Графитовая батарея. Графитовая пена позволит создавать более эффективные электроды для аккумуляторов

10.04.2019

Почти тридцатилетний поиск путей совершенствования алюминий-ионного аккумулятора приближается к своему финалу. Первый аккумулятор с алюминиевым анодом, способный быстро заряжается, при этом недорогой и долговечный, разработали ученые из Стэнфордского университета.

Исследователи уверенно заявляют, что их детище вполне может стать безопасной альтернативой литий-ионным аккумуляторам, всюду применяющимся сегодня, а также щелочным батарейкам, которые экологически вредны.

Не лишним будет вспомнить, что литий-ионные аккумуляторы порой возгораются. Профессор химии Хонгжи Дай уверен, что его новая батарея не загорится, даже если просверлить её насквозь. Коллеги профессора Дайя охарактеризовали новые аккумуляторы как «сверхбыстро перезаряжаемые алюминий-ионные аккумуляторы».

В силу низкой стоимости, пожаробезопасности, и способности создавать значительную электроемкость, алюминий уже давно привлек внимание исследователей, однако многие годы ушли на создание коммерчески жизнеспособной алюминий-ионной батареи, которая могла бы производить достаточное напряжение даже после многих циклов заряда-разряда.

Ученым нужно было преодолеть многие препятствия, в числе которых: распад материала катода, низкое напряжение разряда ячейки (около 0,55 вольт), потеря емкости и недостаточный жизненный цикл (менее 100 циклов), быстрая потеря мощности (от 26 до 85 процентов спустя 100 циклов).

Теперь же ученые представили аккумуляторную батарею на основе алюминия с высокой стабильностью, в который они использовали металлический анод из алюминия в паре с катодом из трехмерной графитовой пены. До этого было перепробовано много разных материалов для катода, и решение в пользу графита было найдено совершенно случайно. Ученые из группы Хонгжи Дайя определили несколько типов графитового материала, которые показывают весьма высокую производительность.

В своих экспериментальных образцах, команда Стэнфордского университета поместила алюминиевый анод, графитовый катод, и безопасный жидкий ионный электролит, состоящий в основном из растворов солей, в гибкий полимерный пакет.

Профессор Дай и его группа записали видео, где показали, что даже если просверлить оболочку, их аккумуляторы все равно будут продолжать работать некоторое время и не загорятся.

Важным достоинством новых аккумуляторов является их ультрабыстрая зарядка. Обычно литий-ионные аккумуляторы смартфонов подзаряжаются в течение нескольких часов, в то время, как прототип новой технологии демонстрирует беспрецедентную скорость зарядки до одной минуты.

Долговечность новых батарей особенно поражает. Ресурс батареи составляет более 7500 циклов заряда-разряда, причем без потери мощности. Авторы сообщают, что это первая модель алюминий-ионных батарей, с ультрабыстрой зарядкой, и стабильностью в тысячи циклов. А типичный литий-ионный аккумулятор выдерживает лишь 1000 циклов.

Примечательной особенностью алюминиевой батареи является ее гибкость. Аккумулятор можно сгибать, что говорит о потенциальной возможности его применения в гибких гаджетах. Кроме всего прочего, алюминий значительно дешевле лития.

Перспективным видится использование таких батарей для хранения возобновляемой энергии с целью ее резервирования для последующего обеспечения электрических сетей, поскольку по последним данным ученых, алюминиевую батарею можно заряжать десятки тысяч раз.

Вопреки массово используемым элементам АА и ААА напряжением 1,5 вольт, алюминий-ионный аккумулятор генерирует напряжение порядка 2 вольт. Это наивысший из показателей, которых кто-либо добился с алюминием, причем в перспективе этот показатель будет улучшен, заявляют разработчики новых аккумуляторов.

Достигнута плотность хранения энергии 40 Вт-час на килограмм, а у этот показатель достигает 206 Вт-час на килограмм. Однако улучшение катодного материала, уверен профессор Хонгжи Дай, в конце концов приведет как к увеличению напряжения, так и к повышению плотности хранения энергии в аккумуляторах алюминий-ионной технологии. В любом случае, ряд преимуществ перед литий-ионной технологией уже достигнут. Здесь и дешевизна, сочетающаяся с безопасностью, и высокоскоростная зарядка, и гибкость, и длительный срок службы.

