам.

Файловая система включает:Файловая система включает:

  • Совокупность всех фалов на диске.
  • Наборы структур данных, используемых для управления файлами (каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске).
  • Комплекс системных программных средств, реализующих различные операции над файлами: создание, уничтожение, чтение, запись, именование, поиск.

Задачи, решаемые ФС, зависят от способа организации вычислительного процесса в целом. Самый простой тип – это ФС в однопользовательских и однопрограммных ОС. Основные функции в такой ФС нацелены на решение следующих задач:

  • Именование файлов.
  • Программный интерфейс для приложений.
  • Отображения логической модели ФС на физическую организацию хранилища данных.
  • Устойчивость ФС к сбоям питания, ошибкам аппаратных и программных средств.

Задачи ФС усложняются в однопользовательских многозадачных ОС, которые предназначены для работы одного пользователя, но дают возможность запускать одновременно несколько процессов. К перечисленным выше задачам добавляется новая задача — совместный доступ к файлу из нескольких процессов.

Файл в этом случае является разделяемым ресурсом, а значит ФС должна решать весь комплекс проблем, связанных с такими ресурсами. В частности: должны быть предусмотрены средства блокировки файла и его частей, согласование копий, предотвращение гонок, исключение тупиков. В многопользовательских системах появляется еще одна задача: Защита файлов одного пользователя от несанкционированного доступа другого пользователя.

Еще более сложными становятся функции ФС, которая работает в составе сетевой ОС ей необходимо организовать защиту файлов одного пользователя от несанкционированного доступа другого пользователя.

Основное назначение файловой системы и соответствующей ей системы управления файлами – организация удобного управления файлами, организованными как файлы: вместо низкоуровневого доступа к данным с указанием конкретных физических адресов нужной нам записи, используется логический доступ с указанием имени файла и записи в нем.

Термины «файловая система» и «система управления файлами» необходимо различать: файловая система определяет, прежде всего, принципы доступа к данным, организованным как файлы. А термин «система управления файлами» следует употреблять по отношению к конкретной реализации файловой системы, т.е. это комплекс программных модулей, обеспечивающих работу с файлами в конкретной ОС.

Пример

Файловая система FAT (file allocation table) имеет множество реализаций как система управления файлами

  • Система, разработанная для первых ПК называлась просто FAT (сейчас ее называют просто FAT-12) . Ее разрабатывали для работы с дискетами, и некоторое время она использовалась для работы с жесткими дисками.
  • Потом ее усовершенствовали для работы с жесткими дисками большего объема, и эта новая реализация получила название FAT–16. это название используется и по отношению к СУФ самой MS-DOS.
  • Реализация СУФ для OS/2 называется super-FAT (основное отличие – возможность поддерживать для каждого файла расширенные атрибуты).
  • Есть версия СУФ и для Windows 9x/NT и т.д. (FAT-32).

Типы файлов

Обычные файлы : содержат информацию произвольного характера, которую заносит в них пользователь или которая образуется в результате работы системных и пользовательских программ. Содержание обычного файла определяется приложением, которое с ним работает.

Обычные файлы могут быть двух типов:

  1. Программные (исполняемые) – представляют собой программы, написанные на командном языке ОС, и выполняют некоторые системные функции (имеют расширения.exe, .com, .bat).
  2. Файлы данных – все прочие типы файлов: текстовые и графические документы, электронные таблицы, базы данных и др.

Каталоги – это, с одной стороны, группа файлов, объединенных пользователем исходя из некоторых соображений (например, файлы, содержащие программы игр, или файлы, составляющие один программный пакет), а с другой стороны – это особый тип файлов, которые содержат системную справочную информацию о наборе файлов, сгруппированных пользователями по какому-либо неформальному признаку (тип файла, расположение его на диске, права доступа, дата создания и модификация).

Специальные файлы – это фиктивные файлы, ассоциированные с устройствами ввода/вывода, которые используются для унификации механизма доступа к файлам и внешним устройствам. Специальные файлы позволяют пользователю осуществлять операции ввода/вывода посредством обычных команд записи с файлов или чтения из файлов. Эти команды обрабатываются сначала программами ФС, а затем на некотором этапе выполнения запроса преобразуются ОС в команды управления соответствующим устройством (PRN, LPT1 – для порта принтера (символьные имена, для ОС – это файлы), CON – для клавиатуры).

Пример . Copy con text1 (работа с клавиатурой).

Файловая структура

Файловая структура – вся совокупность файлов на диске и взаимосвязей между ними (порядок хранения файлов на диске).

Виды файловых структур:

  • простая , или одноуровневая : каталог представляет собой линейную последовательность файлов.
  • иерархическая или многоуровневая : каталог сам может входить в состав другого каталога и содержать внутри себя множество файлов и подкаталогов. Иерархическая структура может быть двух видов: «Дерево» и «Сеть». Каталоги образуют «Дерево», если файлу разрешено входить только в один каталог (ОС MS-DOS, Windows) и «Сеть» – если файл может входить сразу в несколько каталогов (UNIX).
  • Файловая структура может быть представлена в виде графа, описывающего иерархию каталогов и файлов:



Типы имен файлов

Файлы идентифицируются именами. Пользователи дают файлам символьные имена , при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. В ранних файловых системах эти границы были весьма узкими. Так в популярной файловой системе FAT длина имен ограничивается известной схемой 8.3 (8 символов — собственно имя, 3 символа — расширение имени), а в ОС UNIX System V имя не может содержать более 14 символов.

Однако пользователю гораздо удобнее работать с длинными именами, поскольку они позволяют дать файлу действительно мнемоническое название, по которому даже через достаточно большой промежуток времени можно будет вспомнить, что содержит этот файл. Поэтому современные файловые системы, как правило, поддерживают длинные символьные имена файлов.

Например, Windows NT в своей файловой системе NTFS устанавливает, что имя файла может содержать до 255 символов, не считая завершающего нулевого символа.

При переходе к длинным именам возникает проблема совместимости с ранее созданными приложениями, использующими короткие имена. Чтобы приложения могли обращаться к файлам в соответствии с принятыми ранее соглашениями, файловая система должна уметь предоставлять эквивалентные короткие имена (псевдонимы) файлам, имеющим длинные имена. Таким образом, одной из важных задач становится проблема генерации соответствующих коротких имен.

Символьные имена могут быть трех типов: простые, составные и относительные:

  1. Простое имя идентифицирует файл в пределах одного каталога, присваивается файлам с учетом номенклатуры символа и длины имени.
  2. Полное имя представляет собой цепочку простых символьных имен всех каталогов, через которые проходит путь от корня до данного файла, имени диска, имени файла. Таким образом, полное имя является составным , в котором простые имена отделены друг от друга принятым в ОС разделителем.
  3. Файл может быть идентифицирован также относительным именем . Относительное имя файла определяется через понятие «текущий каталог». В каждый момент времени один из каталогов является текущим, причем этот каталог выбирается самим пользователем по команде ОС. Файловая система фиксирует имя текущего каталога, чтобы затем использовать его как дополнение к относительным именам для образования полного имени файла.

