Файл ntfs. Файловая система NTFS

17.02.2019

Операционные системы Microsoft семейства Windows NT нельзя представить без файловой системы NTFS - одной из самых сложных и удачных из существующих на данный момент файловых систем. Данная статья расскажет вам, в чем особенности и недостатки этой системы, на каких принципах основана организация информации, и как поддерживать систему в стабильном состоянии, какие возможности предлагает NTFS и как их можно использовать обычному пользователю.

Часть 1. Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного \"ограничения\" на размер NTFS при установке. :)

Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается... Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности - они очень важны - хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, \"зацепившись\" за самую основу - за первый элемент MFT.

Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени \"$\", хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

$MFT сам MFT
$MFTmirr копия первых 16 записей MFT, размещенная посередине диска
$LogFile файл поддержки журналирования (см. ниже)
$Volume служебная информация - метка тома, версия файловой системы, т.д.
$AttrDef список стандартных атрибутов файлов на томе
$. корневой каталог
$Bitmap карта свободного места тома
$Boot загрузочный сектор (если раздел загрузочный)
$Quota файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)
$Upcase файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т.д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.

Опциональный элемент - потоки данных файла. Может показаться странным определение \"опциональный\", но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего \"физического\" воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно \"прилепить\" еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

При установке Windows XP вам будет предложено отформатировать существующий раздел, на который устанавливается ОС, в файловую систему NTFS. Необходимо разобраться, что это такое.

NTFS - единственная файловая система в Windows, которая позволяет назначать права доступа к различным файлам. Устанавливая пользователям определенные разрешения для файлов и каталогов, пользователь может защищать конфиденциальную информацию от несанкционированного доступа.

Основными целями NTFS являются:

NTFS начала использоваться вместе с Windows NT 3.1 в 1993 году. Вот основные ее технологические достижения:

  1. Работа с большими дисками. NTFS имеет размер кластера 512 байт, но его можно менять до 64К.
  2. Устойчивость. NTFS содержит две копии аналога FAT, которые называются MFT (Master File Table. Если оригинал MFT повреждён в случае аппаратной ошибки, то система при следующей загрузке использует копию MFT, и автоматически создаёт новый оригинал, уже с учётом повреждений. NTFS использует систему транзакций при записи файлов на диск.
  3. Защищенность. NTFS рассматривает файлы, как объекты. Каждый файловый объект обладает свойствами, такими как его имя, дата создания, дата последнего обновления, архивный статус. Файловый объект также содержит набор методов, которые позволяют с ним работать, такие как open, close, read и write.
  4. Компрессия данных. NTFS позволяет компрессировать отдельные каталоги и файлы. Это позволяет экономить пространство на диске, например можно сжимать большие графические файлы формата BMP, или текстовые файлы.
  5. Поддержка формата ISO Unicode. Формат Unicode использует 16bit для кодировки каждого символа. Простой пользователь может называть файлы на любом языке - система это будет поддерживать, не требуя изменить кодовую страницу, как это делал DOS и W9x.

Основные свойства файловой системы NTFS:

  1. NTFS обладает характеристиками защищенности, позволяет контролировать доступ к данным и привилегии владельца для обеспечения целостности важных данных. Папки и файлы NTFS могут иметь назначенные им права доступа.
  2. NTFS имеет возможность введения квот. Это свойство, как правило, необходимо системным администраторам, больших компаний, где работают большое количество пользователей, которые не следят за актуальностью информации, и которые хранят ненужные файлы, тем самым занимая дисковое пространство. Так как администратор не может проследить за всем этим, он может ввести квоту на использование диска определенному пользователю. Если пользователь превысит выданную ему квоту, в журнал событий будет внесена соответствующая запись. Чтобы включить квоты на диске нужно:
  • чтобы диск был в формате NTFS
  • в свойствах папки Tools-Folder Options-View убрать флажок Simple File Sharing.
  • в появившейся вкладке Quota необходимо установить флажок на Enable quota managment (Активизировать управление квотами). Это будет установлена мягкое квотирование, которое выдаст предупреждение, что пользователь превысил квоту, но право на запись у него будет. Чтобы в случае превышения квоты пользователю было отказано в доступе к этому тому, необходимо установить флажок на Deny disk space to users exceeding quota limit (Запретить запись на диск пользователям, превысившим размер дискового пространства).
Операционные системы Microsoft семейства Windows NT нельзя представить без файловой системы NTFS - одной из самых сложных и удачных из существующих на данный момент файловых систем. Данная статья расскажет вам, в чем особенности и недостатки этой системы, на каких принципах основана организация информации, и как поддерживать систему в стабильном состоянии, какие возможности предлагает NTFS и как их можно использовать обычному пользователю.
Часть 1. Физическая структура NTFS

Начнем с общих фактов. Раздел NTFS, теоретически, может быть почти какого угодно размера. Предел, конечно, есть, но я даже не буду указывать его, так как его с запасом хватит на последующие сто лет развития вычислительной техники - при любых темпах роста. Как обстоит с этим дело на практике? Почти так же. Максимальный размер раздела NTFS в данный момент ограничен лишь размерами жестких дисков. NT4, правда, будет испытывать проблемы при попытке установки на раздел, если хоть какая-нибудь его часть отступает более чем на 8 Гб от физического начала диска, но эта проблема касается лишь загрузочного раздела.

Лирическое отступление. Метод инсталляции NT4.0 на пустой диск довольно оригинален и может навести на неправильные мысли о возможностях NTFS. Если вы укажете программе установки, что желаете отформатировать диск в NTFS, максимальный размер, который она вам предложит, будет всего 4 Гб. Почему так мало, если размер раздела NTFS на самом деле практически неограничен? Дело в том, что установочная секция просто не знает этой файловой системы:) Программа установки форматирует этот диск в обычный FAT, максимальный размер которого в NT составляет 4 Гбайт (с использованием не совсем стандартного огромного кластера 64 Кбайта), и на этот FAT устанавливает NT. А вот уже в процессе первой загрузки самой операционной системы (еще в установочной фазе) производится быстрое преобразование раздела в NTFS; так что пользователь ничего и не замечает, кроме странного «ограничения» на размер NTFS при установке. :)

Структура раздела - общий взгляд

Как и любая другая система, NTFS делит все полезное место на кластеры - блоки данных, используемые единовременно. NTFS поддерживает почти любые размеры кластеров - от 512 байт до 64 Кбайт, неким стандартом же считается кластер размером 4 Кбайт. Никаких аномалий кластерной структуры NTFS не имеет, поэтому на эту, в общем-то, довольно банальную тему, сказать особо нечего.

