История развития вычислительных средств. История создания и развития вычислительной техники

05.02.2019

Технические средства реализации информационных процессов

История развития ВТ имеет несколько периодов: механический, электромеханический и электронный.

Для проведения вычислений в Древнем Вавилоне (около 3 тыс. лет до н.э.), а затем в Древней Греции и Древнем Риме (IV век до н.э.) использовали счетные доски под названием абак . Доска абака представляла собой глиняную пластину с углублениями, в которые раскладывали камушки. В дальнейшем углубления были заменены проволокой с нанизанными косточками (прообраз счет).

Организация и программирование соревнований. Какие люди участвуют и что такое эта расы? Мы организовали первых хаканов в Русе, и они стали праздником программистов. Эти соревнования - интенсивный программный спринт, целью которого является разработка прототипов программных продуктов с функциональными возможностями всего за 24 или 48 часов. В конце Хаката все участники представляют свои проекты, а победители получают отличные награды.

Как правило, эти соревнования привлекают начинающих программистов, которые принимают это событие как вызов и возможность продемонстрировать свои навыки программирования. Регулярными участниками являются студенты, студенты, фрилансеры, ищущие работу и ИТ-специалисты. Например, в Хасково и Шумене такие хаканы были организованы впервые. Мы хотели продолжить инициативу Русса и вывести ее на национальный уровень.

В 17 веке в Европе ученые-математики (В. Шиккард (1623 г.) и Блез Паскаль (1642 г.), Г. Лейбниц (1671 г.)) изобретают механические машины , способные автоматически выполнять арифметические действия (прообраз арифмометра).

В первой трети 19 века английский математик Ч. Бэббидж разработал проект программируемого автоматического вычислительного механического устройства, известного как «аналитическая машина» Бэббиджа. Меценат проекта графиня Ада Августа Лавлейс была программистом этой «аналитической машины».

Меня впечатляет настойчивость и тот факт, что вы безупречно работаете над своей миссией, хотя все сложно. Сколько вам лет? И разве вам не удалось перебросить все компьютеры в Дунай и отправиться в Сан-Франциско? Потому что чрезвычайно важно построить эту среду нормальных, работающих, честных и ответственных людей.

Для этих людей управление бизнесом - это выражение личной свободы. Они имеют общие ценности и амбиции - обмен знаниями, взаимную поддержку в бизнесе и достижение успеха, создавая реальную ценность с помощью впечатляющих продуктов.


Причины пребывания в Русе также связаны с моей семьей - сложнее поселиться на новом месте. Можете ли вы разработать свое видение того, что делать дальше на государственном уровне?

Г. Холлерит в 1888 г. создал электромеханическую машину, которая состояла из перфоратора, сортировщика перфокарт и суммирующей машины, названной табулятором. Впервые эта машина использовалась в США при обработке результатов переписи населения.

Скорость вычислений в механических и электромеханических машинах была ограничена, поэтому в 1930-х гг. начались разработки электронных вычислительных машин (ЭВМ), элементной базой которых стала трехэлектродная вакуумная лампа.

Если вы спросите меня, этот бум больше не бум. Да, если у вас есть цифровая профессия, вы можете работать в любой точке мира. Мои впечатления состоят в том, что молодые люди отправляются в Софию не только из-за оплаты, но и из-за окружающей среды, интересных проектов, новых технологий и возможностей для развития. В Софии вы, скорее всего, встретите интересную команду профессионалов и многому научитесь у своих коллег.

Что делать на государственном уровне? Давайте вместе решим, в каких областях мы будем специализироваться, каковы вертикальные вертикали и какие рыночные ниши мы будем мировыми лидерами. Затем сосредоточьте ресурсы и назначьте профессиональных менеджеров с долгосрочным горизонтом и свободой действий в этих технологических центрах. В то время контроль над денежными потоками, проходящими через эти места, представляет особый интерес. Превращение предпринимателей в новых героев - это люди, которые работают очень тяжело, преодолевают невозможные трудности, создают реальную добавленную стоимость, новые рабочие места и конкурентоспособную растущую экономику.

В 1946 г. в университете г. Пенсильвания (США) была построена электронная вычислительная машина, получившая название UNIAK. Машина весила 30 т, занимала площадь 200 кв.м., содержала 18000 ламп. Программирование велось путем установки переключателей и коммутации разъемов. В результате на создание и выполнение даже самой простой программы требовалось очень много времени. Сложности в программировании на UNIAK натолкнули Джона фон Неймана, бывшего консультантом проекта, на разработку новых принципов построения архитектуры ЭВМ.

