Год вступления в продажу первой интегральной схемы. Микросхемы

14.04.2019

ИНТЕГРАЛЬНАЯ СХЕМА
(ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.
См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ . Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками - схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник - это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.
См. также ТРАНЗИСТОР . Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см2 базы (см. ниже).

Производство. Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).
Биполярный транзистор. Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p. Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p-типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n-типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора - в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n-типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n- и p-типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему. См. также ТРАНЗИСТОР .
МОП-транзистор. Наибольшее распространение получила МОП (металл-окисел-полупроводник) - структура, состоящая из двух близко расположенных областей кремния n-типа, реализованных на подложке p-типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n-типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n-типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n-типа соединяет исток и сток; в других случаях канал может быть индуцированным - создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p-типа превращается в слой n-типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.



После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.
Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.
Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.
Компьютерные запоминающие устройства. В электронике термин "память" обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ). У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 210 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно. Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.
См. также
ОРГТЕХНИКА И КАНЦЕЛЯРСКОЕ ОБОРУДОВАНИЕ ;
КОМПЬЮТЕР ;
ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ ;
ИНФОРМАЦИИ НАКОПЛЕНИЕ И ПОИСК .
ЛИТЕРАТУРА
Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковых приборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М., 1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ИНТЕГРАЛЬНАЯ СХЕМА" в других словарях:

    Твердотельное устройство, содержащее группу приборов и их соединения (связи), выполненное на единой пластине (подложке). В И. с. интегрируются пассивные элементы (ёмкости, сопротивления) и активные элементы, действие к рых основано на разл. физ.… … Физическая энциклопедия

    - (ИС, интегральная микросхема, микросхема), микроминиатюрное устройство с высокой плотностью упаковки элементов (диодов, транзисторов, резисторов, конденсаторов и др.), неразрывно связанных (объединенных) между собой конструктивно, технологически… … Современная энциклопедия

    - (ИС интегральная микросхема, микросхема), микроминиатюрное электронное устройство, элементы которого неразрывно связаны (объединены) конструктивно, технологически и электрически. ИС подразделяются: по способу объединения (интеграции) элементов на … Большой Энциклопедический словарь

    интегральная схема - (МСЭ Т Q.1741). Тематики электросвязь, основные понятия EN integrated circuitIC … Справочник технического переводчика

    Запрос «БИС» перенаправляется сюда; см. также другие значения. Современные интегральные микросхемы, предназначенные для поверхностного монтажа Интегральная (микро)схема (… Википедия

    - (ИС). интегральная микросхема (ИМС), микросхема, микроминиатюрное электронное устройство с высокой плотностью упаковки связанных между собой (как правило, электрически) элементов (диодов, транзисторов, резисторов, конденсаторов и др.),… … Большой энциклопедический политехнический словарь

    - (ИС, интегральная микросхема, микросхема), микроминиатюрное электронное устройство, элементы которого изготовлены в едином технологическом цикле и неразрывно связаны (объединены) конструктивно и электрически. Интегральные схемы подразделяются: по … Энциклопедический словарь

Интегральная схема (микросхема) – миниатюрное электронное устройство, состоящее из большого количества радиоэлектронных элементов, конструктивно и электрически связанных между собой. Обычно интегральная схема создается для выполнения конкретной функции. По сути, микросхема объединяет в себе какую-то электронную схему, где все элементы (транзисторы , диоды , резисторы, конденсаторы) и электрические связи между ними конструктивно выполнены на одном кристалле. Поскольку размеры отдельных компонентов очень малы (микро- и нанометры), то на одном кристалле при современном развитии технологий, можно поместить более миллиона электронных компонентов.

У понятия интегральная схема есть несколько синонимов: микросхема, микрочип, чип. Несмотря на некоторую особенность определения этих терминов и разницу между ними, в обиходе все они применяются для обозначения интегральной схемы. В современных электронных устройствах самых различных сфер применения, начиная от бытовых приборов и заканчивая сложными медицинскими и научными электроприборами, сложно найти прибор, в котором бы не применялись интегральные схемы. Иногда одна микросхема выполняет практически все функции в электронном приборе.

Интегральные схемы делятся на группы по нескольким критериям. По степени интеграции – количеству элементов, размещенных на кристалле. По типу обрабатываемого сигнала: цифровые, аналоговые и аналого-цифровые. По технологии их производства и используемых материалов – полупроводниковые, пленочные и т.д.

