Формула емкостного сопротивления. Сопротивление конденсатора

17.09.2019

ОПРЕДЕЛЕНИЕ

Конденсатор , в простейшем случае состоит из двух металлических проводников (обкладок), которые разделяет слой диэлектрика. Каждая из обкладок конденсатора имеет свой вывод и может быть подключена к электрической цепи.

Конденсатор характеризуют при помощи ряда параметров (емкость, рабочее напряжение и т. д), одной из таких характеристик является сопротивление. Конденсатор практически не пропускает постоянный электрический ток. То есть сопротивление конденсатора является бесконечно большим для постоянного тока, но это идеальный случай. Через реальный диэлектрик очень малый ток протекать может. Этот ток называют током утечки. Ток утечки является показателем качества диэлектрика, который применяется при изготовлении конденсатора. У современных конденсаторов ток утечки составляет некоторые доли микроампера. Сопротивление конденсатора в таком случае можно вычислить, используя закон Ома для участка цепи, зная величину напряжения, до которой заряжен конденсатор и ток утечки. Но обычно при решении учебных задач сопротивление конденсатора постоянному току считают бесконечно большим.

Сопротивление конденсатора переменному напряжению

При включении конденсатора в цепь с переменным током, ток свободно проходит через конденсатор. Это объясняется очень просто: происходит процесс постоянной зарядки и разрядки конденсатора. При этом говорят, что в цепи присутствует емкостное сопротивление конденсатора, помимо активного сопротивления.

И так, конденсатор, который включен в цепь переменного тока, ведет себя как сопротивление, то есть оказывает влияние на силу тока, текущую в цепи. Величину емкостного сопротивления обозначим как , его величина связана с частотой тока и определена формулой:

где - частота переменного тока; - угловая частота тока; C - емкость конденсатора.

Если конденсатор включен в цепь переменного тока, то в нем не затрачивается мощность, потому что фаза тока сдвинута по отношению к напряжению на . Если рассмотреть один период колебания тока в цепи (T), то происходит следующее: при заряде конденсатора (это составляет ) энергия в поле конденсатора запасается; на следующем отрезке времени () конденсатор разряжается и отдает энергию в цепь. Поэтому ёмкостное сопротивление называют реактивным (безваттным).

Следует заметить, что в каждом реальном конденсаторе реальная мощность (мощность потерь) все же тратится, при течении через него переменного тока. Это вызвано тем, что происходят изменения в состоянии диэлектрика конденсатора. Помимо этого существует некоторая утечка в изоляции обкладок конденсатора, поэтому появляется небольшое активное сопротивление, которое как бы включено параллельно конденсатору.

Примеры решения задач

ПРИМЕР 1

Задание Колебательный контур имеет сопротивление (R), катушку индуктивности (L) и конденсатор емкости C (рис.1). К нему подключено внешнее напряжение, амплитуда которого равна , а частота составляет . Какова амплитуда силы тока в цепи?

Решение Сопротивление контура рис.1 складывается из активного сопротивления R, емкостного сопротивления конденсатора и сопротивления катушки индуктивности . Полное сопротивление цепи (Z), которая содержит названные выше элементы, находят как:

Закон Ома для нашего участка цепи можно записать как:

Выразим искомую амплитуду силы тока из (1.2), подставим вместо Z правую часть формулы (1.1), имеем:

Ответ

Электрический ток в проводниках непрерывно связан с магнитным и электрическими полями. Элементы, характеризующие преобразование электромагнитной энергии в тепло, называются активными сопротивлениями (обозначаются R). Типичными представителями активных сопротивлений являются резисторы, лампы накаливания, электрические печи и т.д.

Индуктивное сопротивление. Формула индуктивного сопротивления.

Элементы, связанные с наличием только магнитного поля, называются индуктивностями. Индуктивностью обладают катушки , обмотки и . Формула индуктивного сопротивления:

где L — индуктивность.

Емкостное сопротивление. Формула емкостного сопротивления.

Элементы, связанные с наличием электрического поля, называются емкостями. Емкостью обладают конденсаторы, длинные линии электропередачи и т.д. Формула емкостного сопротивления:

где С — емкость.

