Формула ёмкостного сопротивления для цепи переменного тока. Формула емкостного сопротивления

06.09.2019

Рассмотрим электрическую цепь, содержащую резистор с активным сопротивлением R и конденсатор емкости C , подключенную к источнику переменной ЭДС (рис. 653).

рис. 653
 Конденсатор, подключенный к источнику постоянной ЭДС, полностью препятствует прохождения тока − за некоторый промежуток времени конденсатор заряжается, напряжение между его обкладками становится равным ЭДС источника, после чего ток в цепи прекращается. Если же конденсатор включен в цепь переменного тока, то ток в цепи не прекращается − фактически конденсатор периодически перезаряжается, заряды на его обкладках периодически изменяются как по величине, так и по знаку. Конечно, никакие заряды не протекают между обкладками, электрического тока в строгом определении между ними нет. Но, часто не вдаваясь в детали и не слишком корректно, говорят о токе через конденсатор, подразумевая под этим ток в цепи, к которой подключен конденсатор. Такой же терминологией будем пользоваться и мы.
 По-прежнему, для мгновенных значений справедлив закон Ома для полной цепи: ЭДС источника равна сумме напряжений на всех участках цепи. Применение этого закона к рассматриваемой цепи приводит к уравнению

здесь U R = IR − напряжение на резисторе, U C = q/C − напряжение на конденсаторе, q − электрический заряд на его обкладках. Уравнение (1) содержит три изменяющихся во времени величины (известную ЭДС, и пока неизвестные силу тока и заряд конденсатора), учитывая, что сила тока равна производной по времени от заряда конденсатора I = q / , это уравнение может быть точно решено. Так как ЭДС источника изменяется по гармоническому закону, то и напряжение на конденсаторе и сила тока в цепи также будут изменяться по гармоническим законам с той же частотой − это утверждение непосредственно следует и уравнения (1).
 Сначала установим связь между силой тока в цепи напряжением на конденсаторе. Зависимость напряжения от времени представим в виде

 Подчеркнем, что в данном случае напряжение на конденсаторе отличается от ЭДС источника, как будет видно из дальнейшего изложения, между этими функциями существует также и разность фаз. Поэтому при записи выражения (2), мы выбираем произвольную начальную фазу нулевой, при таком определении фазы ЭДС, напряжения на резисторе и силы тока отсчитываются относительно фазы колебаний напряжения на резисторе.
 Используя связь между напряжением и зарядом конденсатора, запишем выражение для зависимости последнего от времени

которое позволяет найти временную зависимость силы тока 1

на последнем шаге использована тригонометрическая формула приведения, для того, чтобы в явном виде выделить сдвиг фаз между током и напряжением.
 Итак, мы получили, что амплитудное значение силы тока через конденсатор связано с напряжением на нем соотношением

а также между колебаниями силы тока и напряжения существует разность фаз, равна Δφ = π/2 . Эти результаты суммированы на рис. 654, где также представлена векторная диаграмма колебаний силы тока и напряжения.

рис. 654
 Для того, чтобы сохранить форму закона Ома для участка цепи, вводят понятие емкостного сопротивления , которое определяется по формуле

 В этом случае соотношение (5) становится традиционным для закона Ома

 При изучении закона Ома для цепей постоянного тока, мы указывали, что электрическое поле заставляет упорядоченно двигаться заряженные частицы внутри проводника, то есть создает электрический ток. Иными словами, «напряжение является причиной возникновения тока». В данном случае ситуация обратная − благодаря электрическому току на обкладках возникают электрические заряды, создающие электрическое поле, поэтому можно сказать, что в данном случае «сила тока является причиной возникновения напряжения». Хотя, к данным рассуждениям следует относиться несколько скептически, так движение зарядов (электрический ток) и электрическое поле «подстраиваются» друг к другу, пока между ними не устанавливается определенное соотношение, соответствующее установившемуся режиму. Так при постоянном токе условием стационарности является условие постоянства тока. В цепи переменного тока в установившемся режиме согласуются не только амплитудные значения токов и напряжений, но разность фаз между ними. Иными словами, обсуждаемый здесь причинно-следственный вопрос подобен вопросу о том, «что появилось раньше, курица или яйцо?»
 Так как между током и напряжением существует сдвиг фаз равный Δφ = π/2 , то средняя мощность тока через конденсатор равна нулю. Действительно,