Сегодня смартфоны, независимо от производителя и моделей, имеют одну и ту же повторяющуюся проблему – автономность, время работы устройства от одной подзарядки. Если сегодня одним из самых популярных и самых автономных смартфонов является Galaxy Note, то время его работы было бы несколько лет назад просто смешным. Раньше телефон можно было зарядить и целую неделю не думать о том, что нужно поискать розетку и зарядное устройство. Теперь инженеры и исследователи находятся в поисках более современного аккумулятора или новых технологий.

Группа исследователей из Университета Вандербильта (штат Теннесси) смогла создать прототип революционной батареи. Представьте себе возможность заряжать смартфон всего за несколько секунд и при этом он потом сможет проработать несколько недель.

Но нам придется отказаться от нынешнего типа батарей, которые могут оказаться в ближайшее будущее атавизмом, ведь в будущем батареи будут представлять собой супер-конденсаторы. Работать они будут на кремниевом чипе с графеном, который за счет своей пористой структуры будет собирать на себе заряд. Если попытаться найти аналог, то представьте себе пористый сыр, а сам материал имеет огромное преимущество для хранения электроэнергии.

Прототип батареи был создан путем объединения оксида графена с гидразином в воде с использованием ультразвука. Полученное вещество потом нагревается до 140 градусов по Цельсию и затем в течение 5 часов выдерживают под давлением 300кг/см2. В конце концов, получается чрезвычайно пористый графен. Всего 1 грамм такого вещества имеет площадь поверхности больше, чем баскетбольная площадка. К примеру, если заряжать всего 3 секунды грамм такого материала, то заряда хватит на горение светодиода в течение 5 минут.

С такими возможностями в будущем вопрос подзарядки уже будет полностью исключён. Также есть и другая вторичная положительная черта – смартфоны могут быть еще тоньше и легче. Батарея будущего с использованием новой технологии сможет отработать до 5000 циклов, что хватит примерно на 100 лет, а также она будет гибкой и сам материал еще биоразлагаемый.

Очевидно, что с такими свойствами графен станет очень популярным материалом для производства смартфонов, но его наверняка станут использовать и в других сферах – автомобили, компьютеры и т.д.

Многие считают, что будущее автомобилестроения именно за электрокарами. За границей существуют законопроекты, по которым часть ежегодно продаваемых автомобилей должны либо быть гибридами, либо работать на электричестве, поэтому деньги вкладываются не только в рекламу таких авто, но и в постройку заправок.

Однако многие люди все-таки ждут, когда электрокары станут настоящими соперниками традиционным автомобилям. А может, это будет, когда время зарядки уменьшится, а время автономной работы увеличится? Возможно, в этом человечеству помогут графеновые аккумуляторы.

Что такое графен?

Революционный материал нового поколения, самый легкий и прочный, самый электропроводящий - все это о графене, который является не чем иным, как двумерной углеродной решеткой толщиной в один атом. Создатели графена, Константин Новоселов и получили Нобелевскую премию. Обычно между открытием и началом практического использования этого открытия на практике проходит продолжительное время, иногда даже десятки лет, однако графен такая участь не постигла. Возможно, это связано с тем, что Новоселов и Гейм не утаили технологию его производства.

Они не только рассказали о ней всему миру, но и показали: есть видео на YouTube, где Константин Новоселов подробно рассказывает об этой технологии. Поэтому, возможно, скоро мы сможем даже делать графеновые аккумуляторы своими руками.

Разработки

Попытки применения графена были практически во всех областях науки. Его пробовали в солнечных батареях, наушниках, корпусах и даже пытались лечить рак. Однако на данный момент одна из самых перспективных и нужных человечеству вещей - это графеновый аккумулятор. Напомним, что при таком неоспоримом преимуществе, как дешевое и экологичное топливо, электромобили имеют серьезный недостаток - относительно небольшую максимальную скорость и запас хода не более трехсот километров.