Диск NTFS условно делится на две части. Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл MFT (об этом ниже). Запись каких-либо данных в эту область невозможна. MFT-зона всегда держится пустой - это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте. Остальные 88% диска представляют собой обычное пространство для хранения файлов.

Свободное место диска, однако, включает в себя всё физически свободное место - незаполненные куски MFT-зоны туда тоже включаются. Механизм использования MFT-зоны таков: когда файлы уже нельзя записывать в обычное пространство, MFT-зона просто сокращается (в текущих версиях операционных систем ровно в два раза), освобождая таким образом место для записи файлов. При освобождении места в обычной области MFT зона может снова расширится. При этом не исключена ситуация, когда в этой зоне остались и обычные файлы: никакой аномалии тут нет. Что ж, система старалась оставить её свободной, но ничего не получилось. Жизнь продолжается… Метафайл MFT все-таки может фрагментироваться, хоть это и было бы нежелательно.

MFT и его структура

Файловая система NTFS представляет собой выдающееся достижение структуризации: каждый элемент системы представляет собой файл - даже служебная информация. Самый главный файл на NTFS называется MFT, или Master File Table - общая таблица файлов. Именно он размещается в MFT зоне и представляет собой централизованный каталог всех остальных файлов диска, и, как не парадоксально, себя самого. MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в общем смысле этого слова). Первые 16 файлов носят служебный характер и недоступны операционной системе - они называются метафайлами, причем самый первый метафайл - сам MFT. Эти первые 16 элементов MFT - единственная часть диска, имеющая фиксированное положение. Интересно, что вторая копия первых трех записей, для надежности - они очень важны - хранится ровно посередине диска. Остальной MFT-файл может располагаться, как и любой другой файл, в произвольных местах диска - восстановить его положение можно с помощью его самого, «зацепившись» за самую основу - за первый элемент MFT.

Метафайлы

Первые 16 файлов NTFS (метафайлы) носят служебный характер. Каждый из них отвечает за какой-либо аспект работы системы. Преимущество настолько модульного подхода заключается в поразительной гибкости - например, на FAT-е физическое повреждение в самой области FAT фатально для функционирования всего диска, а NTFS может сместить, даже фрагментировать по диску, все свои служебные области, обойдя любые неисправности поверхности - кроме первых 16 элементов MFT.

Метафайлы находятся корневом каталоге NTFS диска - они начинаются с символа имени «$», хотя получить какую-либо информацию о них стандартными средствами сложно. Любопытно, что и для этих файлов указан вполне реальный размер - можно узнать, например, сколько операционная система тратит на каталогизацию всего вашего диска, посмотрев размер файла $MFT. В следующей таблице приведены используемые в данный момент метафайлы и их назначение.

$MFT сам MFT
$MFTmirr копия первых 16 записей MFT, размещенная посередине диска
$LogFile файл поддержки журналирования (см. ниже)
$Volume служебная информация - метка тома, версия файловой системы, т. д.
$AttrDef список стандартных атрибутов файлов на томе
$. корневой каталог
$Bitmap карта свободного места тома
$Boot загрузочный сектор (если раздел загрузочный)
$Quota файл, в котором записаны права пользователей на использование дискового пространства (начал работать лишь в NT5)
$Upcase файл - таблица соответствия заглавных и прописных букв в имен файлов на текущем томе. Нужен в основном потому, что в NTFS имена файлов записываются в Unicode, что составляет 65 тысяч различных символов, искать большие и малые эквиваленты которых очень нетривиально.

Файлы и потоки

Итак, у системы есть файлы - и ничего кроме файлов. Что включает в себя это понятие на NTFS?

  • Прежде всего, обязательный элемент - запись в MFT, ведь, как было сказано ранее, все файлы диска упоминаются в MFT. В этом месте хранится вся информация о файле, за исключением собственно данных. Имя файла, размер, положение на диске отдельных фрагментов, и т. д. Если для информации не хватает одной записи MFT, то используются несколько, причем не обязательно подряд.
  • Опциональный элемент - потоки данных файла. Может показаться странным определение «опциональный», но, тем не менее, ничего странного тут нет. Во-первых, файл может не иметь данных - в таком случае на него не расходуется свободное место самого диска. Во-вторых, файл может иметь не очень большой размер. Тогда идет в ход довольно удачное решение: данные файла хранятся прямо в MFT, в оставшемся от основных данных месте в пределах одной записи MFT. Файлы, занимающие сотни байт, обычно не имеют своего «физического» воплощения в основной файловой области - все данные такого файла хранятся в одном месте - в MFT.

Довольно интересно обстоит дело и с данными файла. Каждый файл на NTFS, в общем-то, имеет несколько абстрактное строение - у него нет как таковых данных, а есть потоки (streams). Один из потоков и носит привычный нам смысл - данные файла. Но большинство атрибутов файла - тоже потоки! Таким образом, получается, что базовая сущность у файла только одна - номер в MFT, а всё остальное опционально. Данная абстракция может использоваться для создания довольно удобных вещей - например, файлу можно «прилепить» еще один поток, записав в него любые данные - например, информацию об авторе и содержании файла, как это сделано в Windows 2000 (самая правая закладка в свойствах файла, просматриваемых из проводника). Интересно, что эти дополнительные потоки не видны стандартными средствами: наблюдаемый размер файла - это лишь размер основного потока, который содержит традиционные данные. Можно, к примеру, иметь файл нулевой длинны, при стирании которого освободится 1 Гбайт свободного места - просто потому, что какая-нибудь хитрая программа или технология прилепила в нему дополнительный поток (альтернативные данные) гигабайтового размера. Но на самом деле в текущий момент потоки практически не используются, так что опасаться подобных ситуаций не следует, хотя гипотетически они возможны. Просто имейте в виду, что файл на NTFS - это более глубокое и глобальное понятие, чем можно себе вообразить просто просматривая каталоги диска. Ну и напоследок: имя файла может содержать любые символы, включая полый набор национальных алфавитов, так как данные представлены в Unicode - 16-битном представлении, которое дает 65535 разных символов. Максимальная длина имени файла - 255 символов.