 Иными словами, потерь энергии при протекании тока через конденсатор в среднем не происходит. Конечно, конденсатор влияет на протекание тока в цепи. В ходе зарядки конденсатора энергия электрического тока превращается в энергию электростатического поля между обкладками конденсатора, а при разрядке конденсатор отдает в цепь накопленную энергию, при этом, средняя энергия, потребляемая конденсатором, остается равной нулю. Поэтому емкостное сопротивление называют реактивным.
 Графики зависимости силы тока, напряжения и мгновенной мощности тока в рассматриваемой цепи показаны на рис. 655.


рис. 655
 Заливкой выделены промежутки времени, в течении которых конденсатор накапливает энергия − в этих промежутках сила тока и напряжение имеют один знак.
 Уменьшение емкостного сопротивления при возрастании частоты очевидна − чем выше частота тока, тем меньший заряд на конденсаторе успевает накопиться на обкладках конденсатора за половину периода (пока ток идет в одном направлении), тем меньше напряжение на нем, тем меньше он препятствует прохождению тока в цепи. Аналогичные рассуждения справедливы и для объяснения зависимости этого сопротивления от емкости конденсатора.
 Вернемся к рассмотрению цепи, показанной на рис. 653, которая описывается уравнением (1). Пренебрегая внутренним сопротивлением источника, запишем явное выражение для напряжения, создаваемого источником

Здесь U o − амплитудное значение напряжения, равное амплитудному значению ЭДС источника. Кроме того, теперь мы считаем начальную фазу ЭДС источника равной нулю (ранее за нуль мы принимали фазу колебаний напряжения на резисторе).
 Используя это уравнение и связь между силой тока и зарядом конденсатора, найдем явное выражение для зависимости силы тока в цепи от времени. Представим эту зависимость в виде

где I o и φ − подлежащие определению амплитудное значение силы тока и разности фаз между колебаниями тока и напряжения источника. Легко заметить, что в этом случае заряд конденсатора изменяется по закону

 Для проверки этого соотношения достаточно вычислить производную от приведенной функции и убедится, что она совпадает с функцией (9).
 Подставим эти выражения в уравнение (8)

и преобразуем тригонометрическую сумму


где через φ 1 обозначена величина, удовлетворяющая условию

 Теперь видно, что для того, чтобы функция (9) являлась решение уравнения (8), необходимо, чтобы ее параметры принимали значения:
 Амплитуда

искомая разность фаз связана с появившимся параметром φ 1 соотношением φ + φ 1 = 0 , то есть

 Таким образом, найдена явная зависимость силы тока от времени.
 В принципе таким методом, можно рассчитать любую цепь переменного тока. Но такой подход требует громоздких тригонометрических и алгебраических преобразований. К тем же результатам можно прийти гораздо проще, используя формализм векторных диаграмм. Покажем, как метод векторных диаграмм применяется к рассматриваемой цепи. Самое важное при использовании этого метода − построение векторной диаграммы, изображающей колебания токов и напряжений на различных участках цепи.
 Так как конденсатор и резистор соединены последовательно, то силы токов через них одинаковы в любой момент времени. Изобразим силу тока в виде произвольно направленного вектора (например, горизонтально 2 , как на рис. 656).

рис. 656
 Далее изобразим векторы колебаний напряжения на резисторе U R , который параллелен вектору колебаний тока (так как сдвиг фаз между этими колебаниями равен нулю) и напряжения на конденсаторе U C , который перпендикулярен вектору колебаний тока (так как сдвиг фаз меду ними равен π/2 − см. рис. 657).