Суммарное сопротивление. Формулы суммарного сопротивления.

Реальные потребители электрической энергии могут иметь и комплексное значение сопротивлений. При наличии активного R и индуктивного L сопротивлений значение суммарного сопротивления Z подсчитывается по формуле:

Аналогично ведется подсчет суммарного сопротивления Z для цепи активного R и емкостного C сопротивлений:

Потребители с активным R, индуктивным L и емкостным C сопротивлениями имеют суммарное сопротивление:

admin

Конденсатор используется в схемах для разделения переменной и постоянной составляющей напряжения, при этом он хорошо проводит высокочастотный сигнал, и плохо - низкочастотный. Находясь в цепи постоянного тока, его импеданс принимается бесконечно большим. Для переменного тока ёмкостное сопротивление конденсатора не имеет постоянной величиной. Поэтому расчёт этого значения крайне важен при проектировании различных радиоэлектронных приборов.

Общее описание

Физически электронное устройство - конденсатор - представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово "конденсатор" произошло от латинского "condensatio" - "накопление". Научное определение гласит, что накопительный электрический прибор - это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

На схемах конденсатор изображается в виде двух прямых, соответствующих проводящим пластинам прибора, и перпендикулярно к их серединам нарисованными отрезками - выводами устройства.

Принцип действия конденсатора заключается в следующем : при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом - отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток - минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

C = E*Eo*S / d, где E - относительная диэлектрическая проницаемость среды (справочная величина), S - площадь пластин, d - расстояние между ними.

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе. Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2) ½ , где

  • Xl - индуктивность;
  • Xс - ёмкость;
  • R - активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc - ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w - круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении - ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное - с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j - мнимая единица.

Ёмкостное сопротивление

Для понимания процесса следует представить конденсатор в электрической цепи, по которой течёт переменный ток. Причём в этой цепи нет других элементов. Значение тока, проходящего через конденсатор, и напряжения, приложенного к его обкладкам, изменяется по времени. Зная любое из этих значений, можно найти другое.

Пускай ток изменяется по синусоидальной зависимости I (t) = Im * sin (w*t+ f 0). Тогда напряжение можно описать как U (t) = (Im/C*w) *sin (w*t+ f 0 -p/2). При учёте в формуле сдвига фаз на 90 градусов, возникающего между сигналами, вводится комплексная величина j, называемая мнимой единицей. Поэтому формула для нахождения тока будет выглядеть как I = U /(1/j*w*C). Но учитывая, что комплексное число только обозначает смещение напряжения относительно тока, а на их амплитудные значения не влияет, его можно убрать из формулы, тем самым значительно её упростив.

Так как по закону Ома сопротивление прямо пропорционально напряжению на участке цепи и обратно пропорционально току, то преобразуя формулы, можно будет получить следующее выражение:

  • Xc = 1/w*C = ½*p*f*C. Единица измерения - ом.

Становится понятно, что ёмкостное сопротивление зависит не только от ёмкости, но и от частоты. При этом чем больше эта частота, тем меньшее сопротивление конденсатор будет оказывать проходимому через него току. По отношению к ёмкости это утверждение будет обратным. Вот поэтому для постоянного тока, частота которого равна нулю, сопротивление накопителя будет бесконечно большим.

Индуктивная составляющая

При прохождении переменного сигнала через накопитель, его можно представить в виде последовательно включённой с источником питания катушки индуктивности. Эта катушка характеризуется большим сопротивлением в цепи переменного сигнала, чем постоянного. Значение силы тока в определённой точке времени находится как I = I 0 * sinw .

Приняв во внимание, что мгновенная величина напряжения U 0 обратна по знаку мгновенному значению ЭДС самоиндукции E 0, а также используя правило Ленца, можно получить выражение E = L * I, где L - индуктивность.

Следовательно: U = L*w * I 0 *cosw*t = U 0 *sin (wt + p /2) , причём ток отстаёт от напряжения на p /2. Используя закон Ома и приняв, что сопротивление катушки равно w * L, получится формула для участка электрической цепи, имеющая только индуктивную составляющую: U 0 = I 0 / w * L.