Каталоги

Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске. Файл каталога поделен на блоки, каждый из которых содержит имя файла, базовые атрибуты и ссылку на элемент MFT, который уже предоставляет полную информацию об элементе каталога. Внутренняя структура каталога представляет собой бинарное дерево. Вот что это означает: для поиска файла с данным именем в линейном каталоге, таком, например, как у FAT-а, операционной системе приходится просматривать все элементы каталога, пока она не найдет нужный. Бинарное же дерево располагает имена файлов таким образом, чтобы поиск файла осуществлялся более быстрым способом - с помощью получения двухзначных ответов на вопросы о положении файла. Вопрос, на который бинарное дерево способно дать ответ, таков: в какой группе, относительно данного элемента, находится искомое имя - выше или ниже? Мы начинаем с такого вопроса к среднему элементу, и каждый ответ сужает зону поиска в среднем в два раза. Файлы, скажем, просто отсортированы по алфавиту, и ответ на вопрос осуществляется очевидным способом - сравнением начальных букв. Область поиска, суженная в два раза, начинает исследоваться аналогичным образом, начиная опять же со среднего элемента.

Вывод - для поиска одного файла среди 1000, например, FAT придется осуществить в среднем 500 сравнений (наиболее вероятно, что файл будет найден на середине поиска), а системе на основе дерева - всего около 12-ти (2^10 = 1024). Экономия времени поиска налицо. Не стоит, однако думать, что в традиционных системах (FAT) всё так запущено: во-первых, поддержание списка файлов в виде бинарного дерева довольно трудоемко, а во-вторых - даже FAT в исполнении современной системы (Windows2000 или Windows98) использует сходную оптимизацию поиска. Это просто еще один факт в вашу копилку знаний. Хочется также развеять распространенное заблуждение (которое я сам разделял совсем еще недавно) о том, что добавлять файл в каталог в виде дерева труднее, чем в линейный каталог: это достаточно сравнимые по времени операции - дело в том, что для того, чтобы добавить файл в каталог, нужно сначала убедится, что файла с таким именем там еще нет:) - и вот тут-то в линейной системе у нас будут трудности с поиском файла, описанные выше, которые с лихвой компенсируют саму простоту добавления файла в каталог.

Какую информацию можно получить, просто прочитав файл каталога? Ровно то, что выдает команда dir. Для выполнения простейшей навигации по диску не нужно лазить в MFT за каждым файлом, надо лишь читать самую общую информацию о файлах из файлов каталогов. Главный каталог диска - корневой - ничем не отличается об обычных каталогов, кроме специальной ссылки на него из начала метафайла MFT.

Журналирование

NTFS - отказоустойчивая система, которая вполне может привести себя в корректное состояние при практически любых реальных сбоях. Любая современная файловая система основана на таком понятии, как транзакция - действие, совершаемое целиком и корректно или не совершаемое вообще. У NTFS просто не бывает промежуточных (ошибочных или некорректных) состояний - квант изменения данных не может быть поделен на до и после сбоя, принося разрушения и путаницу - он либо совершен, либо отменен.

Пример 1: осуществляется запись данных на диск. Вдруг выясняется, что в то место, куда мы только что решили записать очередную порцию данных, писать не удалось - физическое повреждение поверхности. Поведение NTFS в этом случае довольно логично: транзакция записи откатывается целиком - система осознает, что запись не произведена. Место помечается как сбойное, а данные записываются в другое место - начинается новая транзакция.

Пример 2: более сложный случай - идет запись данных на диск. Вдруг, бах - отключается питание и система перезагружается. На какой фазе остановилась запись, где есть данные, а где чушь? На помощь приходит другой механизм системы - журнал транзакций. Дело в том, что система, осознав свое желание писать на диск, пометила в метафайле $LogFile это свое состояние. При перезагрузке это файл изучается на предмет наличия незавершенных транзакций, которые были прерваны аварией и результат которых непредсказуем - все эти транзакции отменяются: место, в которое осуществлялась запись, помечается снова как свободное, индексы и элементы MFT приводятся в с состояние, в котором они были до сбоя, и система в целом остается стабильна. Ну а если ошибка произошла при записи в журнал? Тоже ничего страшного: транзакция либо еще и не начиналась (идет только попытка записать намерения её произвести), либо уже закончилась - то есть идет попытка записать, что транзакция на самом деле уже выполнена. В последнем случае при следующей загрузке система сама вполне разберется, что на самом деле всё и так записано корректно, и не обратит внимания на «незаконченную» транзакцию.

И все-таки помните, что журналирование - не абсолютная панацея, а лишь средство существенно сократить число ошибок и сбоев системы. Вряд ли рядовой пользователь NTFS хоть когда-нибудь заметит ошибку системы или вынужден будет запускать chkdsk - опыт показывает, что NTFS восстанавливается в полностью корректное состояние даже при сбоях в очень загруженные дисковой активностью моменты. Вы можете даже оптимизировать диск и в самый разгар этого процесса нажать reset - вероятность потерь данных даже в этом случае будет очень низка. Важно понимать, однако, что система восстановления NTFS гарантирует корректность файловой системы , а не ваших данных. Если вы производили запись на диск и получили аварию - ваши данные могут и не записаться. Чудес не бывает.