В древовидной файловой структуре между файлом и его полным именем имеется взаимно однозначное соответствие – «один файл — одно полное имя». В сетевой файловой структуре файл может входить в несколько каталогов, а значит может иметь несколько полных имен; здесь справедливо соответствие – «один файл — много полных имен».

Для файла 2.doc определить все три типа имени, при условии, что текущим каталогом является каталог 2008_год.

  • Простое имя: 2.doc
  • Полное имя: C:\2008_год\Документы\2.doc
  • Относительное имя: Документы\2.doc

Атрибуты файлов

Важной характеристикой файла являются атрибуты. Атрибуты – это информация, описывающая свойства файлов. Примеры возможных атрибутов файлов:

  • Признак «только для чтения» (Read-Only);
  • Признак «скрытый файл» (Hidden);
  • Признак «системный файл» (System);
  • Признак «архивный файл» (Archive);
  • Тип файла (обычный файл, каталог, специальный файл);
  • Владелец файла;
  • Создатель файла;
  • Пароль для доступа к файлу;
  • Информация о разрешенных операциях доступа к файлу;
  • Время создания, последнего доступа и последнего изменения;
  • Текущий размер файла;
  • Максимальный размер файла;
  • Признак «временный (удалить после завершения процесса)»;
  • Признак блокировки.

В файловых системах разного типа для характеристики файлов могут использоваться разные наборы атрибутов (например, в однопользовательской ОС в наборе атрибутов будут отсутствовать характеристики, имеющие отношение к пользователю и защите (создатель файла, пароль для доступа к файлу и т.д.).

Пользователь может получать доступ к атрибутам, используя средства, предоставленные для этих целей файловой системой. Обычно разрешается читать значения любых атрибутов, а изменять – только некоторые, например можно изменить права доступа к файлу, но нельзя изменить дату создания или текущий размер файла.

Права доступа к файлу

Определить права доступа к файлу — значит определить для каждого пользователя набор операций, которые он может применить к данному файлу. В разных файловых системах может быть определен свой список дифференцируемых операций доступа. Этот список может включать следующие операции:

  • создание файла.
  • уничтожение файла.
  • запись в файл.
  • открытие файла.
  • закрытие файла.
  • чтение из файла.
  • дополнение файла.
  • поиск в файле.
  • получение атрибутов файла.
  • установление новых значений атрибутов.
  • переименование.
  • выполнение файла.
  • чтение каталога и др.

В самом общем случае права доступа могут быть описаны матрицей прав доступа, в которой столбцы соответствуют всем файлам системы, строки — всем пользователям, а на пересечении строк и столбцов указываются разрешенные операции:

В некоторых системах пользователи могут быть разделены на отдельные категории. Для всех пользователей одной категории определяются единые права доступа, например в системе UNIX все пользователи подразделяются на три категории: владельца файла, членов его группы и всех остальных.

Файлы на компьютере создаются и размещаются на базе системных принципов. Благодаря их реализации, пользователь получает возможность комфортно обращаться к нужной информации, не задумываясь о сложных алгоритмах доступа к ней. Каким образом организована работа файловых систем? Какие из них самые популярные сегодня? Каковы различия между файловыми системами, адаптированными для ПК? И теми, что используются в мобильных устройствах - смартфонах или планшетах?

Файловые системы: определение

Согласно распространенному определению, файловая система - это совокупность алгоритмов и стандартов, задействуемых с целью организации эффективного доступа пользователя ПК к данным, размещенным на компьютере. Некоторые специалисты считают ее частью Другие IT-эксперты, признавая тот факт, что она непосредственно связана с ОС, полагают, что файловая система - независимый компонент управления компьютерными данными.

Каким образом использовались компьютеры до того, как была изобретена файловая система? Информатика - как научная дисциплина - зафиксировала тот факт, что долгое время управление данными осуществлялось посредством структурирования в рамках алгоритмов, заложенных в конкретных программах. Таким образом, один из критериев файловой системы - это наличие стандартов, одинаковых для большинства программ, использующих доступ к данным.

Принципы работы файловых систем

Файловая система - это, прежде всего, механизм, предполагающий задействование аппаратных ресурсов компьютера. Как правило, речь здесь идет о магнитных или лазерных носителях - жестких дисках, CD, DVD, флешках, еще не успевших устареть дискетах. Для того чтобы понять, как соответствующая система работает, определимся с тем, что же такое собственно сам файл.

Согласно общепринятому в среде IT-экспертов определению, это область данных фиксированной величины, выражаемая в базовых единицах измерения информации - байтах. Располагается файл на дисковом носителе, как правило, в виде нескольких связанных между собой блоков, имеющих конкретный "адрес" доступа. Файловая система определяет эти самые координаты и "сообщает" их, в свою очередь, ОС. Которая понятным образом транслирует соответствующие данные пользователю. Происходит обращение к данным с целью считывания их, модифицирования, создания новых. Конкретный алгоритм работы с "координатами" файлов может быть разным. Он зависит от типа компьютера, ОС, специфики хранящихся данных и прочих условий. Потому, есть различные виды файловых систем. Каждая из них оптимизирована для использования в конкретной ОС или для работы с определенными типами данных.

Адаптирование дискового носителя к использованию посредством алгоритмов конкретной файловой системы называется форматированием. Соответствующие аппаратные элементы диска - кластеры - подготавливаются к последующей записи на них файлов, а также чтения их в соответствии со стандартами, заложенными в той или иной системе управления данными. Как поменять файловую систему? В большинстве случаев это можно сделать, только переформатировав носитель данных. Как правило, файлы при этом стираются. Однако есть вариант, при котором, задействуя специальные программы, все же можно, хотя это, как правило, требует большого количества времени, поменять систему управления данными, оставив последние нетронутыми.

Файловые системы работают не без ошибок. Возможны некоторые сбои в организации работы с блоками данных. Но они в большинстве случаев не критичны. Как правило, нет проблем с тем, как исправить файловую систему, устранить ошибки. В ОС Windows для этого, в частности, предусмотрены встроенные программные решения, доступные для любого пользователя. Такие как, например, программа "Проверка диска".

Разновидности

Какие виды файловых систем можно назвать самыми распространенными? Вероятно, в первую очередь те, что используются самой популярной ОС для ПК в мире - Windows. Основные файловые системы Windows - это FAT, FAT32, NTFS и их различные модификации. Наряду с компьютерами популярность обрели смартфоны и планшеты. Большинство из них, если говорить о глобальном рынке и не рассматривать различия в технологических платформах, управляется ОС Android и iOS. Эти ОС задействуют свои алгоритмы работы с данными, отличные от тех, которыми характеризуются файловые системы Windows.