Таким образом, индуктивное сопротивление будет равно Xl = w * L, измеряется оно также в омах. Из полученного выражения видно, что чем больше частота сигнала, тем сильнее будет сопротивление прохождению тока.

Пример расчёта

Ёмкостное и индуктивное сопротивления относятся к реактивным, то есть таким, которые не потребляют мощности. Поэтому закон Ома для участка схемы с ёмкостью имеет вид I = U/Xc, где ток и напряжение обозначают действующие значения. Именно из-за этого конденсаторы используются в цепях для разделения не только постоянных и переменных токов, но и низкой и высокой частот. При этом чем ёмкость будет ниже, тем более высокой частоты сможет пройти ток. Если же последовательно с конденсатором включено активное сопротивление, то общий импеданс цепи находится как Z = (R 2 +Xc 2) ½ .

Практическое применение формул можно рассмотреть при решении задачи. Пусть имеется RC цепочка, состоящая из ёмкости C = 1 мкФ и сопротивления R = 5 кОм. Необходимо найти импеданс этого участка и ток цепи, если частота сигнала равна f = 50 Гц, а амплитуда U = 50 В.

В первую очередь понадобится определить сопротивление конденсатора в цепи переменного тока для заданной частоты. Подставив данные в формулу, получим, что для частоты 50 Гц сопротивление будет

Xc = 1/ (2*p*F*C) = 1/ (2*3,14*50*1* 10 −6) = 3,2 кОм.

По закону Ома можно найти ток: I = U /Xc = 50 /3200 = 15,7 мА.

Напряжение берётся изменяемым по закону синуса, поэтому: U (t) = U * sin (2*p*f*t) = 50*sin (314*t). Соответственно, ток будет I (t) = 15,7* 10 −3 + sin (314*t+p/2). Используя полученные результаты, можно построить график тока и напряжения при этой частоте. Общее сопротивление участка цепи находим как Z = (5000 2 +3200 2)½ = 5 936 Ом =5,9 кОм.

Таким образом, подсчитать полное сопротивление на любом участке цепи несложно. При этом можно воспользоваться и так называемыми онлайн-калькуляторами, куда вводят начальные данные, такие как частота и ёмкость, а все расчёты выполняются автоматически. Это удобно, так как нет необходимости запоминать формулы и вероятность ошибки при этом стремится к нулю.

В цепи постоянного тока конденсатор представляет собой бесконечно большее сопротивление: постоянный ток не проходит через диэлектрик, разделяющий обкладки конденсатора. Цепи переменного тока конденсатор не разрывает: попеременно заряжаясь и разряжаясь, он обеспечивает движение электрических зарядов, т. е. поддерживает переменный ток во внешней цепи. Исходя из электромагнитной теории Максвелла (см. § 105), можно сказать, что переменный ток проводимости замыкается внутри конденсатора током смещения. Таким образом, для переменного тока конденсатор представляет собой конечное сопротивление, называемое емкостным сопротивлением.

Опыт и теория показывают, что сила переменного тока в проводе существенно зависит от формы, которая придана этому проводу. Сила тока будет, наибольшей в случае прямого провода. Если же провод свернут в виде катушки с большим числом витков, то сила тока в нем значительно уменьшится: особенно резкое снижение тока происходит при введении в эту катушку ферромагнитного сердечника. Это означает, что для переменного тока проводник помимо омического сопротивления имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл индуктивного сопротивления состоит в следующем. Под влиянием изменений тока в проводнике, обладающем индуктивностью, возникает электродвижущая сила самоиндукции, препятствующая этим изменениям, т. е. уменьшающая амплитуду тока а следовательно, и эффективный ток Уменьшение эффективного тока в проводнике равносильно увеличению сопротивления проводника, т. е. равносильно появлению дополнительного (индуктивного) сопротивления.

Получим теперь выражения для емкостного и индуктивного сопротивлений.