Они и их истории должны быть центральными в средствах массовой информации. Остановите зависимость от европейских программ. Невозможно разработать эффективный и конкурентоспособный бизнес, если значительная часть средств поступает в виде грантов, субсидий и других финансовых инструментов из национальных или европейских фондов. Либо вы очень хороши, и люди покупают ваши продукты, либо вы обанкротитесь и начните что-то новое.

Что касается этого бума в секторе ИТ, то был очень высокий рост из-за низкой базы как уровня оплаты труда, количества занятых людей и компаний в отрасли. Мы увидим медленный рост, консолидацию и переориентацию. Следующим шагом в эволюции станет бум в цифровых бизнесах и больше стартапов с отличными продуктами на международных рынках. Какова эта технология и может ли Болгария играть ведущую роль в развитии сетевых технологий? Что мы должны делать и может ли правительство каким-либо образом поощрять эту деятельность?

В СССР первая ЭВМ была создана в 1948 г.

Историю развития ЭВМ принято рассматривать по поколениям.

Первое поколение (1946-1960) – это время становления архитектуры машин фон-неймановского типа, построенных на электронных лампах с быстродействием 10-20 тыс.оп/с. ЭВМ первого поколения были громоздкими и ненадежными. программные средства были представлены машинными языками.

Это метод программирования, который позволяет хранить и управлять данными через сеть компьютеров, разбросанных по всему миру, которые управляются онлайн-сообществами. Члены сети совместно используют, проверяют и проверяют информацию через свои компьютеры без необходимости центрального сервера или базы данных. Ни один пользователь, участник сети блокчин, не контролирует информацию или не использует ее самостоятельно.

Все участники должны вместе проверять точность данных до их добавления в совместный репозиторий. Это революционное изменение, поскольку оно уменьшит потребность в центральных центрах доверия или посредниках в транзакциях между людьми. Люди смогут более непосредственно взаимодействовать, делиться ценностями и проверять истинность самих фактов.

В 1950 г. в СССР была запущена в эксплуатацию МЭСМ (малая электронная счетная машина), а еще через два года появилась большая электронно-счетная машина (10 тыс.оп/с).


Второе поколение (1960 – 1964) – это машины, построенные на транзисторах с быстродействием до сотен тысяч операций в секунду. Для организации внешней памяти стали использоваться магнитные барабаны, а для основной памяти – магнитные сердечники. В это же время были разработаны алгоритмические языки высокого уровня, как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины. Первой ЭВМ с отличительными чертами второго поколения была IBM 704.

В настоящее время Болгария имеет большой шанс претендовать на руководящую роль в реализации этой технологии для решения ряда проблем, предоставления услуг и управления государственными данными. Каждый человек имеет безопасный общий доступ к тем же данным и ограничивает возможности злоупотреблений и коррупции.

Это соответствует всем последним нормам европейских институтов - защите данных, хранению и монетизации информации, полной отслеживаемости продуктов питания и ингредиентов, борьбе с мошенничеством и контрафактной продукцией. Необходимо точно определить, в каких областях блок-цепочка может найти приложение и решить конкретные проблемы с реальной стоимостью. Его дизайн содержал пять ключевых характеристик современных компьютеров.

Третье поколение (1964 – 1970) характеризуются тем, что вместо транзисторов стали использоваться интегральные схемы (ИС) и полупроводниковая память.

Большинство машин, относящихся к третьему поколению по своим особенностям, входили в состав серии (семейства) машин «System/360» (аналог ЕС ЭВМ), выпущенной фирмой IBM в середине 60-х гг. Машины этой серии имели единую архитектуру и были программно совместимыми.

  • Устройство ввода Хранение для номеров, ожидающих обработки.
  • Калькулятор процессора или номера.
  • Единица для управления задачей и последовательность ее вычислений.
  • Устройство вывода.
Американский, Герман Холлерит, разработал первое электрически управляемое устройство. В нем использовались перфокарт и металлические стержни, которые проходили через отверстия, чтобы закрыть электрическую цепь и, следовательно, заставлять счетчик двигаться вперед.