Стандарты, открытые для всех

Отметим, что в последнее время на мировом рынке электроники наблюдается некоторая унификация стандартов в аспекте работы ОС с различными типами данных. Это прослеживается в двух аспектах. Во-первых, на разных устройствах под управлением двух несхожих типов ОС часто используется одна и та же файловая система, в одинаковой степени совместимая с каждой ОС. Во-вторых, современные версии ОС, как правило, способны распознавать не только типичные для себя файловые системы, но и те, что традиционно используются в других ОС - как посредством встроенных алгоритмов, так и с помощью стороннего программного обеспечения. Например, современные версии Linux, как правило, без проблем распознают отмеченные файловые системы для Windows.

Структура файловой системы

Несмотря на то что виды файловых систем представлены в достаточно большом количестве, работают они в целом по очень схожим принципам (общую схему мы изложили выше) и в рамках сходных структурных элементов или объектов. Рассмотрим их. Каковы основные объекты файловой системы?

Один из ключевых - Он являет собой изолированную область данных, в которой могут размещаться файлы. Структура каталогов - иерархическая. Что это значит? Один или несколько каталогов могут размещаться в другом. Который, в свою очередь, входит в состав "вышестоящего". Самым "главным" считается корневой каталог. Если говорить о принципах, на базе которых работает файловая система Windows - 7, 8, XP или же другой версии, - корневым каталогом считается логический диск, обозначаемый буквой - как правило, C, D, E (но можно настроить любую, что есть в английском алфавите). Что касается, к примеру, ОС Linux, то там корневым каталогом выступает магнитный носитель в целом. В этой операционной системе и других ОС, основанных на ее принципах - к таковым относится Android - логические диски не используются. Можно ли хранить файлы без каталогов? Да. Но это не очень удобно. Собственно, комфорт в пользовании ПК - одна из причин внедрения в файловых системах принципа распределения данных по каталогам. Называться, кстати, они могут по-разному. В Windows каталоги именуются папками, в Linux - в основном так же. Но традиционное, используемое в течение многих лет название каталогов в этой ОС - "директории". Как и в предшествующих Windows и Linux ОС - DOS, Unix.

В среде IT-специалистов нет однозначного мнения касательно того, считать ли файл структурным элементом соответствующей системы. Те, кто полагает, что это не совсем корректно, аргументируют свою точку зрения тем, что система вполне может существовать и без файлов. Пусть это с практической точки зрения и бесполезное явление. Даже если на диске никаких файлов не записано, соответствующая система все равно может присутствовать. Как правило, магнитные носители, продаваемые в магазинах, не содержат каких-либо файлов. Но на них уже присутствует соответствующая система. Согласно другой точке зрения, файлы нужно считать неотъемлемой составляющей систем, которыми они управляются. Почему? А потому, что, как считают эксперты, алгоритмы их задействования адаптированы прежде всего под работу именно с файлами в рамках тех или иных стандартов. Ни для чего другого рассматриваемые системы не предназначены.

Еще один элемент, присутствующий в большинстве файловых систем - Он представляет собой область данных, содержащих сведения о размещении конкретного файла в определенном месте. То есть разместить ярлык можно в одном месте диска, однако при этом возможно обеспечение доступа к нужной области данных, которая располагается в другой части носителя. Считать, что ярлыки - это полноценные объекты файловой системы, можно, если условиться, что таковыми являются также и файлы.

Так или иначе не будет ошибкой сказать, что все три типа данных - файлы, ярлыки и каталоги - являются элементами соответствующих систем. По крайней мере, этот тезис будет соответствовать одной из распространенных точек зрения. Важнейший аспект, характеризующий то, как работает файловая система - это принципы именования файлов и каталогов.

Имена файлов и каталогов в разных системах

Если условиться, что файлы - это все же составные элементы соответствующих им систем, то стоит рассмотреть их базовую структуру. Что можно отметить в первую очередь? Для удобства организации доступа к ним в большинстве современных систем управления данными предусмотрена двухуровневая структура именования файлов. Первый уровень - это название. Второй - расширение. Возьмем для примера музыкальный файл Dance.mp3. Dance - это название. Mp3 - расширение. Первое призвано раскрывать для пользователя суть содержания файла (а для программы быть ориентиром для быстрого доступа). Второе обозначает тип файла. Если он Mp3, то нетрудно догадаться, что речь идет о музыке. Файлы с расширением Doc - это, как правило, документы, Jpg - картинки, Html - веб-страницы.

Каталоги, в свою очередь, имеют одноуровневую структуру. У них есть только название, расширения нет. Если говорить о различиях между разными видами систем управления данными, то первое, на что следует обратить внимание - это как раз-таки реализуемые в них принципы именования файлов и каталогов. Касательно ОС Windows специфика следующая. В самой популярной в мире операционной системе файлы могут иметь название на любом языке. Максимальная длина, правда, при этом ограничена. Конкретный ее интервал зависит от используемой системы управления данными. Обычно это значения в пределах 200-260 символов.

Общее правило для всех ОС и соответствующих им систем управления данными - в одном каталоге не могут находиться файлы с одинаковыми наименованиями. В Linux при этом присутствует некая "либерализация" этого правила. В одном каталоге могут быть файлы с одинаковыми буквами, но в разном регистре. Например, Dance.mp3 и DANCE.mp3. В ОС Windows это невозможно. Эти же правила установлены также и в аспекте размещения каталогов внутри других.

Адресация файлов и каталогов

Адресация файлов и каталогов - важнейший элемент соответствующей системы. В ОС Windows ее пользовательский формат может выглядеть так: C:/Documents/Music/ - это доступ к каталогу Music. Если нас интересует какой-то конкретный файл, то адрес может выглядеть так: C:/Documents/Music/Dance.mp3. Почему "пользовательский"? Дело в том, что на уровне программно-аппаратного взаимодействия компонентов компьютера структура доступа к файлам гораздо более сложная. Файловая система определяет местоположение файловых блоков и взаимодействует с ОС по большей части в рамках скрытых от пользователя операций. Однако у пользователя ПК крайне редко возникает необходимость пользоваться иными форматами "адресов". Практически всегда доступ к файлам осуществляется в указанном стандарте.

Сравнение файловых систем для Windows

Мы изучили общие принципы функционирования файловых систем. Рассмотрим теперь особенности самых распространенных их видов. В Windows чаще всего используются такие файловые системы, как FAT, FAT32, NTFS, а также exFAT. Первая в этом ряду считается устаревшей. Она, вместе с тем, долгое время была неким флагманом индустрии, но по мере роста технологичности ПК ее возможности перестали удовлетворять запросам пользователей и потребностям в ресурсах со стороны программного обеспечения.