1. Емкостное сопротивление. Пусть к конденсатору емкостью С (рис. 258) приложено переменное синусоидальное напряжение

Пренебрегая падением напряжения на малом омическом сопротивлении подводящих проводов, будем считать, что напряжение на обкладках конденсатора равно приложенному напряжению:

В любой момент времени заряд конденсатора равен произведению емкости конденсатора С на напряжение (см. § 83):

Если за малый промежуток времени заряд конденсатора изменяется на величину то это означает, что в подводящих проводах идет ток равный

Так как амплитуда этого тока

то окончательно получим

Запишем формулу (37) в виде

Последнее соотношение выражает закон Ома; величина играющая роль сопротивления, представляет собой сопротивление конденсатора для переменного тока, т. е. емкостное сопротивление

Таким образом, емкостное сопротивление обратно пропорционально круговой частоте тока и величине емкости. Физический смысл этой зависимости нетрудно понять. Чем больше емкость конденсатора и чем чаще изменяется направление тока (т. е. чем больше круговая частота тем больший заряд проходит за единицу времени через поперечное сечение подводящих проводов. Следовательно, ). Но сила тока и сопротивление обратно пропорциональны друг другу.

Следовательно, сопротивление

Рассчитаем емкостное сопротивление конденсатора емкостью включенного в цепь переменного тока частотой Гц:

При частоте Гц емкостное сопротивление того же самого конденсатора снизится приблизительно до 3 Ом.

Из сопоставления формул (36) и (38) видно, что изменения тока и напряжения совершаются в различных фазах: фаза тока на больше фазы напряжения. Это означает, что максимум тока наступает на четверть периода раньше, чем максимум напряжения (рис. 259).

Итак, на емксстном сопротивлении ток опережает напряжение на четверть периода (по времени) или на 90° (по фазе).

Физический смысл этого важного явления можно пояснить следующим образом, В начальный момент времени конденсатор еще не заряжен Поэтому даже очень малое внешнее напряжение легко перемещает заряды к пластинам конденсатора, создавая ток (см. рис. 258). По мере зарядки конденсатора напряжение на его обкладках растет, препятствуя дальнейшему притоку зарядов. В связи с этим ток в цепи уменьшается, несмотря на продолжающееся увеличение внешнего напряжения

Следовательно, в начальный момент времени ток имел максимальное значение ( Когда а вместе с ним и достигнут максимума (что произойдет через четверть периода), конденсатор полностью зарядится и ток в цепи прекратится Итак, в начальный момент времени ток в цепи максимален, а напряжение минимально и только еще начинает нарастать; через четверть периода напряжение достигает максимума, а ток уже успевает уменьшиться до нуля. Таким образом, действительно ток опережает напряжение на четверть периода.

2. Индуктивное сопротивление. Пусть через катушку самоиндукции с индуктивностью идет переменный синусоидальный ток

обусловленный переменным напряжением приложенным к катушке

Пренебрегая падением напряжения на малом омическом сопротивлении подводящих проводов и самой катушки (что вполне допустимо, если катушка изготовлена, например, из толстой медной проволоки), сбудем считать, что приложенное напряжение уравновешивается электродвижущей силой самоиндукции (равно ей по величине и противоположно по направлению):

Тогда, учитывая формулы (40) и (41), можем написать:

Так как амплитуда приложенного напряжения

то окончательно получим

Запишем формулу (42) в виде

Последнее соотношение выражает закон Ома; величина играющая роль сопротивления, представляет собой индуктивное сопротивление катушки самоиндукции:

Таким образом, индуктивное сопротивление пропорционально круговой частоте тока и величине индуктивности. Такого рода зависимость объясняется тем, что, как уже отмечалось в предыдущем параграфе, индуктивное сопротивление обусловлено действием электродвижущей силы самоиндукции, уменьшающей эффективный ток и, следовательно, увеличивающей сопротивление.

Величина же этой электродвижущей силы (и, следовательно, сопротивления) пропорциональна индуктивности катушки и скорости изменения тока, т. е. круговой частоте

Рассчитаем индуктивное сопротивление катушки с индуктивностью включенной в цепь переменного тока с частотой Гц:

При частоте Гц индуктивное сопротивление той же самой катушки возрастает до 31 400 Ом.