Эта машина была в основном небольшим калькулятором. Это была огромная машина с огромным потреблением энергии и двумя серьезными недостатками. Техническое обслуживание было чрезвычайно затруднительным, так как пробирки ломались регулярно и их пришлось заменить, а также возникла большая проблема с перегревом. Однако самым важным ограничением было то, что каждый раз, когда нужно было выполнить новую задачу, машина должна быть переделана. Другими словами, программирование проводилось с помощью паяльника.

В этот время в СССР появился первый суперкомпьютер БЭСМ 6, который имел производительность 1 млн. оп/с.

Четвертое поколение (1970 – 1980) – это машины, построенные на больших интегральных схемах (БИС). Такие схемы содержат до нескольких десятков тысяч элементов в кристалле. ЭВМ этого поколения выполняют десятки и сотни миллионов операций в секунду.

Это позволило программам читать в компьютер и, таким образом, рождало возраст компьютеров общего назначения. Раньше было довольно популярно обращаться к компьютерам как к одному из нескольких «поколений» компьютера. Первое поколение: это поколение часто описывается как начало доставки первого коммерческого компьютера бизнес-клиенту. Основной определяющей особенностью компьютеров первого поколения было то, что в качестве внутренних компьютерных компонентов использовались вакуумные трубки. Вакуумные трубки обычно имеют длину около 5-10 сантиметров, а их большое количество в компьютерах приводит к огромным и чрезвычайно дорогостоящим машинам, которые часто ломаются.

В 1971 г. появился первый в мире четырехразрядный микропроцессор Intel 4004, содержащий 2300 транзисторов на кристалле, а еще через год - восьмиразрядный процессор Intel 8008. Создание микропроцессоров послужило основой для разработки персонального компьютера (ПК), т.е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на работу одного пользователя.

Транзисторы были способны выполнять многие из тех же задач, что и вакуумные трубки, но были лишь малой величиной. Первый транзисторный компьютер, изготовленный на транзисторах, был не только меньшим, что позволило уменьшить размер компьютера, но они были быстрее, надежнее и потребляли меньше электроэнергии.

Другим главным улучшением этого периода было развитие компьютерных языков. Языки ассемблера или символические языки позволяли программистам указывать инструкции в словах, которые затем были переведены в форму, которую машины могли понять. В этот период также появились языки более высокого уровня. В то время как языки ассемблера имели взаимно однозначное соответствие между их символами и действительными функциями машины, команды языка более высокого уровня часто представляют собой сложные последовательности машинных кодов.

1973 г. фирма Xerox создала первый прототип персонального компьютера.

1974 г. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800, для которого в конце 1975 г. Пол Ален и Билл Гейтс написали интерпретатор языка Бэйсик.

В августе 1981 г. фирма IBM выпустила компьютер IBM PC. В качестве основного микропроцессора использовали новейший тогда 16-разрядный микропроцессор Intel 8088. ПК был построен в соответствии с принципами открытой архитектуры. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами различных производителей. Через один – два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-разрядных компьютеров.

Два языка более высокого уровня, разработанные в этот период, все еще используются сегодня, хотя и в гораздо более развитой форме. Опять же, одним из основных преимуществ был размер, при этом компьютеры стали более мощными и в то же время намного меньше и дешевле. Таким образом, компьютеры стали доступными для гораздо большей аудитории. Дополнительным преимуществом меньшего размера является то, что электрические сигналы имеют гораздо более короткие расстояния для движения, и поэтому скорость компьютеров увеличивается.

Еще одна особенность этого периода заключается в том, что компьютерное программное обеспечение стало намного более мощным и гибким, и в первый раз более чем одна программа могла совместно использовать ресурсы компьютера одновременно. Четвертое поколение: граница между третьим и четвертым поколениями не совсем четкая. Это развитие снова увеличило производительность компьютера, уменьшив размер и стоимость компьютера. Примерно в это же время первый полный универсальный микропроцессор стал доступен на одном чипе.

В настоящее время существует множество разновидностей ЭВМ, которые классифицируются: по элементной базе, принципам действия, стоимости, размерам, производительности, назначению и областям применения.

СуперЭВМ и большие ЭВМ (мэйнфреймы) – применяются для проведения сложных научных расчетов или для обработки больших потоков информации на крупных предприятиях. Они, как правило, являются главными компьютерами корпоративных вычислительных сетей.

Полные компьютерные центральные процессоры теперь могут быть встроены в один чип. В этот период появились языки четвертого поколения. Такие языки являются еще одним удалением от компьютерного оборудования тем, что они используют язык так же, как естественный язык.