Призванная заменить FAT файловая система - это FAT32. Как считают многие IT-эксперты, сейчас она самая популярная, если говорить о рынке ПК под управлением Windows. Она чаще всего используется при хранении файлов на жестких дисках и флешках. Также можно отметить, что эта система управления данными достаточно регулярно используется в модулях памяти различных цифровых устройств - телефонах, фотоаппаратах. Основное преимущество FAT32, которое выделяют IT-эксперты, таким образом, это универсальность. Несмотря на то что создана была данная файловая система компанией Microsoft, работать с данными в рамках заложенных в ней алгоритмов могут большинство современных ОС, включая те, что инсталлированы на указанные типы цифровой техники.

Есть у системы FAT32 и ряд недостатков. Прежде всего можно отметить ограничение на размер одного взятого файла - он не может быть больше 4 Гб. Также в системе FAT32 нельзя встроенными средствами Windows задать логический диск, размер которого был бы больше 32 Гб. Но это можно сделать, установив дополнительное специализированное ПО.

Другая популярная система управления файлами, что разработана Microsoft - это NTFS. Как считают некоторые IT-эксперты, по большинству параметров она превосходит FAT32. Но этот тезис справедлив, если речь идет о работе компьютера под управлением Windows. Система NTFS не настолько универсальна, как FAT32. Особенности ее функционирования делают использование данной файловой системы не всегда комфортным, в частности, в мобильных устройствах. Одно из ключевых преимуществ NFTS - надежность. Например, в тех случаях, когда у жесткого диска внезапно отключается питание, вероятность того, что файлы повредятся, сводится к минимуму, благодаря предусмотренным в NTFS алгоритмам дублирования доступа к данным.

Одна из новейших файловых систем от Microsoft - exFAT. Наилучшим образом она адаптирована для флешек. Базовые принципы работы в ней те же, что и в FAT32, но присутствует также и значимая модернизация в некоторых аспектах: например, нет никаких ограничений по размеру единичного файла. Вместе с тем система exFAT, как отмечают многие IT-эксперты, в числе тех, что обладают низкой универсальностью. На компьютерах под управлением ОС, отличных от Windows, работа с файлами при использовании exFAT может быть затруднена. Более того, даже в некоторых версиях самой Windows, таких как XP, данные на дисках, отформатированных по алгоритмам exFAT, могут не читаться. Потребуется установка дополнительного драйвера.

Отметим, что по причине задействования достаточно широкого спектра файловых систем в ОС Windows у пользователя могут возникать периодические сложности в аспекте совместимости различных устройств с компьютером. В ряде случаев, например, требуется установить драйвер файловой системы WPD (Windows Portable Devices - технологии, используемой при работе с переносными устройствами). Иногда его может не оказаться под рукой у пользователя, вследствие чего внешний носитель ОС может не распознать. Файловая система WPD может потребовать дополнительных программных средств адаптации к операционной среде на конкретном компьютере. В ряде случаев пользователь будет вынужден обращаться к IT-специалистам для решения проблемы.

Как определить, какая именно файловая система - exFAT или NTFS, а может быть, FAT32 - оптимальна для использования в конкретных случаях? Рекомендации IT-специалистов в целом следующие. Можно задействовать два основных подхода. Согласно первому следует разграничивать типичные файловые системы жестких дисков, а также те, что лучше адаптированы к флеш-накопителям. FAT и FAT32, как считают многие специалисты, лучше подходят для "флешек", NTFS - для винчестеров (в силу технологических особенностей работы с данными).

В рамках второго подхода значение имеет величина носителя. Если речь идет об использовании сравнительно небольшого объема диска или флешки, отформатировать их можно в системе FAT32. Если диск большего размера, то можно попробовать exFAT. Но только в том случае, если не предполагается использование носителей на других компьютерах, особенно тех, где стоят не самые свежие версии Windows. Если речь идет о больших жестких дисках, в том числе и внешних, то их целесообразно форматировать в NTFS. Примерно таковы критерии, по которым может быть выбрана оптимальная файловая система - exFAT или NTFS, FAT32. То есть использовать какую-либо из них следует, учитывая размер носителя, его тип, а также версию ОС, на котором накопитель преимущественно используется.

Файловые системы для Mac

Другая популярная программно-аппаратная платформа на мировом рынке компьютерной техники - Macintosh от Apple. ПК данной линейки работают под управлением операционной системы Mac OS. Каковы особенности организации работы с файлами в компьютерах Mac? В самых современных ПК от Apple используется файловая система Mac OS Extended. Ранее в компьютерах Mac работа с данными управлялась в соответствии со стандартами HFS.

Главное, что можно отметить в аспекте ее характеристик: на диске, которым управляет файловая система Mac OS Extended, могут размещаться файлы очень большого объема - речь может идти о нескольких миллионах терабайт.

Файловая система в Android-устройствах

Самая популярная ОС для мобильных устройств - виде электронной техники, не уступающей по популярности ПК, - это Android. Каким образом осуществляется управление файлами на девайсах соответствующего типа? Отметим прежде всего, что данная операционная система - фактически "мобильная" адаптация ОС Linux, которая, благодаря открытому программному коду, может быть модифицирована с перспективой использования на самом широком спектре устройств. Поэтому управление файлами в мобильных девайсах под управлением Android осуществляется в целом по тем же принципам, что и в Linux. Некоторые из них мы отметили выше. В частности, управление файлами в Linux осуществляется без деления носителя на логические диски, как это происходит в Windows. Что еще интересного заключает в себе файловая система Android?

Корневым каталогом в Android, как правило, выступает область данных, именуемая /mnt. Соответственно, адрес нужного файла может выглядеть примерно так: /mnt/sd/photo.jpg. Кроме того, есть еще одна особенность системы управления данными, что реализована в данной мобильной ОС. Дело в том, что флеш-память девайса, как правило, классифицирована на несколько разделов, таких как, например, System или Data. При этом, изначально заданный размер каждого из них изменить нельзя. Приблизительную аналогию касательно данного технологического аспекта можно обнаружить, вспомнив, что нельзя (если не использовать специального ПО) менять размер логических дисков в Windows. Он должен быть фиксированным.

Еще одна интересная особенность организации работы с файлами в Android - соответствующая операционная система, как правило, записывает новые данные в конкретную область диска - Data. Работа, к примеру, с разделом System при этом не осуществляется. Поэтому, когда пользователь задействует функцию сброса программных настроек смартфона или планшета до уровня "заводских", то на практике это означает, что те файлы, что записаны в область Data, попросту стираются. Раздел System же, как правило, остается неизменным. Более того, какие-либо корректировки содержимого в System пользователь, не обладая специализированным ПО, осуществлять не может. Процедура, связанная с обновлением системной области носителя в Android-устройстве, называется перепрошивкой. Это не форматирование, хотя обе операции часто осуществляются одновременно. Как правило, перепрошивка применяется с целью установки на мобильное устройство более новой версии ОС Android.