Подчеркнем, что омическое сопротивление катушки (с железным сердечником), имеющей индуктивность составляет обычно лишь несколько Ом.

Из сопоставления формул (40) и (43) видно, что изменения тока и напряжения совершаются в различных фазах, причем фаза тока на меньше фазы напряжения. Это означает, что максимум тока наступает на четверть периода (774) позже, чем максимум напряжения (рис. 261).

Итак, на индуктивном сопротивлении ток отстает от напряжения на четверть периода (по времени), или на 90° (по фазе). Сдвиг фаз обусловлен тормозящим действием электродвижущей силы самоиндукции: она препятствует как нарастанию, так и убыванию тока в цепи, поэтому максимум тока наступает позднее, чем максимум напряжения.

Если в цепь переменного тока последовательно включены индуктивное и емкостное сопротивления, то напряжение на индуктивном сопротивлении будет, очевидно, опережать напряжение на емкостном сопротивлении на полпериода (по времени), или на 180° (по фазе).

Как уже упоминалось, и емкостное и индуктивное сопротивления носят общее название реактивного сопротивления. На реактивном сопротивлении электроэнергия не расходуется; этим оно существенно отличается от активного сопротивления. Дело в том, что энергия, периодически потребляемая на создание электрического поля в конденсаторе (во время его зарядки), в том же количестве и с той же периодичностью возвращается в цепь при ликвидации этого поля (во время разрядки конденсатора). Точно так же энергия, периодически потребляемая на создание магнитного поля катушки самоиндукции (во время возрастания тока), в том же количестве и с той же периодичностью возвращается в цепь при ликвидации этого поля (во время убывания тока).

В технике переменного тока вместо реостатов (омического сопротивления), которые всегда нагреваются и бесполезно расходуют энергию, часто применяются дроссели (индуктивное сопротивление). Дроссель представляет собой катушку самоиндукции с железным сердечником. Оказывая значительное сопротивление переменному току, дроссель практически не нагревается и не расходует электроэнергию.

Содержание:

Одним из основных устройств в электронике и электротехнике является конденсатор. После замыкания электрической цепи начинается зарядка, после чего он сразу же становится источником тока и напряжения, в нем возникает электродвижущая сила - ЭДС. Одно из основных свойств конденсатора очень точно отражает формула емкостного сопротивления. Данное явление возникает в результате противодействия ЭДС, направленного против источника тока, используемого для зарядки. Источник тока может преодолеть емкостное сопротивление лишь путем существенных затрат его собственной энергии, которая становится энергией электрического поля конденсатора.

При разрядке устройства вся эта энергия возвращается обратно в цепь, превращаясь в энергию электрического тока. Поэтому емкостное сопротивление можно отнести к реактивному, не вызывающему безвозвратных энергетических потерь. Зарядка конденсатора происходит до того уровня напряжения, которое отдается источником питания.

Емкостное сопротивление конденсатора

Конденсаторы относятся к наиболее распространенным элементам, используемым в различных электронных схемах. Они разделяются на типы, обладающие характерными особенностями, параметрами и индивидуальными свойствами. Простейший конденсатор состоит из двух металлических пластин - электродов, разделенных слоем диэлектрика. На каждом из них имеется собственный вывод, через который осуществляется подключение к электрической цепи.

Существуют качества, присущие только конденсаторам. Например, они совершенно не пропускают через себя постоянный ток, хотя и заряжаются от него. После полной зарядки емкости, течение тока полностью прекращается, а внутреннее сопротивление устройства принимает бесконечно высокое значение.

Совершенно по-другому на конденсатор воздействует , вполне свободно протекающий через емкость. Подобное состояние объясняется постоянными процессами зарядки-разрядки элемента. В этом случае действует не только активное сопротивление проводников, но и емкостное сопротивление самого конденсатора, возникающее как раз в результате его постоянной зарядки и разрядки.