Сжатие

Файлы NTFS имеют один довольно полезный атрибут - «сжатый». Дело в том, что NTFS имеет встроенную поддержку сжатия дисков - то, для чего раньше приходилось использовать Stacker или DoubleSpace. Любой файл или каталог в индивидуальном порядке может хранится на диске в сжатом виде - этот процесс совершенно прозрачен для приложений. Сжатие файлов имеет очень высокую скорость и только одно большое отрицательное свойство - огромная виртуальная фрагментация сжатых файлов, которая, правда, никому особо не мешает. Сжатие осуществляется блоками по 16 кластеров и использует так называемые «виртуальные кластеры» - опять же предельно гибкое решение, позволяющее добиться интересных эффектов - например, половина файла может быть сжата, а половина - нет. Это достигается благодаря тому, что хранение информации о компрессированности определенных фрагментов очень похоже на обычную фрагментацию файлов: например, типичная запись физической раскладки для реального, несжатого, файла:

кластеры файла с 1 по 43-й хранятся в кластерах диска начиная с 400-го

кластеры файла с 44 по 52-й хранятся в кластерах диска начиная с 8530-го…

Физическая раскладка типичного сжатого файла:

кластеры файла с 1 по 9-й хранятся в кластерах диска начиная с 400-го

кластеры файла с 10 по 16-й нигде не хранятся

кластеры файла с 17 по 18-й хранятся в кластерах диска начиная с 409-го

кластеры файла с 19 по 36-й нигде не хранятся


Видно, что сжатый файл имеет «виртуальные» кластеры, реальной информации в которых нет. Как только система видит такие виртуальные кластеры, она тут же понимает, что данные предыдущего блока, кратного 16-ти, должны быть разжаты, а получившиеся данные как раз заполнят виртуальные кластеры - вот, по сути, и весь алгоритм.

Безопасность

NTFS содержит множество средств разграничения прав объектов - есть мнение, что это самая совершенная файловая система из всех ныне существующих. В теории это, без сомнения, так, но в текущих реализациях, к сожалению, система прав достаточно далека от идеала и представляет собой хоть и жесткий, но не всегда логичный набор характеристик. Права, назначаемые любому объекту и однозначно соблюдаемые системой, эволюционируют - крупные изменения и дополнения прав осуществлялись уже несколько раз и к Windows 2000 все-таки они пришли к достаточно разумному набору.

Права файловой системы NTFS неразрывно связаны с самой системой - то есть они, вообще говоря, необязательны к соблюдению другой системой, если ей дать физический доступ к диску. Для предотвращения физического доступа в Windows2000 (NT5) всё же ввели стандартную возможность - об этом см. ниже. Система прав в своем текущем состоянии достаточно сложна, и я сомневаюсь, что смогу сказать широкому читателю что-нибудь интересное и полезное ему в обычной жизни. Если вас интересует эта тема - вы найдете множество книг по сетевой архитектуре NT, в которых это описано более чем подробно.

На этом описание строение файловой системы можно закончить, осталось описать лишь некоторое количество просто практичных или оригинальных вещей.

Hard Links

Эта штука была в NTFS с незапамятных времен, но использовалась очень редко - и тем не менее: Hard Link - это когда один и тот же файл имеет два имени (несколько указателей файла-каталога или разных каталогов указывают на одну и ту же MFT запись). Допустим, один и тот же файл имеет имена 1.txt и 2.txt: если пользователь сотрет файл 1, останется файл 2. Если сотрет 2 - останется файл 1, то есть оба имени, с момента создания, совершенно равноправны. Файл физически стирается лишь тогда, когда будет удалено его последнее имя.

Symbolic Links (NT5)

Гораздо более практичная возможность, позволяющая делать виртуальные каталоги - ровно так же, как и виртуальные диски командой subst в DOSе. Применения достаточно разнообразны: во-первых, упрощение системы каталогов. Если вам не нравится каталог Documents and settingsAdministratorDocuments, вы можете прилинковать его в корневой каталог - система будет по прежнему общаться с каталогом с дремучим путем, а вы - с гораздо более коротким именем, полностью ему эквивалентным. Для создания таких связей можно воспользоваться программой junction (junction.zip , 15 Кб), которую написал известный специалист Mark Russinovich. Программа работает только в NT5 (Windows 2000), как и сама возможность.

Для удаления связи можно воспользоваться стандартной командой rd.
ВНИМАНИЕ: Попытка уделения связи с помощью проводника или других файловых менеджеров, не понимающих виртуальную природу каталога (например, FAR), приведет к удалению данных, на которые ссылается ссылка! Будьте осторожны.

Шифрование (NT5)

Полезная возможность для людей, которые беспокоятся за свои секреты - каждый файл или каталог может также быть зашифрован, что не даст возможность прочесть его другой инсталляцией NT. В сочетании со стандартным и практически непрошибаемым паролем на загрузку самой системы, эта возможность обеспечивает достаточную для большинства применений безопасность избранных вами важных данных.Часть 2. Особенности дефрагментации NTFS

Вернемся к одному достаточно интересному и важному моменту - фрагментации и дефрагментации NTFS. Дело в том, что ситуация, сложившаяся с этими двумя понятиями в настоящий момент, никак не может быть названа удовлетворительной. В самом начале утверждалось, что NTFS не подвержена фрагментации файлов. Это оказалось не совсем так, и утверждение сменили - NTFS препятствует фрагментации. Оказалось, что и это не совсем так. То есть она, конечно, препятствует, но толк от этого близок к нулю… Сейчас уже понятно, что NTFS - система, которая как никакая другая предрасположена к фрагментации, что бы ни утверждалось официально. Единственное что - логически она не очень от этого страдает. Все внутренние структуры построены таким образом, что фрагментация не мешает быстро находить фрагменты данных. Но от физического последствия фрагментации - лишних движений головок - она, конечно, не спасает. И поэтому - вперед и с песней.

К истокам проблемы

Как известно, система сильнее всего фрагментирует файлы когда свободное место кончается, когда приходится использовать мелкие дырки, оставшиеся от других файлов. Тут возникает первое свойство NTFS, которое прямо способствует серьезной фрагментации.

Диск NTFS поделен на две зоны. В начала диска идет MFT зона - зона, куда растет MFT, Master File Table. Зона занимает минимум 12% диска, и запись данных в эту зону невозможна. Это сделано для того, чтобы не фрагментировался хотя бы MFT. Но когда весь остальной диск заполняется - зона сокращается ровно в два раза:). И так далее. Таким образом мы имеем не один заход окончания диска, а несколько. В результате если NTFS работает при диске, заполненном на около 90% - фрагментация растет как бешенная.