Таким образом, ключевые принципы, на базе которых работает файловая система Android - отсутствие логических дисков, а также жесткое разграничение доступа к системным и пользовательским данным. Нельзя сказать, что данный подход принципиально отличается от того, что реализован в Windows, однако, как считают многие IT-эксперты, в ОС от Microsoft для пользователей присутствует несколько большая свобода в работе с файлами. Впрочем, как полагают некоторые специалисты, это нельзя считать однозначным преимуществом Windows. "Либеральный" режим в аспекте управления файлами задействуют, конечно же, не только пользователи, но и компьютерные вирусы, к которым Windows очень восприимчива (в отличие от Linux и ее "мобильной" реализации в виде Android). В этом, как считают эксперты, заключается одна из причин того, что вирусов для Android-устройств столь немного - чисто с технологической точки зрения они не могут в полной мере функционировать в операционной среде, работающей по принципам строгого контроля доступа к файлам.

Л 5.1. АРХИТЕКТУРА ПОСТРОЕНИЯ ОС

Ключевые слова: файл, расширение имени файла, атрибуты файла, файловая структура, каталог (папка), путь к файлу, форматирование, сектор, дорожка, цилиндр, таблица размещения файлов (FAT-таблица), кластер, файловая система, FAT 16, FAT 32, NTFS, MTF, CDFS, команды ОС, рабочий стол, панель задач, значок и ярлык объекта, главное меню Windows , окно Windows , строка заголовка, панель инструментов, drag-and-drop, drag, «Проводник », буфер обмена, «Norton Commander », шаблоны выделения и поиска файлов.

Операционная система представляет собой комплекс системных и служебных программных средств. С одной стороны, она опирается на базовое программное обеспечение компьютера, входящее в его систему BIOS (базовая система ввода-вывода); с другой стороны, она сама является опорой для программного обеспечения более высоких уровней - прикладных и большинства служебных приложений. Приложениями операционной системы принято называть программы, предназначенные для работы под управлением данной системы.

Основная функция всех операционных систем - посредническая. Она заключается в обеспечении нескольких видов интерфейса:

· интерфейса между пользователем и программно-аппаратными средствами компьютера (интерфейс пользователя);

· интерфейса между программным и аппаратным обеспечением (аппаратно-программный интерфейс);

· интерфейса между разными видами программного обеспечения (программный интерфейс).

Даже для одной аппаратной платформы, например такой, как
IBM PC, существует несколько операционных систем (ОС). Для примера, рассмотрим файловую структуру, основные объекты и приемы управления наиболее распространенных ОС: MS DOS и Windows XP.

Файловая структура персонального компьютера. При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру. При этом образуются адресные данные. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.

В качестве единицы хранения данных принят объект переменной длины, называемый файлом.

Файл - это именованная последовательность байтов произвольной длины . Поскольку файл может иметь нулевую длину, то создание файла заключается в присвоении ему имени и регистрации его в файловой системе - это одна из функций ОС.

Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.

Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл) , и файл, имеющий любое число байтов.



В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией из-за отсутствия метода доступа к ним. Кроме функций, связанных с адресацией, имя файла может хранить и сведения о типе данных, заключенных в нем. Для автоматических средств работы с данными это важно, поскольку по имени файла (а точнее по его расширению) они могут автоматически определить адекватный метод извлечения информации из файла.

По способам именования файлов различают «короткое » (на имя файла отводится 8 символов, а на его расширение - 3 символа) и «длинное » имя (до 256 символов). Имя файла от его расширения разделяются точкой. Расширение файла является необязательным параметром и может отсутствовать.

В ОС MS DOS имя (не более 8 символов) и расширение (не более 3 символов) могут состоять из прописных и строчных латинских букв, цифр и символов:

- _ $ # & @ ! % () { } " ~ ^

Следует помнить, что для ОС линии MS DOS :

Между именем и расширением ставится точка, не входящая ни в имя, ни в расширение;

Имя файла можно набирать в любом регистре, т.к. для системы все буквы строчные;

Символы, не использующиеся в имени файла

* = + \ ; : , . < > / ?

Имена устройств не могут использоваться в качестве имен файлов:

AUX - имя дополнительного устройства ввода-вывода;

CON - имя клавиатуры при вводе или дисплея при выводе;

LPT1 … LPT3 - имена параллельных портов;

COM1 … COM3 - имена последовательных портов;

PRN - имя печатающего устройства;

NUL - имя фиктивного устройства, эмулирующего выводные операции без реального вывода.

С появлением ОС Windows 95 введено понятие «длинного » имени. Такое имя может содержать до 256 символов, что достаточно для создания содержательных имен файлов. «Длинное » имя может содержать любые символы, кроме девяти специальных:

\ / : * ? " < > |

В имени разрешается использовать пробелы и несколько точек. Расширением имени считаются все символы, идущие после последней точки.

Наряду с «длинным » именем ОС Windows 95/98/Me/2000/XP создают также и короткое имя файла - оно необходимо для возможности работы с данным файлом на рабочих местах с устаревшими операционными системами.

Использование «длинных » имен файлов в последних ОС Windows имеет ряд особенностей .

1. Если «длинное » имя файла включает пробелы, то в служебных операциях его надо заключать в кавычки. Рекомендуется не использовать пробелы, а заменять их символами подчеркивания.

2. В корневой папке диска (на верхнем уровне иерархической файловой структуры) нежелательно хранить файлы с длинными именами - в отличие от прочих папок в ней ограничено количество единиц хранения (чем длиннее имена, тем меньше файлов можно разместить в корневой папке).

3. Кроме ограничения на длину имени файла (256 символов) существует гораздо более жесткое ограничение на длину полного имени файла (в него входит путь доступа к файлу, начиная от вершины иерархической структуры). Полное имя не может быть длиннее 260 символов.

4. Разрешается использовать символы любых алфавитов, в том числе и русского, но если документ готовится для передачи, с заказчиком необходимо согласовать возможность воспроизведения файлов с такими именами на его оборудовании.

5. Прописные и строчные буквы не различаются ОС. Имена Письмо.txt и письмо. txt соответствуют одному и тому же файлу.

6. Программисты давно научились использовать расширение имени файла для передачи ОС, исполняющей программе или пользователю сведений о том, к какому типу относятся данные, содержащиеся в файле, и о формате, в котором они записаны. Приложения систем предлагают выбрать только основную часть имени и указать тип файла, а соответствующее расширение имени приписывают автоматически.

В зависимости от расширения все файлы делятся на две большие группы: исполняемые и неисполняемые.

Исполняемые файлы - это такие файлы, которые могут выполняться самостоятельно, т.е. не требуют каких-либо специальных программ для их запуска. Имеют следующие расширения:

· ехе - готовый к исполнению файл (winrar.exe ; winword.exe );

· сот - файл операционной системы (command.com );

· sys - файл операционной системы (io.sys ) - обычно это драйвер внешнего устройства;

· bat - командный файл операционной системы MS DOS (autoexec.bat ).