Электрические параметры и свойства конденсаторов могут отличаться, в зависимости от различных факторов. В первую очередь они зависят от размеров и формы изделия, а также от типа диэлектрика. В разных типах устройств может служить бумага, воздух, пластик, стекло, слюда, керамика и другие материалы. В электролитических конденсаторах используются алюминий-электролит и тантал-электролит, что обеспечивает им повышенную емкость.

Названия других элементов определяются материалами обычных диэлектриков. Поэтому они относятся к категории бумажных, керамических, стеклянных и т.д. Каждый из них, в соответствии с характеристиками и особенностями, применяется в конкретных электронных схемах, с разными параметрами электротока.

В связи с этим, применение керамических конденсаторов необходимо в тех цепях, где требуется фильтрация высокочастотных помех. Электролитические устройства, наоборот, фильтруют помехи при низких частотах. Если же соединить параллельно оба типа конденсаторов, получится универсальный фильтр, широко применяемый во всех схемах. Несмотря на то, что их емкость является фиксированной величиной, существуют устройства с переменной емкостью, которая достигается путем регулировок за счет изменение взаимного перекрытия пластин. Типичным примером служат конденсаторы для подстройки, используемые при регулировке радиоэлектронной аппаратуры.

Емкостное сопротивление в цепи переменного тока

При включении конденсатора в цепь постоянного тока, на протяжении короткого периода времени будет наблюдаться течение по цепи зарядного тока. По окончании зарядки, когда напряжение конденсатора будет соответствовать напряжению источника тока, кратковременное течение тока в цепи прекратится. Таким образом, полностью при постоянном токе будет своеобразным разрывом цепи или сопротивлением с бесконечно большим значением. При переменном токе конденсатор будет вести себя совершенно иначе. Его зарядка в такой цепи будет осуществляться поочередно в разных направлениях. Течение переменного тока в цепи в это время не прерывается.

Более подробное рассмотрение этого процесса указывает на нулевое значение напряжения в конденсаторе в момент его включения. После поступления к нему переменного напряжения сети начнется зарядка. В это время сетевое напряжение будет возрастать на протяжении первой четверти периода. По мере того как на обкладках накапливаются заряды, происходит увеличение напряжения самого конденсатора. После того как сетевое напряжение в конце первой четверти периода станет максимальным, зарядка прекращается и значение тока в цепи станет равным нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q является количеством электричества, протекающим по цепи в течение промежутка времени t. В соответствии с законами электростатики, количество электричества в устройстве составит: q = C x Uc = C x U. В этой формуле С будет емкостью конденсатора, U - напряжением сети, Uc - напряжением на обкладках элемента. В окончательном виде формула тока в цепи будет выглядеть следующим образом: i = C x (∆Uc/∆t) = C x (∆U/∆t).

При наступлении второй четверти периода произойдет уменьшение сетевого напряжения и начнется разрядка конденсатора. Ток в цепи изменит свое направление и будет течь в обратную сторону. В следующей половине периода направление сетевого напряжения изменится, наступит перезарядка элемента, а потом он вновь начнет разряжаться. Ток, присутствующий в цепи с конденсаторной емкостью, будет опережать по фазе напряжение на обкладках на 90 градусов.

Установлено что изменения тока конденсатора происходят со скоростью, находящейся в пропорциональной зависимости с угловой частотой ω. Поэтому в соответствии с уже известной формулой тока в цепи i = C x (∆U/∆t), аналогично получается, что действующее значение тока также будет представлять собой пропорцию между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

Далее уже совсем несложно установить значение емкостного сопротивления или реактивного сопротивления емкости: xc = 1/2π x f x C = 1/ ω x C. Данный параметр вычисляется, когда конденсаторная емкость включается в цепь переменного тока. Поэтому в соответствии с законом Ома в цепи переменного тока с включенным конденсатором, значение силы тока будет следующим: I = U/xc, а напряжение на обкладках составит: Uc = Ic x xc.

Часть сетевого напряжения, приходящаяся на конденсатор, получила название емкостного падения напряжения. Она известна также, как реактивная слагающая напряжения, обозначаемая символом Uc. Величина емкостного сопротивления хс, так же, как и значение индуктивного сопротивления xi напрямую связана с частотой переменного тока.