рис. 657
 Сумма этих напряжений равна напряжению источника, поэтому вектор суммы векторов, изображающих колебания U R и U C , изображает колебания напряжения источника U(t) .
 Если же Вы настаиваете, что фаза суммарного напряжения равна нулю (то есть вектор, изображающий U должен быть расположен горизонтально), то поверните построенную диаграмму (рис. 657). Таким догматизмом далее мы заниматься не будем!
 Из построенной диаграммы следует, что амплитудные значения рассматриваемых напряжений связаны соотношением (следующим из теоремы Пифагора)

 Выражая амплитуды напряжений через амплитуду силы тока с помощью известных соотношений

и

получаем элементарное уравнение для определения амплитуды силы тока

из которого находим амплитуду силы тока в цепи

что, естественно, совпадает с выражением (11), полученным ранее громоздким алгебраическим методом. Векторная диаграмма также позволяет легко определить сдвиг фаз между колебаниями силы тока и напряжения источника

что также совпадает с полученным ранее.
 Как видно, метод векторных диаграмм позволяет полностью рассчитать характеристики цепей переменного тока, гораздо проще, чем рассмотренным выше методом аналитического решения соответствующего уравнения.
 Следует подчеркнуть, что физическая сущность обоих методов одна и та же, она выражается уравнением (10), различие только в математическом языке, на котором решается это уравнение.
 Рассчитаем, среднюю мощность, развиваемую источником. Мгновенное значение этой мощности равно произведению ЭДС на силу тока P = EI . Подставляя явные значения для этих величин и проводя усреднение, получим


 Обратите внимание, что полученное выражение для средней мощности является общим для переменного тока: средняя мощность переменного тока равна половине произведения амплитуд силы тока, напряжения и косинуса разности фаз между ними. Если использовать не амплитудные, а действующие значения силы тока и напряжения, то формула (16) приобретает вид

средняя мощность переменного электрического тока равна произведению действующих значений силы тока, напряжения и косинуса разности фаз между ними . Часто косинус сдвига фаз между силой тока и напряжением называют коэффициентом мощности .
 В тех случаях, когда по электрической линии требуется передать максимальную мощность, необходимо стремиться, чтобы сдвиг фаз между током и напряжением был минимальным (оптимально − нулевым), так как в этом случае передаваемая мощность будет максимальна.
 Применим полученную формулу для расчета мощности тока в рассматриваемой цепи, для чего выразим косинус сдвига фаз из выражения (12) и подставим в формулу (17), в результате чего получим


 При выводе этого соотношения использована формула (14) для амплитуды силы тока в цепи.  Полученный результат очевиден − средняя мощность, развиваемая источником, равна средней мощности теплоты, выделяющейся на резисторе. Этот вывод еще раз подтверждает, что на конденсаторе не происходит потерь энергии электрического тока.
 Расчет мощности тока также можно проводить с помощью построенной векторной диаграммы, из которой следует, что произведение амплитуды напряжения источника на косинус сдвига фаз равно амплитуде напряжения на резисторе

откуда сразу следует формула (18).
 Так как амплитудные и действующие значения сил токов и напряжений пропорциональны друг другу, то длины векторов векторных диаграмм можно считать пропорциональными действующим (а не амплитудным) значениям. При таком определении среднее произведение двух гармонических функций равно скалярному произведению векторов, изображающих эти функции.

1 Здесь мы используем математическую операцию вычисления производной функции. Если же вас она еще пугает − воспользуйтесь аналогией с механическими гармоническими колебаниями: аналогом заряда является координата, тогда аналогом силы тока служит мгновенная скорость.
2 Мы постоянно подчеркиваем, что начальная фаза отдельного колебания, ни в каких процессах не существенна, она может быть изменена простым переносом начала отсчета времени. Физический смысл имеют разности фаз между различными величинами, изменяющимися по гармоническим законам. Здесь мы как бы, очередной раз изменяем «точку отчета» фазы − при горизонтальном расположении вектора колебаний тока мы неявно принимаем начальную фазу колебаний силы тока равной нулю.