Неисполняемые файлы для запуска требуют установки специальных программ. Так, например, для того чтобы просмотреть текстовый документ, требуется наличие какого-либо текстового редактора. По расширению неисполняемого файла можно судить о типе данных, хранящихся в данном файле. Приведем некоторые стандартные расширения и названия программ, предназначенных для работы с файлами указанных расширений:

ASM - текст программы на языке ассемблер ;

AVI, MPEG, MPG, WMV и т.д. - различные форматы видеофайлов, для просмотра можно воспользоваться, например, Windows Media Player - тип данных: изображение;

BAK - старая версия файла;

BAS - текст программы на языке Бейсик ;

BMP - документ, созданный в графическом редакторе, например, Paint - тип данных: изображение;

C - текст программы на языке Си ;

CDR CorelDraw - тип данных: изображение;

CPP - текст программы на языке C ++;

dbf - файл базы данных, созданный, например, в СУБД FoxPro ;

DOC - документ, созданный в текстовом процессоре Microsoft Word - тип данных: текст;

DWG, DXF - графические файлы, созданные в AutoCAD ;

HTML - документ, рассчитанный на публикацию в Интернете;

LIB - библиотека (обычно объектных модулей);

MDB - файл базы данных, созданный в СУБД Microsoft Access ;

MP3, MID, WMA, WAV – различные форматы звуковых файлов - тип данных: звук;

OBJ - объектный модуль;

PAS - текст программы на языке Паскаль ;

PDF - PDF -документ, созданный и предназначенный для просмотра в программе Adobe Reader ;

PPT - файл презентации, созданной в Microsoft PowerPoint ;

PSD - графический файл, созданный в графическом процессоре Adobe Photoshop ;

RAR WinRar ;

RTF - документ, созданный в текстовом редакторе WordPad ;

TIF, GIF, JPG - различные форматы графических файлов;

TMP - временный файл;

TXT - текстовый файл, например, созданный в программе Блокнот ;

XLS - электронная книга, созданная в табличном процессоре Microsoft Excel - тип данных: символы (текст или числа);

ZIP - архивный файл, созданный программой архиватором WinZip .

Кроме имени и расширения имени файла операционная система хранит для каждой файла дату его создания (изменения) и несколько флаговых величин, называемых атрибутами файла. Атрибуты - это дополнительные параметры, определяющие свойства файлов . Операционная система позволяет их контролировать и изменять. Состояние атрибутов учитывается при проведении автоматических операций с файлами.

Основных атрибутов четыре:

· Только для чтения (Read only);

· Скрытый (Hidden);

· Системный (System);

· Архивный (Archive).

Атрибут «Только для чтения» ограничивает возможности работы с файлом. Его установка означает, что файл не предназначен для внесения изменений.

Атрибут «Скрытый» сигнализирует операционной системе о том, что данный файл не следует отображать на экране при проведении файловых операций. Это мера защиты против случайного (умышленного или неумышленного) повреждения файла.

Атрибутом «Системный» помечаются файлы, обладающие важными функциями для работы самой операционной системы. Его отличительная особенность в том, что средствами операционной системы его изменить нельзя. Как правило, большинство файлов, имеющих установленный атрибут «Системный» , имеют также и установленный атрибут «Скрытый» .

Атрибут «Архивный» в прошлом использовался для работы программ резервного копирования. Предполагалось, что любая программа, изменяющая файл, должна автоматически устанавливать этот атрибут, а средство резервного копирования должно его сбрасывать. Таким образом, очередному резервному копированию подлежали только те файлы, у которых этот атрибут был установлен. Современные программы резервного копирования используют другие средства для установления факта изменения файла, и данный атрибут во внимание не принимается, а его изменение вручную средствами операционной системы не имеет практического значения.

Хранение файлов организуется в иерархической структуре, которая в данном случае называется файловой структурой (рис. 1).

Рис. 1. Иерархическая структура диска

Файловая структура - иерархическая структура, в виде которой операционная система отображает файлы и каталоги (папки).

В качестве вершины структуры служит имя носителя , на котором сохраняются файлы. Далее файлы группируются в каталоги (папки), внутри которых могут быть созданы вложенные каталоги (рис. 1).

Имена внешних носителей информации. Диски, на которых хранится информация в компьютере, имеют свои имена - каждый диск назван буквой латинского алфавита, а затем ставится двоеточие. Так, для дискет всегда отводятся буквы А: и В: . Логические диски винчестера именуются, начиная с буквы С: . После всех имен логических дисков следуют имена дисководов для компакт-дисков. Например, установлены: дисковод для дискет, винчестер, разбитый на 3 логических диска и дисковод для компакт-дисков. Определить буквы всех носителей информации. А: - дисковод для дискет; С: , D: , Е: - логические диски винчестера; F: - дисковод для компакт-дисков.

Каталог (папка ) - место на диске (специальный системный файл), в котором хранится служебная информация о файлах (имя, расширение, дата создания, размер и т.д.) . Каталоги низких уровней вкладываются в каталоги более высоких уровней и являются для них вложенными. Каталог верхнего уровня (надкаталог) по отношению к каталогам более низкого уровня, называют родительским. Верхним уровнем вложенности иерархической структуры является корневой каталог диска (рис. 1). Каталог, с которым работает пользователь в настоящий момент, называется текущим .

Правила присвоения имени каталогу ничем не отличаются от правил присвоения имени файлу, хотя для каталогов не принято задавать расширения имен. При записи пути доступа к файлу, проходящего через систему вложенных каталогов, все промежуточные каталоги разделяются между собой определенным символом. Во многих ОС в качестве такого символа используется «\» (обратная косая черта).

Требование уникальности имени файла очевидно - без этого невозможно гарантировать однозначность доступа к данным. В средствах вычислительной техники требование уникальности имени обеспечивается автоматически - создать файл с именем, тождественным уже имеющемуся, не могут ни пользователь, ни автоматика.

Когда используется файл не из текущего каталога, программе, осуществляющей доступ к файлу, необходимо указать, где именно этот файл находится. Это делается с помощью указания пути к файлу.

Путь к файлу - это имя носителя (диска) и последовательность имен каталогов, в ОС Windows разделенных символом «\» (в ОС линии UNIX используется символ «/»). Этот путь задает маршрут к тому каталогу, в котором находится нужный файл.

Для указания пути к файлу используют два различных метода. В первом случае каждому файлу дается абсолютное имя пути (полное имя файла), состоящее из имен всех каталогов от корневого до того, в котором содержится файл, и имени самого файла. Например, путь С:\Abby\Doc\otchet.doc означает, что корневой каталог диска С: содержит каталог Abby , который, в свою очередь, содержит подкаталог Doc , где находится файл otchet.doc . Абсолютные имена путей всегда начинаются от имени носителя и корневого каталога и являются уникальными. Применяется и относительное имя пути. Оно используется вместе с понятием текущего каталога. Пользователь может назначить один из каталогов текущим рабочим каталогом. В этом случае все имена путей, не начинающиеся с символа разделителя, считаются относительными и отсчитываются относительно текущего каталога. Например, если текущим каталогом является С:\Abby , тогда к файлу с абсолютным путем С:\Abby\ можно обратиться как Doc\otchet.doc .