Решение проблемы века

Графеновый аккумулятор работает по тому же принципу, что и свинцовые с щелочным или кислотным электролитом. Этим принципом является электрохимическая реакция. По устройству графеновый аккумулятор схож с литиево-ионным с твердым электролитом, в котором катодом является угольный кокс, близкий по составу к чистому углероду.

Однако уже сейчас среди инженеров, разрабатывающих графеновые аккумуляторы, есть два принципиально разных направления. В США ученые предложили делать катод из пластин графена и кремния, перемежающихся между собой, а анод - из классического кобальта лития. Российские инженеры нашли другое решение. Токсичная и дорогая литиевая соль может быть заменена более экологичным и дешевым оксидом магния. Емкость аккумулятора увеличивается в любом случае за счет повышения скорости прохождения ионов от одного электрода к другому. Это достигается вследствие того, что графен обладает высоким показателем электрической проницаемости и способностью к накоплению электрического заряда.

Мнения ученых относительно инноваций разделяются: российские инженеры утверждают, что графеновые аккумуляторы имеют емкость в два раза больше, чем литий-ионные, а вот их зарубежные коллеги утверждают, что в десять.

Графеновые аккумуляторы запущены в массовое производство в 2015 году. К примеру, этим занимается испанская компания Graphenano. По словам производителя, использование этих аккумуляторов в электрокарах на логистических площадках показывает реальные практические возможности батареи с графеновым катодом. Для полной зарядки ему требуется всего восемь минут. Максимальную длину пробега также способны увеличить графеновые аккумуляторы. Зарядка на 1000 км вместо трехсот - вот что хочет предложить потребителю корпорация Graphenano.

Испания и Китай

С Graphenano сотрудничает китайская компания Chint, которая купила 10 % акций испанской корпорации за 18 миллионов евро. На совместные средства будет осуществляться постройка завода с двадцатью производственными линиями. Проект уже получил около 30 миллионов инвестиций, которые будут вложены в установку оборудования и наем сотрудников. По первоначальному плану завод должен был начать выпускать около 80 миллионов батарей. На начальном этапе основным рынком должен стать Китай, а затем планировалось начало поставок в другие страны.

На втором этапе компания Chint готова инвестировать 350 миллионов евро для постройки еще одного завода, на котором будет около пяти тысяч сотрудников. Такие цифры неудивительны, если учесть, что суммарный доход будет составлять около трех миллиардов евро. К тому же Китай, известный своими проблемами с экологией, будет обеспечен экологичным и дешевым "топливом". Однако, как мы можем наблюдать, кроме громких заявлений, свет не увидел ничего, только тестовые модели. Хотя корпорация Volkswagen тоже объявила о своем намерении сотрудничать с Graphenano.

Ожидания и реальность

На дворе 2017 год, а это значит, что Graphenano занимаются "массовым" производством аккумуляторов уже два года, однако встретить электромобиль на дороге - большая редкость не только для России. Все характеристики и данные, обнародованные корпорацией, довольно неопределенны. В целом они никак не выходят за рамки общепринятых теоретических представлений о том, какими параметрами должен обладать графеновый аккумулятор для электромобиля.

К тому же до сих пор все, что было представлено как потребителям, так и инвесторам, - это только компьютерные модели, никаких настоящих прототипов. Добавляет проблем и то, что графен - материал, который очень дорог в производстве. Несмотря на громкие заявления ученых о том, как его можно будет "печатать на коленке", на данном этапе снизить удается только стоимость некоторых компонентов.

Графен и мировой рынок

Сторонники всяческих теорий заговоров скажут, что никому не выгодно появление такого автомобиля, потому что тогда нефть уйдет на задний план, а значит, сократятся и доходы от ее добычи. Однако, скорее всего, инженеры столкнулись с какими-то проблемами, но не хотят это афишировать. Слово "графен" сейчас на слуху, многие считают его поэтому, возможно, ученым не хочется портить его славу.

Проблемы в разработках

Однако дело может быть и в том, что материал действительно инновационный, поэтому подхода требует соответствующего. Возможно, аккумуляторы с использованием графена должны быть принципиально отличными от традиционных литий-ионных или литий-полимерных.