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента — , который, как говорят, обладает активным сопротивлением . Еще иногда его называют омическим . Как нам говорит вики-словарь, «активный — это деятельный, энергичный, проявляющий инициативу». Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора ? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится


А также :


С помощью него мы будем смотреть напряжение и силу тока .

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта .

Кто не помнит — напомню. Имеем обыкновенный резистор:

Что будет, если через него прогнать электрический ток ?


На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах


И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи : I=U/R . Отсюда U=IR . Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока;-)

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому, наша схема примет вот такой вид:

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма — это напряжение с генератора U ген , а желтая осциллограмма — это напряжение с шунта U ш , в нашем случае — сила тока. Смотрим, что у нас получилось:

Частота 28 Герц:


Частота 285 Герц:


Частота 30 Килогерц:


Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:



Как мы видим, сила тока полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно , то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Смотрим осциллограммы:


Как вы видите, конденсатор обладает сопротивлением, так как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T — это


Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:


Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока


Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.


100 Герц


200 Герц


Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

где

Х с — реактивное сопротивление конденсатора, Ом

F — частота, Гц

С — емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:


Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Видите разницу? На катушке индуктивности ток отстает от напряжения на 90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током, ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.


Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Все с точностью наоборот! Можно даже сказать, что катушка — это полная противоположность конденсатору;-)

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц


34 Килогерца


17 Килогерц


10 Килогерц


Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

где

Х L — сопротивление катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность

где

Х L — реактивное сопротивление катушки, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

L — индуктивность, Генри

Почему не сгорает первичная обмотка трансформатора

Ну и теперь главный вопрос, который часто задают в личке: «Почему когда я меряю первичную обмотку трансформатора, у меня выдает от 10 Ом и больше в зависимости от трансформатора. На трансформаторных сварочных аппаратах вообще пару Ом! Ведь первичная обмотка трансформатора цепляется к 220 Вольтам! Почему не сгорает обмотка, ведь сопротивление обмотки всего то десятки или сотни Ом, и может случится !

А ведь и вправду, мощность равна как напряжение помноженное на ток P=IU . То есть через пару секунд от первичной обмотки трансформатора должен остаться уголек.

Дело все в том, что парные обмотки трансформатора представляют из себя катушку индуктивности с какой-то индуктивностью. Получается, что реальное сопротивление обмотки будет выражаться через формулу

поставьте сюда индуктивность, которая в трансформаторах составляет от единицы Генри и получим что-то типа от 300 и более Ом. Но это еще цветочки, ягодки впереди;-)

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или П/2 .


Мощность в цепи с реактивными радиоэлементами

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность — это сила тока помноженное на напряжение, то есть P=IU . Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2 . Здесь ток со знаком «плюс», а напряжение со знаком «минус». В итоге плюс на минус дает минус. Получается мощность со знаком «минус». А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Не знаю, какое было у вас детство, но я когда был салабоном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем «плющить» пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно — это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо — это уже другая история для полноценной статьи.

В третий промежуток времени t3 и ток и напряжение у нас со знаком «минус». Минус на минус — это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4 , снова ее отдает, так как плюс на минус дает минус.

В результате за весь период у нас суммарное потребление энергии равно чему?


Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:


где

R L — это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи. Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L — собственно сама индуктивность катушки

С — межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:


где

r — сопротивление диэлектрика и корпуса между обкладками

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (ESL) — эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Сопротивление конденсатора вычисляется по формуле:

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.



Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит .

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4-6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в .