Файловые системы . Каждый файл на диске имеет свой адрес. Чтобы понять принцип доступа к информации, хранящейся в файле, необходимо знать способ записи данных на носители информации.

Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы - табличный . Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, цилиндра и сектора.

Перед использованием диск размечается на дорожки и секторы (форматируется ). С точки зрения оборудования разметка - это процесс записи на носитель служебной информации, отмечающей конец и начало каждого сектора.

Секторы – это блоки, в которых размещаются данные. Нумеруются, начиная с единицы. Помимо пользовательской информации, секторы содержат служебную информацию, например, собственный номер.

Дорожка - концентрическая окружность, по которой движутся головки чтения-записи при перемещении или поиске данных . Дорожки нумеруются с нуля. Нулевой номер имеет самая внешняя дорожка на диске.

Обычный объем сектора - 512 байт. На одной стороне размещается 80 дорожек. Каждая дорожка содержит 18 секторов.

Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения . Физическая структура хранения данных представлена на рисунке 2.

Рис. 2. Физическая структура хранения информации

Данные о том, в каком месте диска записан тот или иной-файл, хранятся в системной области диска в специальных таблицах размещения файлов (FAT -таблицах). Поскольку нарушение FAT -таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности и она существует в двух экземплярах, идентичность которых регулярно контролируется Средствами операционной системы.

Наименьшей физической единицей хранения информации является сектор. Поскольку размер FAT- таблицы ограничен, то для дисков, размер которых превышает 32 Мбайта, обеспечить адресацию к каждому отдельному сектору не представляется возможным. В связи с этим группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к информации. Размер кластера, в отличие от размера сектора, не фиксирован и зависит от емкости диска.

Как было сказано ранее, информация на дисках записывается в секторах фиксированной длины, и каждый сектор и расположение каждой физической записи (сектора) на диске однозначно определяется тремя числами: номерами поверхности диска , цилиндра и сектора на дорожке . И контроллер диска работает с диском именно в этих терминах. А пользователь желает использовать не сектора, цилиндры и поверхности, а файлы и каталоги. Поэтому как-то требуется при операциях с файлами и каталогами на дисках перевести это в понятные контроллеру действия: чтение и запись определенных секторов диска. А для этого необходимо установить правила, по которым выполняется этот перевод, то есть, прежде всего, определить, как должна храниться и организовываться информация на дисках. Набор этих правил и называется файловой системой.

Файловая система - это набор соглашений, определяющих организацию данных на носителях информации . Наличие этих соглашений позволяет операционной системе, другим программам и пользователям работать с файлами и каталогами, а не просто с участками (секторами) дисков. Файловая система определяет:

· как хранятся файлы и каталоги на диске;

· какие хранятся сведения о файлах и каталогах;

· как можно узнать, какие участки диска свободны, а какие - нет;

· формат каталогов и другой служебной информации на диске.

Для использования дисков, записанных (размеченных) с помощью некоторой файловой системы, операционная система или специальная программа должна поддерживать эту файловую систему.

Файловая система, наиболее распространенная на IBM PC -совместимых компьютерах, была введена еще в начале 80-х годов в операционных системах MS DOS 1.0 и 2.0. Эта файловая система достаточно примитивна, так как она была создана для хранения данных на дискетах. Обычно эта файловая система называется FAT , так как самой важной структурой данных в ней является таблица размещения файлов на диске, по-английски - file allocation table, сокращенно - FAT . Эта таблица содержит информацию о том, какие участки (кластеры) диска свободны, и о цепочках кластеров, образующих файлы и каталоги.

В файловой системе FAT имена файлов и каталогов должны состоять не более чем из 8 символов плюс три символа в расширении имени. Она приводит к значительным потерям (до 20%) дискового пространства из-за больших размеров кластеров на дисках высокой емкости. Это связано с тем, что в конце последнего кластера файла остается свободное место, в среднем равное половине кластера. А на больших дисках размер кластеров FAT может достигать 32 Кбайт. Таким образом, на диске емкостью
2 Гбайта с 20000 файлов потери составят 320 Мбайт, то есть около 16%. Наконец, файловая система FAT малопроизводительна, особенно для больших дисков, не приспособлена к многозадачной работе (все операции требуют обращений к таблице размещения файлов, а потому до завершения одной операции нельзя начинать другую).

При разработке Windows 95 фирма Microsoft решила не вводить новую файловую систему, а залатать имеющуюся файловую систему FAT , позволив присваивать файлам и каталогам длинные имена. Эта файловая система стала называться FAT 32 . Принятый в Windows 95 подход хорош тем, что позволяет использовать старые диски с файловой системой FAT - на них просто начинают записываться длинные имена. Но все же это решение весьма искусственное, и многие программы - для починки файловой системы дисков, «сжатия» дисков, резервного копирования и т.д. - могут привести к потере длинных имен на диске. FAT 32 поддерживает меньшие размеры кластеров, что позволяет более эффективно использовать дисковое пространство.

При разработке операционной системы Windows NT была создана новая файловая система - NTFS . Она была ориентирована на диски большого объема, содержащие множество файлов, в них приняты существенные меры по обеспечению эффективности хранения данных и контроля доступа к ним. Эта файловая система поддерживает длинные имена файлов. На логических дисках емкостью 1-2 Гбайта файловая система NTFS позволяет хранить в среднем на 10-15% больше информации, чем FAT . А доступ к файлам в ней осуществляется заметно быстрее, особенно в многозадачной среде.

При формировании файловой системы NTFS программа форматирования создает файл Master File Table (MTF ) и другие области для хранения метаданных. Метаданные используются NTFS для реализации файловой структуры. Первые 16 записей в MTF зарезервированы самой NTFS . Местоположение файлов метаданных записано в загрузочном секторе диска. Если первая запись в MTF повреждена, NTFS считывает вторую запись для нахождения копии первой. Полная копия загрузочного сектора располагается в конце тома. В MTF хранятся метаданные, такие как копия первых четырех записей (гарантирует доступ к MTF в случае, если первый сектор поврежден). MTF содержит информацию о томе - метку и номер версии. В MTF находится таблица имен атрибутов и описания, корневой каталог и др. Остальные строки MTF содержат записи для каждого файла и каталога, расположенных на данном томе. Разработчики NTFS , не забывая об эффективности, старались также обеспечить надежность файловой системы и восстанавливаемость данных при сбоях. Для этого, в частности, NTFS дублирует всю критически важную информацию и обеспечивает регистрацию всех изменений на дисках в специальном файле регистрации, причем для каждого изменения запоминается и способ его отмены. В результате практически при любых сбоях NTFS автоматически восстанавливается. NTFS также (в отличие от FAT ) может работать с логическими дисками и файлами размером более 2 Гбайт - максимальный размер логических дисков и файлов - 4х10 18 байт.