Существует и еще одна теория. Корпорация Graphenano заявила, что новые аккумуляторы заряжаются всего за восемь минут. Специалисты подтверждают, что это действительно возможно, только мощность источника питания должна быть не менее одного мегаватта, что возможно в тестовых условиях на заводе, но никак не в домашних. Постройка достаточного количества заправок с такой мощностью будет стоить огромных денег, цена одной подзарядки будет довольно высока, поэтому графеновый аккумулятор для авто не принесет никакой выгоды.

Практика показывает, что революционные технологии достаточно долго встраиваются в мировой рынок. Необходимо провести множество тестов, чтобы убедиться в безопасности продукта, поэтому выход новых технологических устройств порой затягивается на долгие годы.

Александр Пехов – разработчик газовых аккумуляторов и топливных элементов снял видео про изготовление хлор-алюминиевого аккумулятора. На идею такой батареи автор натолкнулся случайно ходе экспериментов со сменой различных электролитов. Мысль пришла к нему в процессе зарядки на основе поваренной соли. Образуется хлор и едкий натр. Предположительно, натрий является минусом. Если залить вместо поваренной соли раствор едкого натрия, с хлором. Да, возможно что-то получится.Так и был найден способ изготовления хлор алюминиевого аккумулятора.

Первая экспериментальная модель собрана на скорую руку, но показала себя неплохо в работе. светится уже в течении двух недель.

Что такое хлор алюминиевая батарея.
Изучая опыт других экспериментатор в интернете, мастер обнаружил разработку такой батареи, запатентованную в семидесятых годах в США.

Конструкция и работа устройства. Работает на простом домашнем отбеливателем, белизне. На таком электролите можно сделать замечательные аккумуляторы.
Алюминий в таком растворе не разрушается, за две недели образуется только кристаллики. При этом происходит заряд разряд.

Стакан, графитовый электрод, на него намотана обычная бумага. Спиралька из крученой проволоки. Блокинг-генератор в коробке из киндера. 1 элемента не потянет светодиод, поэтому нужен такой генератор.

Как собирается батарея. Заливаем белизну в стакан. Ждём, пока пропитается. Ждем, когда загорается светодиод. Это происходит практически сразу. Светодиод на 3 вольта. Какую вещь можно сделать с раствором поваренной соли. Но срок его работы будет не длительном. Отбеливатель кардинально превосходит по времени работы.

Посмотрим, сколько вольт выдает устройство. 1,5 вольта. Только 170 миллиампер.
Мастер создал аккумулятор внушительных размеров. На ночь оставляет его включенным, утром в течении 5 минут заряжают. После зарядки устройства как-бы набирает обороты. Увеличивается вольтаж. Светит и без просадки целую ночь.

Длительные эксперименты пока не проводились. Необходимо узнать, насколько только хватит зарядки, сколько нужно алюминия, раствора.

Рассмотрим, как собрана одна ячейка аккумулятора. Конечно, если взять алюминиевый и графитовые пластины большой площади, уменьшив при этом расстояние между ними, то есть поставить мембрану, залить электролитом, увеличился бы ток и получился бы замечательный мощный аккумулятор. Если алюминия расходуется, то это будет механический перезаряжаемые устройство. Если не расходуется, то это будет просто а к б.

Как собрал элементы на скорую руку?

В наличии пластмассовая трубка. Один конец запаял пробкой от пластиковой бутылки. Для герметизации силикон. На другой стороне обрезанная горлышко. Сердцевина представляет из себя графитовый стержень, на него намотана бумага. Проклеена, чтобы не размазывается. Завернуто, чтобы электролита шел только через бумагу. Сверху скручена алюминиевая пружинка. Можно одеть трубку. В идеале желательно собрать из пластин. Пока неизвестно, будет ли разрушаться алюминий. Но эксперименты, проведённых течение 5 дней показал, что алюминий сохранил свою целостную структуру. Проверка показала, что не было никаких окислившихся или разъеденных белизной мест.