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω - круговая частота, равная произведению 2 πf , С-емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула для цепи с емкостью имеет вид I = U/Xc , где I и U - действующие значения тока и напряжения; Хс - емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Переменный ток - это ток, периодически меняющийся по величине и направлению. Рассмотрим принцип действия генератора переменного тока на примере вращения рамки из проводника в однородном магнитном поле (рис. 6.1).

Пусть рамка имеет площадь S и первоначально расположена в однородном магнитном поле так, что нормаль к плоскости рамки составляет угол a=0 с направлением вектора индукции .

При вращении рамки с угловой скоростью w угол a изменяется по закону , a магнитный поток Ф , пронизывающий рамку, - по закону: . Так как , где Т - период, то .

Изменения магнитного потока возбуждают в рамке ЭДС индук­ции, согласно закону электромагнитной индукции, равную производной от потока по времени (строчными буквами мы будем обозначать мгновенные значения):

Последнее выражение можно переписать в виде: , где - амплитуда ЭДС индукции.

С помощью контактных колец и скользящих по ним щеток концы рамки соединяют с электрической цепью, в которой под действием ЭДС индукции, изменяющейся со временем по гар­моническому закону, возникнет переменный ток такой же частоты. Напряжение на выходных зажимах генератора несколько меньше ЭДС (на величину напряжения на внутреннем сопротивлении - см. раздел 2.2): и также изменяется по гармоническому закону и=U m sin(wt) . Мгновенное значение силы тока в цепи будет равно: , где I m , - амплитуда колебаний тока, j - разность фаз между колебаниями тока и напряжения. Амплитуда тока и разность фаз зависят от характера сопротивления цепи.

Активное, емкостное, индуктивное сопротивление

Активным называется сопротивление, в котором выделяется энергия тока. Таким сопротивлением обладает обычный проводник – резистор. Пусть через резистор (рис. 6.2), подключенный к генератору переменного тока (изображен символом ), протекает ток, изменяющийся по закону . Применим к участку цепи 1,2 закон Ома для мгновенных значений тока и напряжения в виде: . Получаем выражение: , из которого следует, что колебания напряжения на активном сопротивлении совпадают с колебаниями тока по фазе (рис.6.2), так как j = 0. Выражение , стоящее перед знаком синуса, есть амплитуда напряжения . Отсюда следует закон Ома для амплитудных значений:

Мощность, выделяемая в резисторе, равна: . Это мгновенная мощность, зависящая от времени. Она положительна, поскольку в нее входит . Среднее значение равно ½, поэтому средняя мощность (за период) выразится как:

.

Действующим (эффективным) значением силы тока называют величину постоянного тока, который на активном сопротивлении за то же время выделяет такое же количество теплоты, как и данный переменный ток. Действующее значение силы тока связано с амплитудным значением соотношением: . Аналогично определяется действующее значение напряжения: . Использование действующих значений приводит полученные выше формулы для мощности к виду (2.17) - такому же, как для постоянного тока. Отметим, что в законе Ома для амплитуд (6.1) можно использовать и действующие значения тока и напряжения (естественно, одновременно).

Рассмотрим конденсатор в цепи переменного тока (рис. 6.3). Постоянный ток не протекает через конденсатор, поскольку тот фактически разрывает цепь постоянного тока. Однако при возникновении колебаний напряжения на конденсаторе происходит его перезарядка и в подводящих проводах возникают колебания тока. Пусть заряд на конденсаторе меняется по гармоническому закону: .

Сила тока является производной заряда по времени:

Следовательно, колебания силы токаопережают колебания напряжения на конденсаторе на p/2 . Амплитуда силы тока равна . Если ввести емкостное сопротивление , то из последнего выражения можно получить закон Ома для амплитуд:

Если вместо амплитудных значений использовать действующие, то получим закон Ома для действующих значений:

Индуктивность в цепи переменного тока (рис. 6.4) тоже влияет на величину тока, так как возникает ЭДС самоиндукции. Если активным сопротивлением катушки можно пренебречь, то разность потенциалов на катушке равна . Если ток в цепи меняется по закону , то

Колебания силы тока в катушке отстают от колебаний напряжения на p/2. Амплитуда напряжения . Амплитудные (и действующие) значения тока и напряжения также связаны между собой законом Ома:

где - индуктивное сопротивление .