Это был интересный план по двум причинам. Во-первых, совсем не совсем ясно, что такое четвертое поколение, или даже закончилось ли третье поколение. Во-вторых, это была попытка определить поколение компьютеров, прежде чем они появились. Цель заключалась в том, чтобы создавать машины, которые способны выполнять задачи подобным образом, людям, способны учиться и способны взаимодействовать с людьми на естественном языке и предпочтительно использовать как речевой вход, так и речевой выход. Такие цели, очевидно, интересны лингвистам и ученым-речам, поскольку естественный язык и обработка речи являются ключевыми компонентами определения.

Мини - и микро ЭВМ применяются для создания систем управления крупных и средних предприятий.

Персональные компьютеры предназначены для конечного пользователя. В свою очередь ПК подразделяют на настольные (desktop), портативные (notebook) и карманные (palmtop) модели.

История создания и развития средств вычислительной техники

Как вы, возможно, догадались, эта цель еще не полностью реализована, хотя значительный прогресс был достигнут в отношении различных аспектов этих целей. До недавнего времени большинство компьютеров были серийными компьютерами. На таких компьютерах был один процессорный чип, содержащий один процессор. Параллельные вычисления основаны на идее, что если одновременно несколько процессоров обрабатываются несколькими процессорами, тогда программа сможет работать быстрее, чем на одном процессоре. Наличие нескольких процессоров не обязательно означает, что параллельные вычисления будут работать автоматически.

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Еще во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т. д. Рост объемов этих расчетов приводил даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владешие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов. Так, в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак. Абак называют также римскими счетами. Эти счеты представляли собой костяную, каменную или бронзовую доску с углублениями – полосами. В углублениях находились костяшки, и счет осуществлялся передвижением костяшек.

В странах Древнего Востока существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пятьи по две костяшки. Счет осуществлялся единицами и пятерками. В России для арифметических вычеслений применялись русские счеты, появившиеся в 16 веке, но кое – где счеты можно встретить и сегодня.

Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка, её автором был английский математик Эдмонд Гантер. Логарифмической линейке суждена была долгая жизнь: от 17 века до нашего времени.

Однако ни абак, ни счеты, ни логарифмическая линейка не означают механизации процесса вычислений. В 17 веке выдающимся французким ученым Блезом Паскалем было изобретено принципиально новое счетное устройство – арифметическая машина. В основу её работы Б. Паскаль положил извесную до него идею выполнения вычислений с помощью металических шестеренок. В 1645 г. им была построена первая суммирующая машина, а в 1675 г. Паскалю удается создать настоящую машину, выполняющую все четыре арифметических действия. Почти одновременно с Паскалем в 1660 – 1680 гг. Сконструировал счетную машину великий немецкий математик Готфирд Лейбниц.

Счетные машины Паскаля и Лейбница стали прообразом арифмометра. Первый арифмометр для четырех арифметических действий, нашедший арифметическое применение, удалось построить только через сто лет, 1790 г., немецкому часовому мастеру Гану. Впоследствии устройство арифмометра совершенствовалось многими механиками из Англии, Франции, Италии, России, Швейцарии. Арифмометры применялись для выполнения сложных вычислений при проектировании и строительстве кораблей. Мостов, зданий, при проведении финансовых операций. Но производительность работы на арифмометрах оставалась невысокой, настоятельным требованием времени была автоматизация вычислений.

В 1833 г. анлийский ученый Чарлз Бэбидж, занимавшийся составлением таблиц для навигации, разработал проект «аналитической машины». По его замыслу, эта машина должна была стать гигантским арифмометром с программным управлением. В машине Бэбиджа предусмотрены были также арифметические и запоминающие устройства. Его машина стала прообразом будущих компьютеров. Но в ней использовались далеко не совершенные узлы, например, для запоминания разрядов десятичного числа в ней применялись зубчатые колеса. Осуществить свой проект Бэбиджу не удалось из – за недостаточного развития техники, и «аналитическая машина» на время была забыта.

Лишь спустя 100 лет машина Бэбиджа привлекла внимкние инженеров. В конце 30 – х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. К. Уцзе создал машину Z3, полностью управляемую с помощью программы.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы IBM построил мощную по тем временам машину «Марк – 1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле.