Попутное следствие - диск, заполненный более чем на 88%, дефрагментировать почти невозможно - даже API дефрагментации не может перемещать данные в MFT зону. Может оказаться так, что у нас не будет свободного места для маневра.

Далее. NTFS работает себе и работает, и всё таки фрагментируется - даже в том случае, если свободное место далеко от истощения. Этому способствует странный алгоритм нахождения свободного места для записи файлов - второе серьезное упущение. Алгоритм действий при любой записи такой: берется какой-то определенный объем диска и заполняется файлом до упора. Причем по очень интересному алгоритму: сначала заполняются большие дырки, потом маленькие. Т.е. типичное распределение фрагментов файла по размеру на фрагментированной NTFS выглядит так (размеры фрагментов):

16 - 16 - 16 - 16 - 16 - [скачек назад] - 15 - 15 - 15 - [назад] - 14 - 14 - 14 .... 1 - 1 - 1 -1 - 1...

Так процесс идет до самых мелких дырок в 1 кластер, несмотря на то, что на диске наверняка есть и гораздо более большие куски свободного места.

Вспомните сжатые файлы - при активной перезаписи больших объемов сжатой информации на NTFS образуется гигантское количество «дырок» из-за перераспределения на диске сжатых объемов - если какой-либо участок файла стал сжиматься лучше или хуже, его приходится либо изымать из непрерывной цепочки и размещать в другом месте, либо стягивать в объеме, оставляя за собой дырку.

Смысл в сего этого вступления в пояснении того простого факта, что никак нельзя сказать, что NTFS препятствует фрагментации файлов. Наоборот, она с радостью их фрагментирует. Фрагментация NTFS через пол года работы доведет до искреннего удивления любого человека, знакомого с работой файловой системой. Поэтому приходится запускать дефрагментатор. Но на этом все наши проблемы не заканчиваются, а, увы, только начинаются.

Средства решения?

В NT существует стандартное API дефрагментации. Обладающее интересным ограничением для перемещения блоков файлов: за один раз можно перемещать не менее 16 кластеров (!), причем начинаться эти кластеры должны с позиции, кратной 16 кластерам в файле. В общем, операция осуществляется исключительно по 16 кластеров. Следствия:

  1. В дырку свободного места менее 16 кластеров нельзя ничего переместить (кроме сжатых файлов, но это неинтересные в данный момент тонкости).
  2. Файл, будучи перемещенный в другое место, оставляет после себя (на новом месте) «временно занятое место», дополняющее его по размеру до кратности 16 кластерам.
  3. При попытке как-то неправильно (»не кратно 16») переместить файл результат часто непредсказуем. Что-то округляется, что-то просто не перемещается… Тем не менее, всё место действия щедро рассыпается «временно занятым местом».

«Временно занятое место» служит для облегчения восстановления системы в случае аппаратного сбоя и освобождается через некоторое время, обычно где-то пол минуты.

Тем не менее, логично было бы использовать это API, раз он есть. Его и используют. Поэтому процесс стандартной дефрагментации, с поправками на ограниченность API, состоит из следующих фаз (не обязательно в этом порядке):

  • Вынимание файлов из MFT зоны. Не специально - просто обратно туда их положить не представляется возможным:) Безобидная фаза, и даже в чем то полезная.
  • Дефрагментация файлов. Безусловно, полезный процесс, несколько, правда, осложняемый ограничениями кратности перемещений - файлы часто приходится перекладывать сильнее, чем это было бы логично сделать по уму.
  • Дефрагментация MFT, виртуалки (pagefile.sys) и каталогов. Возможна через API только в Windows2000, иначе - при перезагрузке, отдельным процессом, как в старом Diskeeper-е.
  • Складывание файлов ближе к началу - так называемая дефрагментация свободного места. Вот это - воистину страшный процесс.

Допустим, мы хотим положить файлы подряд в начало диска. Кладем один файл. Он оставляет хвост занятости дополнения до кратности 16. Кладем следующий - после хвоста, естественно. Через некоторое время, по освобождению хвоста, имеем дырку Таким образом, имеется два примерно равнозначных варианта. Первый - часто оптимизировать диск таким дефрагментатором, смиряясь при этом с дикой фрагментацией заново созданных файлов. Второй вариант - вообще ничего не трогать, и смириться с равномерной, но гораздо более слабой фрагментацией всех файлов на диске.

Пока есть всего один дефрагментатор, который игнорирует API дефрагментации и работает как-то более напрямую - Norton Speeddisk 5.0 для NT. Когда его пытаются сравнить со всеми остальными - Diskeeper, O&O defrag, т. д. - не упоминают этого главного, самого принципиального, отличия. Просто потому, что эта проблема тщательно скрывается, по крайней мере уж точно не афишируется на каждом шагу. Speeddisk - единственная на сегодняшний день программа, которая может оптимизировать диск полностью, не создавая маленьких незаполненных фрагментов свободного места. Стоит добавить также, что при помощи стандартного API невозможно дефрагментировать тома NTFS с кластером более 4 Кбайт, а SpeedDisk и это может.

К сожалению, в Windows 2000 поместили дефрагментатор, который работает через API, и, соответственно, плодит дырки Как некоторый вывод из всего этого: все остальные дефрагментаторы при одноразовом применении просто вредны. Если вы запускали его хоть раз - нужно запускать его потом хотя бы раз в месяц, чтобы избавится от фрагментации новоприбывающих файлов. В этом основная суть сложности дефрагментации NTFS теми средствами, которые сложились исторически.Часть 3. Что выбрать?

Любая из представленных ныне файловых систем уходит своими корнями в глубокое прошлое - еще к 80-м годам. Да, NTFS, как это не странно - очень старая система! Дело в том, что долгое время персональные компьютеры пользовались лишь операционной системой DOS, которой и обязана своим появлением FAT. Но параллельно разрабатывались и тихо существовали системы, нацеленные на будущее. Две таких системы, получившие всё же широкое признание - NTFS, созданная для операционной системы Windows NT 3.1 еще в незапамятные времена, и HPFS - верная спутница OS/2.