Мгновенное значение мощности переменного тока равно произведению мгновенных значений силы тока и напряжения:

Мгновенная мощность колеблется с удвоенной частотой, принимая как положительные, так и отрицательные значения. В эти моменты (когда мощность отрицательна) цепь отдает мощность внешнему источнику. Практический интерес представляет среднее за период значение мощности:

, (6.4)

или через действующие значения тока и напряжения:

Косинус угла сдвига фаз между током и напряжением называют коэффициентом мощности .

Если в электрической цепи не совершается работа, средняя мощность выделяется в активном сопротивлении в виде тепла. Чем меньше cosj, тем при большем токе выделится заданная мощность. Большие значения тока приводят к бесполезной потере мощности в соединительных проводах, поэтому на практике стараются увеличить коэффициент мощности нагрузки.

При сдвиге фаз j=p/2 (как в конденсаторе или катушке индуктивности без активного сопротивления) средняя выделяемая мощность равна нулю. Поэтому сопротивления X С, X L называются реактивными .

В цепь переменного тока, под действием непрерывно изменяющегося напряжения происходят изменения этого тока. В свою очередь, эти изменения вызывают генерацию магнитного поля, которое периодический возрастает или убывает. Под его влиянием в катушке индуцируется встречное напряжение, препятствующее изменениям тока. Таким образом, протекание тока происходит под непрерывным противодействием, получившим название индуктивного сопротивления.

Данная величина связана напрямую с частотой приложенного напряжения (f) и значением индуктивности (L). Формула индуктивного сопротивления будет выглядеть следующим образом: XL = 2πfL . Прямая пропорциональная зависимость, в случае необходимости, позволяет путем преобразования основной формулы вычислить частоту или значение индуктивности.

От чего зависит индуктивное сопротивление

Под действием переменного тока, проходящего по проводнику, вокруг этого проводника образуется переменное магнитное поле. Действие этого поля приводит к наведению в проводнике электродвижущей силы обратного направления, известной еще как ЭДС самоиндукции. Противодействие или сопротивление ЭДС переменному току получило название реактивного индуктивного сопротивления.

Данная величина зависит от многих факторов. В первую очередь на нее оказывает влияние как значение тока не только в собственном проводнике, но и в соседних проводах. То есть увеличение сопротивления и потока рассеяния происходит по мере увеличения расстояния между фазными проводами. Одновременно снижается воздействие соседних проводов.

Существует такое понятие, как погонное индуктивное сопротивление, которое вычисляется по формуле: X0 = ω x (4,61g x (Dср/Rпр) + 0,5μ) x 10-4 = X0’ + X0’’, в которой ω является угловой частотой, μ - магнитной проницаемостью, Dср - среднегеометрическим расстоянием между фазами ЛЭП, а Rпр - радиусом провода.

Величины X0’ и X0’’ представляют собой две составные части погонного индуктивного сопротивления. Первая из них X0’ представляет собой внешнее индуктивное сопротивление, зависящее только от внешнего магнитного поля и размеров ЛЭП. Другая величина - X0’’ является внутренним сопротивлением, зависящим от внутреннего магнитного поля и магнитной проницаемости μ.

На линиях электропередачи высокого напряжения от 330 кВ и более, проходящие фазы расщепляются на несколько отдельных проводов. Например, при напряжении 330 кВ фаза разделяется на два провода, что позволяет снизить индуктивное сопротивление примерно на 19%. Три провода используются при напряжении 500 кВ - индуктивное сопротивление удается снизить на 28%. Напряжение 750 кВ допускает разделение фаз на 4-6 проводников, что способствует снижению сопротивления примерно на 33%.