Сравнительные характеристики файловых систем представлены в табл. 1. Если файловая система на диске не поддерживается данной операционной системой, то вся информация на этом диске окажется недоступной (при работе в этой операционной системе, естественно). Для таких логических дисков может быть либо вообще не назначена буква (то есть к диску нельзя будет обратиться), либо при любом доступе к диску будет выдаваться сообщение об ошибке.

Особая файловая система разработана для компакт-дисков (CD-ROM ). Это оказалось необходимым, так как само физическое устройство компакт-дисков не такое, как у жестких дисков или дискет: в них информация записывается не в кольцевых дорожках, а в единственной спиралеобразной дорожке (как у аудиокомпакт-дисков). Эта файловая система называется CDFS .

Таблица 1

Сравнительные характеристики файловых систем

NTFS FAT 32 FAT
Поддерживаемые операционные системы Windows NT с 4 пакетом обновлений, Windows 2000, Windows XP MS-DOS, Windows 95 OSR2, Windows 98, Windows Millennium Edition, Windows NT, Windows 2000, Windows XP
Возможные размеры логических дисков Рекомендуемый минимальный размер логического диска (тома) равен примерно 10 МБ. Допускаются размеры томов свыше 2 ТБ. Не может использоваться для гибких дисков Логический диск (том) объемом от 512 МБ до 2 ТБ. Может использоваться для гибких дисков Логический диск (том) объемом до 4 ГБ. Может использоваться для гибких дисков
Возможные размеры хранимых файлов Максимальный размер файла ограничен только размером тома Максимальный размер файла равен 4 ГБ Максимальный размер файла равен 2 ГБ
Файлы и файловые структуры

Логические времена устройств внешней памяти
К каждому компьютеру может быть подключено несколько устройств внешней памяти. Основным устройством внешней памяти ПК является жесткий диск. Обычно его делят на несколько логических разделов .

Наличие нескольких логических разделов на одном жестком диске обеспечивает пользователю следующие преимущества:


  • Можно хранить операционную систему в одном логическом разделе, а данные - в другом, что позволит переустанавливать операционную систему, не затрагивая данные;

  • На одном жестком диске в различные логические разделы можно установить разные операционные системы;

  • Обслуживание одного логического раздела не затрагивает другие разделы.

Устройства внешней памяти и логические разделы диска имеют логическое имя .

В ОС Windows приняты логические имена, состоящие из латинской буквы и двоеточия:


  • для дисководов гибких дисков (дискет) – A: и B:

  • для жестких дисков и логических разделов –C:, D:, E: и т.д.

  • для оптических дисководов – имена, следующие после жестких дисков (например, F:)

  • Для подключаемой к компьютеру флеш-памяти – следующее имя (например, G:)
В ОС Linux приняты другие правила именования дисков:

  • Логические разделы, принадлежащие первому жесткому диску – имена hda1, hda2 и т.д.;

  • Логические разделы, принадлежащие второму жесткому диску получают имена hdb1, hdb2 и т.д.
Все программы и данные хранятся во внешней памяти компьютера в виде файлов.
^ Файл – это поименованная область внешней памяти.
Файловая система – это часть ОС, определяющая способ организации, хранения и именования файлов на носителях информации.
Файл характеризуется набором параметров (имя, размер, дата создания, дата последнего изменения) и атрибутами, используемыми операционной системой для его обработки (архивный, системный, скрытый, только для чтения). Размер файла выражается в байтах.

Имя файла , как правило, состоит из двух частей, разделенных точкой: собственно имени файла и расширения .

Имя файлу дает пользователь. Расширение имени обычно задается программой автоматически при сохранении файла. Расширение позволяет пользователю его тип, а операционной системе открыть файл с помощью нужного приложения.
В ОС Windows в имени файла зап0рещено использование следующих символов: \, /, :, *, ?, ”, |. В Linux эти символы, кроме /, допустимы.

Операционная система Linux, в отличие от Windows, различают строчные и прописные буквы в имени файла: например FILE.txt, file.txt и FiLe.txt – это в Linux три разных файла.

Наиболее распространенные типы файлов и расширений:


Тип файла

Примеры расширений

Системный файл

drv, sys

Текстовый файл

txt, rtf, doc, docx, odt

Графический файл

bmp, gif, jpg, tif, png, psd

Web-страница

htm, html

Звуковой файл

wav, mp3, midi, kar, ogg

Видеофайл

avi, mpeg

Архив

zip, rar

Электронная таблица

xls, ods

Код (текст) программы на языках программирования

bas, pas

В ОС Linux выделяют следующие типы файлов:


  • обычные файлы – файлы с программами и данными

  • каталоги – файлы, содержащие информацию о каталогах

  • ссылки – файлы, содержащие ссылки на другие файлы

  • специальные файлы устройств – файлы, используемые для представления физических устройств компьютера (жестких и оптических дисководов, принтера, звуковых колонок и т.д.)

Каталоги
На каждом компьютере или носителе информации может находиться большое количество файлов. Для удобства поиска информации файлы по определенным признакам объединяются в группы, называемые каталогами или папками .
Каталоги также получают собственное имя. Каталог сам может входить в состав другого, внешнего по отношению к нему каталога. Каждый каталог может содержать множество файлов и вложенных каталогов.

Каталог – это поименованная совокупность файлов и подкаталогов (вложенных каталогов).
Каталог самого верхнего уровня называется корневым каталогом .

В ОС Windows любой информационный носитель имеет корневой каталог, который создается операционной системой без участия пользователя. Обозначаются корневые каталоги добавлением к логическому имени соответствующего устройства внешней памяти знака «\» (обратный слеш): А:\, С:\, В:\ и т.д.

В Linux каталоги жестких дисков или их логических разделов не принадлежат верхнему уровню файловой системы (не являются корневыми каталогами). Они «монтируются» в каталог mnl. Другие устройства внешней памяти (гибкие, оптические и флеш-диски) «монтируются» в каталог media. Каталоги mnt и media в свою очередь, «монтируются» в единый корневой каталог, который обозначается знаком «/» (прямой слеш).

Файловая структура диска – это совокупность файлов на диске и взаимосвязей между ними.

Файловые структуры бывают простыми и многоуровневыми (иерархическими).

Простые файловые структуры могут использоваться для дисков с небольшим (до нескольких десятков) количеством файлов. В этом случае оглавление диска представляет собой линейную последовательность имен файлов.
Иерархические файловые структуры используются для хранения большого (сотни и тысячи) количества файлов. Иерархия – это расположение частей (элементов) целого в порядке от высшего к низшим.

Графическое изображение иерархической файловой структуры называется деревом .

Чтобы обратиться к нужному файлу, хранящемуся на некотором диске, можно указать путь к файлу – имена всех каталогов от корневого до того, в котором непосредственно находится файл.

Последовательно записанные путь к файлу и имя файла составляют полное имя файла .
Пример полного имени файла в ОС Windows:

E:\изображения\фото\Поездка.jpeg