Внедрение новых систем шло трудно - еще в 95м году, с выходом Windows95, ни у кого не было и мыслей о том, что что-то нужно менять - FAT получил второе дыхание посредством налепленной сверху заплатки «длинные имена», реализация которых там хоть и близка к идеально возможной без изменения системы, но всё же довольно бестолкова. Но в последующие годы необходимость перемен назрела окончательно, поскольку естественные ограничения FAT стали давать о себе знать. FAT32, появившаяся в Windows 95 OSR2, просто сдвинула рамки - не изменив сути системы, которая просто не дает возможности организовать эффективную работу с большим количеством данных.

HPFS (High Performance File System), активно применяемая до сих пор пользователями OS/2, показала себя достаточно удачной системой, но и она имела существенные недостатки - полное отсутствие средств автоматической восстанавливаемости, излишнюю сложность организации данных и невысокую гибкость.

NTFS же долго не могла завоевать персональные компьютеры из-за того, что для организации эффективной работы с её структурами данных требовались значительные объемы памяти. Системы с 4 или 8 Мбайт (стандарт 95-96 годов) были просто неспособны получить хоть какой-либо плюс от NTFS, поэтому за ней закрепилась не очень правильная репутация медленной и громоздкой системы. На самом деле это не соответствует действительности - современные компьютерные системы с памятью более 64 Мб получают просто огромный прирост производительности от использования NTFS.

В данной таблице сведены воедино все существенные плюсы и минусы распространенных в наше время систем, таких как FAT32, FAT и NTFS. Вряд ли разумно обсуждать другие системы, так как в настоящее время 97% пользователей делают выбор между Windows98, Windows NT4.0 и Windows 2000 (NT5.0), а других вариантов там просто нет.

Системы, её поддерживающие DOS, Windows9Х, NT всех версий Windows98, NT5 NT4, NT5
Максимальный размер тома 2 Гбайт практически неограничен практически неограничен
Макс. число файлов на томе примерно 65 тысяч практически не ограничено практически не ограничено
Имя файла с поддержкой длинных имен - 255 символов, системный набор символов 255 символов, любые символы любых алфавитов (65 тысяч разных начертаний)
Возможные атрибуты файла Базовый набор Базовый набор всё, что придет в голову производителям программного обеспечения
Безопасность нет нет да (начиная с NT5.0 встроена возможность физически шифровать данные)
Сжатие нет нет да
Устойчивость к сбоям средняя (система слишком проста и поэтому ломаться особо нечему:)) плохая (средства оптимизации по скорости привели к появлению слабых по надежности мест) полная - автоматическое восстановление системы при любых сбоях (не считая физические ошибки записи, когда пишется одно, а на самом деле записывается другое)
Экономичность минимальная (огромные размеры кластеров на больших дисках) улучшена за счет уменьшения размеров кластеров максимальна. Очень эффективная и разнообразная система хранения данных
Быстродействие высокое для малого числа файлов, но быстро уменьшается с появлением большого количества файлов в каталогах. результат - для слабо заполненных дисков - максимальное, для заполненных - плохое полностью аналогично FAT, но на дисках большого размера (десятки гигабайт) начинаются серьезные проблемы с общей организацией данных система не очень эффективна для малых и простых разделов (до 1 Гбайт), но работа с огромными массивами данных и внушительными каталогами организована как нельзя более эффективно и очень сильно превосходит по скорости другие системы

Хотелось бы сказать, что если ваша операционная система - NT (Windows 2000), то использовать какую-либо файловую систему, отличную от NTFS - значит существенно ограничивать свое удобство и гибкость работы самой операционной системы. NT, а особенно Windows 2000, составляет с NTFS как бы две части единого целого - множество полезных возможностей NT напрямую завязано на физическую и логическую структуру файловой системы, и использовать там FAT или FAT32 имеет смысл лишь для совместимости - если у вас стоит задача читать эти диски из каких-либо других систем.

Хотелось бы выразить искреннюю признательность Андрею Шабалину , без которого эта статья просто не была бы написана, а даже будучи написанной, содержала бы много досадных неточностей

NTFS выросла из файловой системы HPFS, разрабатываемой совместно IBM и Microsoft для проекта OS/2. Она начала использоваться вместе с Windows NT 3.1 в 1993 году. Windows NT 3.1 должна была составить конкуренцию серверам на базе NetWare и Unix, поэтому NTFS вобрала в себя все тогдашние технологические достижения. Вот основные из них:

1. Работа с большими дисками. NTFS имеет размер кластера 512 байт, что в принципе оптимально, но его можно менять до 64К. Более важно то, что NTFS способна теоретически работать с томами размером в 16,777,216 терабайт. Теоретически, потому что таких жестких дисков пока просто не существует, и появятся они весьма не скоро.

2. Устойчивость. NTFS содержит две копии аналога FAT, которые называются MFT (Master File Table). В отличие от FAT MSDOS, MFT больше напоминает таблицу базы данных. Если оригинал MFT повреждён в случае аппаратной ошибки (например, появления bad-сектора), то система при следующей загрузке использует копию MFT, и автоматически создаёт новый оригинал, уже с учётом повреждений. Но это не самое главное. Главное, что NTFS использует систему транзакций при записи файлов на диск. Эта система пришла из СУБД, где защита целостности данных - жизненно важное дело. Уже это говорит о её эффективности. В упрощённом виде она работает так:

  • Драйвер ввода/вывода NTFS инициирует процесс записи, одновременно сообщая сервису Log File Service вести лог всего происходящего.
  • Данные пишутся в кэш, под управлением сервиса Cache Manager.
  • Cache Manager посылает данные Virtual Memory Manager-у (менеджеру виртуальной памяти), для записи на диск в фоновом режиме.
  • Virtual Memory Manager посылает данные драйверу диска, пропустив их через Fault Tolerant Driver (если у вас массив дисков RAID).
  • Драйвер диска шлёт их контроллеру, который уже пишет их либо в кэш, либо прямо на диск.
  • Если эта операция проходит без ошибок, запись лога удаляется.
  • Если происходит сбой, запись лога остается в таблице транзакций, и при следующем доступе к диску Log File Service обнаруживает эту запись, и просто восстанавливает всё как было до этой операции.