Поколения ЭВМ

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколене ЭВМ характеризуется констуктивными особенностями и возможнотями. Приступим к описанию каждого из поколений, однако нужно помнить, что деление ЭВМ на поколения является условным, поскольку в одно и то же время выпускались машины разного уровня.

Первое поколение

Резкий скачек в развитии вычислительной техники произошел в 40 – х годах, после Второй мировой войны, и связан он был с появлением качественно новых электронных устройств – электронно – вакуумных ламп, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены болеепроизводительными и надежными электронными вычислительными машинами (ЭВМ). Применение ЭВМ значительно расширило круг решаемых задач. Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления двежения планет, баллистические расчеты и т.д.

Первая ЭВМ создавалась в 1943 – 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток – исполняемая программа хранилась не в памяти машины, а набаралась сложным образом с помощью внешних перемычек.

В 1945 г. извесный математик и физик – теоретик фон Нейман сформулировал общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина должна была управляться программой с последовательным выполнением команд, а сама программа – храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В1951 году в СССР была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С. А. Лебедева.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 – х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Однако при этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято называть ЭВМ первого поколения

Действительно, ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентилятогров. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

Второе поколение

Разработчики ЭВМ всегда следовали за прогрессом в электронной технике. Когда в середине 50 – х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники.

Полуповодниковые приборы (транзисторы, диоды) были, во – первых, значительно компактнее своих ламповых предшественников. Во – вторых они обладали значительно большим сроком службы. В – третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири». Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. в Институте кибернетики Академии Наук УССР. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий «Урал», «М – 20» и «Минск». Но рекордной среди отечественных машин этого поколния и одной из лучших в мире была БЭСМ – 6 («большая электронно – счетная машина», 6 – я модель), которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ – 6 была на два – три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежем наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

Третье поколение

Очередная смена поколений ЭВМ произошла в конце 60 – х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральлые схемы. Интегральная схема (микросхема) – это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам – электронщикам.

В третьем поколении появились крупные серии ЭВМ, различающиеся своей производительностью и назначением. Это семейство больших и средних машин IBM360/370, разработанных в США. В Советском Союзе и в странах СЭВ были созданы аналогические серии машин: ЕС ЭВМ (Единая Система ЭВМ, машины большие и средние), СМ ЭВМ (Система Малых ЭВМ) и «Электроника» (система микро – ЭВМ).

Четвертое поколение

В процессе совершенствования мокросхем увеличивалась их надежность и плотность размещенных в них элементов. Это привело к появлению больших интегральных схем (БИС), в которых на один квадратный сантиметр приходилось несколько десятков тысяч элементов. На основе БИС были разработаны ЭВМ следующего – четвертого поколения.

Благодаря БИС на одном крошечном кристале кремния стало возвожным разместить такую большую электронную схему, как процессор ЭВМ. Однокрисальные процессоры впоследствии стали называться микропроцессорами. Первый микропрцессор был созда компанией Intel(США) в 1971 г. Это был 4 – разрядный микропроцессор Intel 4004, который содержал 2250 транзисторов и выполнл 60 операций в секунду.

Микропроцессоры положили начало мини – ЭВМ, а затем и персональным компьютерам, то есть ЭВМ, ориентированным на одного пользователя. Началась эпоха персональных компьютеров (ПК), продолжающаяся и по сей день. Однако четвертое поколение ЭВМ – это не только поколение ПК. Кроме персональных компьютеров, существуют и другие, значительно более мощные компьтерные системы.

Влияние персональных компьютеров на представление людей о вычислительной технике оказалось настолько большим, сто постепенно из обихода исчез термин «ЭВМ», а его место прочно заняло слово «компьютер».

Пятое поколение

Начиная с середины 90 м- х годов, в мощных компьютерах начинают применяться БИС супермасштаба, которые вмещают сотни тысяч элементов на квадратный сантиметр. Многие специалисты стали говорить о компьютерах пятого поколения.

Характерной чертой компьютеров пятого поколения должно быть использование искусственного интелекта и естественных языков общения. Предпологаестя, что вычислительные машины пятого поколения будут легко управляемы. Пользователь сможет голосом подавать машине команде.

В настоящее время информатика и ее практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Ее технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Теперь уже очевидно, что XXI век будет веком максимального использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле и т. д. Последние десятилетия XX века характерны возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области.