Погонное индуктивное сопротивление имеет величину в зависимости от радиуса провода и совершенно не зависит от сечения. Если радиус проводника будет увеличиваться, то значение погонного индуктивного сопротивления будет соответственно уменьшаться. Существенное влияние оказывают проводники, расположенные рядом.

Индуктивное сопротивление в цепи переменного тока

Одной из основных характеристик электрических цепей является сопротивление, которое может быть активным и реактивным. Типичными представителями активного сопротивления считаются обычные потребители - лампы, накаливания, резисторы, нагревательные спирали и другие элементы, в которых электрический .

К реактивному относятся индуктивное и емкостное сопротивления, находящиеся в промежуточных преобразователях электроэнергии - индуктивных катушках и конденсаторах. Эти параметры в обязательном порядке учитываются при выполнении различных расчетов. Например, для определения общего сопротивления участка цепи, . Сложение осуществляется геометрическим, то есть, векторным способом, путем построения прямоугольного треугольника. В нем оба катета являются обоими сопротивлениями, а гипотенуза - полным. Длина каждого катета соответствует действующему значению того или иного сопротивления.

В качестве примера можно рассмотреть характер индуктивного сопротивления в простейшей цепи переменного тока. В нее входит источник питания, обладающий ЭДС (Е), резистор, как активная составляющая (R) и катушка, обладающая индуктивностью (L). Возникновение индуктивного сопротивления происходит под действием ЭДС самоиндукции (Еси) в катушечных витках. Индуктивное сопротивление увеличивается в соответствии с ростом индуктивности цепи и значения тока, протекающего по контуру.

Таким образом, закон Ома для такой цепи переменного тока будет выглядеть в виде формулы: Е + Еси = I x R. Далее с помощью этой же формулы можно определить значение самоиндукции: Еси = -L x Iпр, где Iпр является производной тока от времени. Знак «минус» означает противоположное направление Еси по отношению к изменяющемуся значению тока. Поскольку в цепи переменного тока подобные изменения происходят постоянно, наблюдается существенное противодействие или сопротивление со стороны Еси. При постоянном токе данная зависимость отсутствует и все попытки подключения катушки в такую цепь привели бы к обычному короткому замыканию.

Для преодоления ЭДС самоиндукции, на выводах катушки источником питания должна создаваться такая разность потенциалов, чтобы она могла хотя-бы минимально компенсировать сопротивление Еси (Uкат = -Еси). Поскольку увеличение переменного тока в цепи приводит к возрастанию магнитного поля, происходит генерация вихревого поля, которое и вызывает рост противоположного тока в индуктивности. В результате, между током и напряжением происходит смещение фаз.

Индуктивное сопротивление катушки

Катушка индуктивности относится к категории пассивных компонентов, используемых в электронных схемах. Она способна сохранять электроэнергию, превращая ее в магнитное поле. В этом и состоит ее основная функция. Катушка индуктивности по своим характеристиками и свойствам напоминает конденсатор, сохраняющий энергию в виде электрического поля.

Индуктивность, измеряемая в Генри, заключается в появлении вокруг проводника с током магнитного поля. В свою очередь, связано с электродвижущей силой, которая противодействует приложенному переменному напряжению и силе тока в катушке. Данное свойство и есть индуктивное сопротивление, находящееся в противофазе с емкостным сопротивлением конденсатора. Индуктивность катушки возможно повысить за счет увеличения количества витков.

Для того чтобы выяснить, чему равно индуктивное сопротивление катушки, следует помнить, что оно, в первую очередь, противодействует переменному току. Как показывает практика, каждая индуктивная катушка сама по себе имеет определенное сопротивление.

Прохождение переменного синусоидального тока через катушку, приводит к возникновению переменного синусоидального напряжения или ЭДС. В результате, возникает индуктивное сопротивление, определяемое формулой: XL = ωL = 2πFL, в которой ω является угловой частотой, F - частотой в герцах, L - индуктивностью в генри.