Такая система гарантирует абсолютную сохранность данных в случае копирования, перемещения и удаления файлов или директорий. При внесении изменений в файл, вы теряете те изменения, которые находились в момент сбоя в памяти или в кэше контроллера, и не успели записаться на диск.

3. Защищенность. NTFS рассматривает файлы, как объекты. Каждый файловый объект обладает свойствами, такими как его имя, дата создания, дата последнего обновления, архивный статус, и дескриптор безопасности. Файловый объект также содержит набор методов, которые позволяют с ним работать, такие как open, close, read и write. Пользователи, включая сетевых, для обращения к файлу вызывают эти методы, а Security Reference Monitor определяет, имеет ли пользователь необходимые права для вызова какого-либо из этих методов. Кроме этого, файлы можно шифровать. Правда, с шифрованием стоит быть осторожнее. Если у вас рухнет система, или вы её переустановите то вы не сможете прочитать зашифрованные файлы, если не имеете ERD.

4. Компрессия данных. NTFS позволяет компрессировать отдельные каталоги и файлы, в отличие от DriveSpace, который позволял сжимать только диски целиком. Это очень удобно, для экономии пространства на диске, например можно сжимать «на лету» большие графические файлы формата BMP, или текстовые файлы, причём для пользователя всё это будет прозрачно.

5. Поддержка формата ISO Unicode. Формат Unicode использует 16bit для кодировки каждого символа, в отличие от ASCII, который использовал 8bit, или ещё хуже - 7bit. Для простого пользователя это означает то, что теперь он может называть файлы на любом языке, хоть на китайском - система это будет поддерживать, не требуя изменить кодовую страницу, как это делал DOS и W9x.

Переход с FAT32 на NTFS
Всё зависит от того, с какой целью вы используете компьютер, и сколько у вас оперативной памяти. Следует учесть, что NTFS работает несколько медленнее чем FAT, из-за дополнительно загружаемых сервисов и её системы безопасности. Если у вас мало оперативной памяти, и вы решили поставить себе XP, то вам однозначно нельзя ставить себе NTFS. Если у вас 128MB или больше, то можно уже подумать об NTFS. Следует взвесить преимущества и недостатки NTFS для простого пользователя и решить, что вам нужно. К преимуществам FAT32 можно отнести то, что она быстрее и требует меньше памяти для работы. Если система работает только с FAT32, то в память не грузятся драйвера и сервисы, необходимые NTFS. Кроме этого, при использовании FAT32 имеется возможность доступа к диску при загрузке с загрузочного флоппи W9x. Преимущества NTFS для простого пользователя можно описать одним ёмким словом: indestructible. На полном серьёзе, вышибить NTFS чрезвычайно сложно, хоть и возможно. Для опыта запускалась куча различных приложений, оптимизаторы диска, и в самые неподходящие моменты жалась кнопка reset. Повторение этого садизма добрый десяток раз никакого впечатления на систему не произвело, она продолжала работать без ошибок. Кроме этого, NTFS обладает встроенными средствами шифрования файлов, что обеспечивает определённую уверенность в сохранности данных. Конечно, при условии что система не будет переустанавливаться.

Конвеpтируем диск FAT32 в NTFS без потеpи данных.
1. Можно воспользоваться командой CONVERT том: /FS:NTFS Преобразование произойдет при следующей перезагрузке. Потери информации не при этом не будет, но нужно иметь в виду, что размер кластера после конвертации составит 512 байт, что не очень хорошо на больших разделах, кроме того, диск после конвертации будет сильно фрагментирован. Обратное преобразование (NTFS -> FAT) без потери данных средствами XP невозможно, потребуется отформатировать раздел заново.
2. Выполнить конвертацию также сможет программа Partition Magic. C NTFS 5 нормально работает, начиная с версии 6.0, но если использовать только загрузочную дискету, то подойдет и версия 5.01. Данная программа также позволяет выполнять обратное преобразование без потери данных и даже может менять размер кластера (к сожалению, только на FAT16 и FAT32). Partition Magic не работает с динамическими дисками, только с основными.

Операционная система, помимо всех остальных задач, выполняет свое основное предназначение - организует работу с данными по определенной структуре. Для этих целей используется файловая система. Что такое ФС и какой она может быть, а также прочая информация о ней будет представлена далее.

Общее описание

Файловая система представляет собой часть операционной системы, которая несет ответственность за размещение, хранение, удаление информации на носителях, предоставление пользователям и приложениям этой информации, а также обеспечение ее безопасного использования. Кроме того, именно она помогает в восстановлении данных в случае аппаратного или программного сбоя. Поэтому так важна файловая система. Что такое ФС и какой она может быть? Имеется несколько видов:

Для жестких дисков, то есть устройств с произвольным доступом;

Для магнитных лент, то есть устройств с последовательным доступом;

Для оптических носителей;

Виртуальные системы;

Сетевые системы.5

В качестве логической единицы хранения данных в файловой системе служит файл, то есть упорядоченная совокупность данных, имеющая определенное имя. Все данные, используемые операционной системой, представлены в виде файлов: программы, изображения, тексты, музыка, видео, а также драйвера, библиотеки и прочее. У каждого такого элемента имеется имя, тип, расширение, атрибуты и размер. Итак, теперь вы знаете, Файловая система представляет собой совокупность таких элементов, а также способы работы с ними. В зависимости от того, в каком виде она используется и какие принципы для нее применимы, можно различать несколько основных видов ФС.

Программный подход

Итак, если рассматривается файловая система (что такое и как с ней работать), то требуется отметить, что это многоуровневая структура, на ее верхнем уровне находится переключатель файловых систем, обеспечивающий интерфейс между системой и конкретным приложением. Он преобразует запросы к файлам в такой формат, который воспринимается следующим уровнем - драйверами. Они, в свою очередь, обращаются к драйверам конкретных устройств, которые хранят необходимую информацию.