На сегодняшний день уровень развития технологий при производстве интегральных схем находится на очень высоком уровне. Повышения степени интеграции, улучшение параметров интегральных схем тормозится не технологическими ограничениями, а процессами, происходящими на молекулярном уровне в используемых для производства материалах (обычно полупроводниках). Поэтому исследования производителей и разработчиков микрочипов ведутся в направлении поиска новых материалов, которые смогли бы заменить

Элементную базу всех цифровых устройств (ЦУ) [Digital Devices ] составляют интегральные схемы (ИС) [Integrated Circuit (IC )], которые также называются микросхемами (МС) или чипами (микрочипами ) [Chip (Microchip )].

Интегральные схемы – это электронные приборы, выполненные на тонких полупроводниковых пластинах, содержащие электронные элементы и выполненные внутри корпуса определённого типа.

ИС со времени изобретения в США в 1959 г. постоянно совершен­ствуются и усложняются. Быстрый прогресс в области изготовления интегрируемых схем привел к резкому росту объёма их производства и снижению стоимости. В результате использования МС стало возможным не только в сложных специализированных устройствах (таких, как ЭВМ), но и в разнообразных измерительных приборах, управляющих и контролирующих системах. Круг потребителей МС непрерывно расширяется.

Характеристикой сложности ИС является уровень интеграции , оцениваемый либо числом базовых логических элементов (ЛЭ) [Logic (al ) Element /Component /Gate /Unit ], либо числом транзисторов , которые размещены на кристалле.

В зависимости от уровня интеграции ИС делятся на несколько категорий: МИС, СИС, БИС, СБИС, УБИС (соответственно малые, средние, большие, сверхболь­шие, ультрабольшие ИС).

МИС [SSI = Small /Standard Scale Integration – малая/стандартная степень (уровень) интеграции] – это МС с очень небольшим числом элементов (несколько десятков). МИС реализуют простейшие логические преобразования и обладают очень большой уни­версальностью – даже с помощью одного типа ЛЭ (например, И-НЕ) можно построить любое ЦУ.

СИС [MSI = Medium Scale Integration – средняя степень (уровень) интеграции] – это МС со степенью интеграции от 300 до нескольких тысяч транзисторов (обычно до 3000). В виде СИС выпускаются в готовом виде такие схемы, как малоразрядные регистры, счётчики, дешиф­раторы, сумматоры и т. п. Номенклатура СИС должна быть более широкой и разнообразной, т. к. их универсальность по сравнению с МИС снижается. В развитых сериях стандартных ИС насчитываются сотни типов СИС.

БИС [LSI = Large Scale Integration – большая (высокая) степень (уровень) интеграции] – МС с числом логических вентилей от 1000 до 5000 (в некоторых классификациях – от 500 до 10000). Первые БИС были разработаны в начале 70-х годов прошлого века.

СБИС [VLSI = Very Large-Scale Integration – очень большая (высокая) степень (уровень) интеграции или GSI = Giant Scale Integration – гигантская (сверхбольшая, сверхвысокая) степень (уровень) интеграции] – это МС, содержащие на кристалле от 100000 до 10 млн. (VLSI ) или более 10 млн. (GSI ) транзисторов или логических вентилей.


УБИС [ULSI = Ultra Large Scale Integration – ультрабольшая (ультравысокая) степень (уровень) интеграции] – это МС, в которых число транзисторов на кристалле составляет от 10 млн. до 1 млрд. К таким схемам можно отнести современные процессоры.

Приведённые выше данные о МС разной степени интеграции для наглядности сведены в табл. 1.

Содержание статьи

ИНТЕГРАЛЬНАЯ СХЕМА (ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или «чипе») полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками – схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения.

Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник – это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.

Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см 2 базы (см. ниже ).

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему.

Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м 2 . На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Биполярный транзистор.

Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p . Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p -типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n -типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора – в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n -типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n - и p -типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему.

МОП-транзистор.

Наибольшее распространение получила МОП (металл-окисел-полупроводник) – структура, состоящая из двух близко расположенных областей кремния n -типа, реализованных на подложке p -типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n -типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n -типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n -типа соединяет исток и сток; в других случаях канал может быть индуцированным – создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p -типа превращается в слой n -типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже ). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.

После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.

Надежность.

Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет – один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Микропроцессоры и миникомпьютеры.

Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров – малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.

Компьютерные запоминающие устройства.

В электронике термин «память» обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ).

У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 2 10 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно.

Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992