Из нескольких таких пластмассовых трубок, начиненных графитом и алюминием, залитых раствором, собрана одна большая аккумуляторная батарейка. Выдает устройство в пределах 8 вольт, просадка на 3 вольта. Только небольшой. Соединение последовательное для увеличения вольтажа.

Мнение одного из подписчиков канала: это не аккумулятор, это просто, батарейка. Если тратится 0.2 ампера. 1 Ампер – это 1 кулон/секунду, 1 кулон – это – 1,6 х 10 ¹ ⁹ электронов. Т. о. За 1 секунду будет расходоваться 0.2*1,6 х 10 ¹ ⁹ = 3.2 х 10 ¹⁸ электронов. Алюминий трех валентный, т.е. в нем возможно окислить три электрона. Т.е. число атомов алюминия, окисляемые таким образом за 1 секунду = 3.2 х 10 ¹⁸/3 =1.1 х 10 ¹⁸ атомов алюминия. Вес 1 атома алюминия = 4.48 х 10 ⁻² ³ грамма. Перемножаем вес одного окисленного Аl на число окислений в секунду 1.1 х 10 ¹⁸ * 4.48 х 10 ⁻² ³ = 0.00005 грамма Al в секунду. Вывод – проволока весом 5 грамм (проволока 26 см 3 мм в диаметре) и таким током будет окисляться 5 / 0.00005 = 100000 секунд или 27 часов или около суток.

Вторая часть

Продолжение работы ведущего канала “Александр Пехов” над этим устройством. Осознан светильник, который выдает свет на хлорке, алюминии и отбеливателе. Три дня будет светить стабильно, потом нужно менять раствор, а алюминия хватит очень надолго при нагрузке одними светодиодами. В комментариях под видео автор указал, что раствор обновлять следует 1 раз в сутки.

Исследовательская группа Максима Коваленко базируется в ETH Zurich и в Лаборатории тонких пленок и фотоэлектрических систем Empa. Амбициозная цель команды - создать батарею из наиболее распространенных элементов земной коры, таких как магний или алюминий, что позволило бы быстро увеличить производство аккумуляторов простым и недорогим способом. К тому же эти материалы безопасны в использовании, даже если анод изготовлен из чистого металла.

В традиционных батареях электрический ток возникает за счет катионов металлов, перемещающихся между анодом и катодом и обратно. В качестве альтернативы можно использовать большие, но легкие органические анионы. Однако это порождает ряд вопросов: в какой среде должны перемещаться эти легкие анионы и какой материал подойдет для изготовления катода? В литий-ионных батареях катод изготовлен из оксида металла, который может легко поглощать небольшие катионы лития во время зарядки. Однако большие органические ионы слишком велики и имеют заряд, противоположный заряду катионов лития.

Чтобы решить эту проблему, команда Коваленко поставила принцип литий-ионной батареи с ног на голову. В обычных литий-ионных батареях анод выполнен из графита, слои которого в заряженном состоянии содержат ионы лития. Напротив, в батарее Коваленко графит используется как катод, а крупные анионы осаждаются между слоями графена. Анод, в свою очередь, сделан из металла.

Empa / ETH Zürich

Сотрудник лаборатории Константин Кравчик обнаружил, что в качестве доступного материала для катодов может использоваться отработанный в ходе производства стали графит, так называемая графитовая спель. Так же хорошо подходит естественный графит, поставляемый в виде хлопьев и имеющий открытую молекулярную структуру, куда могут легче проникать крупные анионы. В то же время мелкозернистый графит, обычно используемый в литий-ионных батареях, не подходит для батареи Коваленко: в таком графите слои смяты, и внутрь способны проникать лишь небольшие литиевые катионы.

Батарея с катодом, изготовленным из графитовой спели или необработанных графитовых хлопьев, может стать очень рентабельной. И, как показали первые эксперименты, долговечной: лабораторный прототип в течение нескольких месяцев пережил тысячи циклов зарядки и разрядки. По словам членов команды, аккумулятор на основе хлорида алюминия и графита может эксплуатироваться в течение десятилетий в повседневном бытовом использовании. В настоящее время исследовательская группа работает над увеличением напряжения батареи и плотности энергии.