У клиент-серверных приложений требования к производительности ФС довольно высоки. Современные системы призваны обеспечивать эффективный доступ, поддержку носителей больших объемов, защиту данных от несанкционированного доступа, сохранение целостности информации.

Файловая система FAT

Этот тип разрабатывался еще в 1977 году Биллом Гейтсом и Марком МакДональдом. Первоначально ее использовали в ОС 86-DOS. Если говорить о том, что такое файловая система FAT, то стоит отметить, что первоначально она не была способна поддерживать жесткие диски, а работала только с гибкими носителями объемом до 1 мегабайта. Сейчас это ограничение уже неактуально, а данная ФС использовалась компанией "Майкрософт" для ОС MS-DOS 1.0 и последующих версий. В FAT используются определенные соглашения в плане наименования файлов:

В начале имени должна быть буква или цифра, а в нем самом может присутствовать любой символ ASCII, помимо пробела и специальных элементов;

Длина имени должна быть не более 8 символов, после него ставится точка, а далее указывается расширение, которое состоит из трех букв;

В именах файлов может использоваться любой регистр, он не различается и не сохраняется.

Так как изначально FAT проектировалась для однопользовательской ОС DOS, она не предусматривала хранения данных о владельце либо полномочиях доступа. На данный момент эта файловая система распространена наиболее сильно, в той или иной степени ее поддерживает большинство Ее универсальность дает возможность использовать ее на томах, с которыми ведется работа разными ОС. Это простая ФС, которая не способна предотвратить порчу файлов из-за некорректного завершения работы компьютера. В составе операционных систем, работающих на ее основе, имеются специальные утилиты, которые проверяют структуру и корректируют несоответствия файлов.

Файловая система NTFS

Эта ФС является наиболее предпочтительной для работы с ОС Windows NT, так как она разрабатывалась специально под нее. В состав ОС включена утилита convert, которая конвертирует тома с FAT и HPFS в тома NTFS. Если говорить о том, что такое файловая система NTFS, то стоит отметить, что в ней существенно расширены возможности управления доступом к определенным каталогам и файлам, введено множество атрибутов, реализованы средства сжатия файлов динамически, отказоустойчивость, поддерживаются требования стандарта POSIX. В данной ФС можно использовать имена длиной до 255 символов, при этом короткое имя в ней генерируется так же, как и в VFAT. Разбираясь, что такое файловая система NTFS, стоит отметить, что в случае сбоя операционной системы она способна сама восстанавливаться, поэтому дисковый том останется доступным, а каталожная структура не пострадает.

Особенности NTFS

На томе NTFS каждый файл представлен записью в таблице MFT. Первые 16 записей таблицы зарезервированы самой файловой системой для хранения специальной информации. В самой первой записи описана сама файловая таблица. При разрушении первой записи считывается вторая для поиска зеркального файла MFT, где первая запись идентична основной таблице. На логическом центре диска размещается копия файла начальной загрузки. В третьей записи таблицы находится файл регистрации, который используется для восстановления данных. В семнадцатой и последующих записях файловой таблицы находится информация о файлах и каталогах, которые имеются на жестком диске.

Журнал транзакций содержит полный набор операций, изменяющих структуру тома, в числе которых представлены операции по созданию файлов, а также любые команды, влияющие на структуру каталогов. Журнал транзакций предназначен для восстановления NTFS в результате сбоя системы. В записи для корневого каталога содержится список каталогов и файлов, которые находятся в корневом каталоге.

Особенности EFS

Шифрованная файловая система (EFS) представляет собой компонент Windows, при помощи которого сведения на жестком диске могут сохраняться в зашифрованном формате. Шифрование стало самой сильной защитой, которую только может предложить данная операционная система. В данном случае шифрование для пользователя является довольно простым действием, для этого требуется только установить флажок в свойствах папки или файла. Можно указать, кто может читать такие файлы. Происходит шифрование при закрытии файлов, а когда они открываются, то автоматически становятся готовыми к использованию.

Особенности RAW

Устройства, предназначенные для хранения данных, представляют собой наиболее уязвимые комплектующие, которые чаще всего подвержены повреждениям не только в физическом плане, но и в логическом. Определенные проблемы с оборудованием могут оказаться фатальными, а другие имеют какие-то решения. Иногда у пользователей возникает вопрос: "Что такое файловая система RAW?"

Как известно, для записи на жесткой диск или флеш-накопитель какой-либо информации у накопителя должна иметься ФС. Наиболее распространенными являются FAT и NTFS. А RAW даже не является файловой системой, каковой мы обычно ее себе представляем. На самом деле это логическая ошибка уже установленной системы, то есть ее фактическое отсутствие для Windows. Чаще всего RAW связана с разрушением структуры файловой системы. После этого ОС не просто к данным, но и не отображает техническую информацию по оборудованию.

Особенности UDF

Универсальный дисковый формат (UDF) разработан для замены CDFS и добавления поддержки устройств DVD-ROM. Если говорить о том, что такое то это новая реализация старой версии для которая соответствует требованиям Она характеризуется определенными особенностями:

Длина имен файлов может быть до 255 символов;

Регистр имени может быть нижним и верхним;

Максимальная длина пути составляет 1023 символа.

Начиная с Windows XP, данная файловая система поддерживает чтение и запись.

Данная ФС используется для флеш-накопителей, которые предполагается применять при работе с разными компьютерами, работающими под управлением разных операционных систем, в частности Windows и Linux. Именно EXFAT стала тем «мостиком» между ними, так как она способна работать с данными, получаемыми от ОС, в каждой из которых работает своя файловая система. Что такое и как это работает, будет понятно уже на практике.

Выводы

Как понятно из описанного выше, в каждой операционной системе используются определенные файловые системы. Предназначены они для хранения упорядоченных структур данных на физических носителях информации. Если у вас вдруг при пользовании компьютером возникает вопрос о том, что такое конечная файловая система, то вполне возможно, что при попытке скопировать определенный файл на носитель перед вами появилось сообщение о превышении разрешенного размера. Именно поэтому необходимо знать, в какой ФС какой размер файлов считается допустимым, чтобы при переносе информации не сталкиваться с проблемами.