Появление ПК было подготовлено всей предшествующей историей развития ЭВМ. В начале вычислительные машины занимали огромные залы, потребляли много энергии и создавали много шума. Затем ЭВМ стали поменьше и начали работать эффективнее, но по-прежнему требовали для себя отдельных помещений. Наиболее мощные ЭВМ размещались в отдельных комплексах, которые назывались вычислительными центрами (ВЦ). В те не очень далекие времена (70 – е годы) мало кто представлял себе компактную ЭВМ, которая может уместиться на рабочем столе. О такой машине инженеры и ученые могли только мечтать, а обычным людям трыдно было бы объяснить, зачем вообще такая вычислительная машина нужна.

Первой ласточкой стал компьютер KENBAK-1, сконструированный Джоном Бланкейнбейкером в 1971 г. Внешне он напоминал скорее автомобильный радиоприемник с индикаторными лампочками и переключателями, чем привычный нашему глазу персональный компьютер.

С 1971 г. по 1974 г. различными фирмами создавались разные модели ПК. Однако ввиду ограниченных возмодностей этих компьютеров интерес к ним был невелик. По – настоящему пользователи и производители заинтересовались персональнми компьютерами в 1974 г., когда американская фирма MITS на основе микропроцессора Intel 8080 разработала компьютер Altair. Этот персональный компьютер был значительно удобнее своих предшественников и обладал более широкими возможностями.

Значительно более совершенная модель персонального компьютера была разработана в 1976 г. двумя молодыми американцами Стивом Возняком и Стивом Джобсом. Свой компьютер они назвали Apple и быстро развернули его производство и продажу. Благодаря невысокой цене (примерно 500 долларов) в первый же год ими было продано около 100 компьютеров.. В следующем году они выпустили модель Apple II, которая имела материнскую плату, дисплей, клавиатуру и внешне напоминала собой телевизор. Количество заказчиков на ПК стало исчисляться сотнями и тысячями.

Персональные компьютеры быстро совершенствовались. В 1976 г. для них была разработана операционная система СР/М. В 1978 г. был сконструирован гибкий магнитны диск диаметром 5.25 дюйма (1 дюйм=2,45 см), предназначенный для хранения информации. Усилиями фирмы MOTOROLA в 1979 г. был создан мокропроцессор motorola 68000, который превосходил своих конкурентов по скорости, производительности и возможностям работы с графическими программами. В 1980 г. в персональных компьютерах появился жесткий магнитный диск, правда, он вмещал в себя всего лишь 5 Мбайт данных.

Первые Пк были 8 - разрядными и больше походили на дорогую игрушку, чем на серьезную ЭВМ. Так продолжалось до тех пор, пока в отрасли индивидуальных компьтеров не появился компьютерный гигант – фирма IBM, которая специализировалась на изготовлении больших ЭВМ. В 1982 г. фирма IBM выпустила очень удачную модель – 16 – разрядный компьютер. Он был построен на основе микропроцессора Intel 8088, работал с тактовой частотой 4.77 МГц и использовал операционную систему MS – DOS. Называлась эта модель компьютера как IBM PC или просто PC.

Далее развитие Пк происходило очень высокими темпами: фирма IBM каждый год создавала по новой модели. В 1983 г. появилась модель PC XT, а в 1984 – более совершенный и производительный компьютер PC AT. Они быстро завоевывали рынок ПК и стали своего рода стандартами, которые старались подражать фирмы – конкуренты.

Фирма IBM создавала свой персональный компьютер не «с нуля», а используя узлы других производителей (в первую очередь, микропроцессор Intel). При этом она не делала секрета из того, как узлы компьютера должны соединяться и взаимодействовать друг с другом. В результате к созданию и совершенствованию компьютера могли подключаться другие фирмы – архитектура компьютеров IBM PC оказалась «открытой». У компьютеров IBM появились многочисленные «клоны», то есть различные семейства компьютеров, похлжих на IBM PC. В дальнейшем ЭВМЮ поддерживающие стандарт IBM PC, стали называться просто «персональными компьютерами». С течением времени ПК оправдали свое название, поскольку для многих людей они стали необходимой частью досуга, инсрументом для бизнеса и исследований.

Кроме IBM – совместимых ПК, существует еще одно семейство персонгальных ЭВМ, называемых Macintosh. Эти компьютеры ведут свою родословную от уже упоминавшейся модели Apple, их производством занималась фирма Aplle Computer. Архитектура компьютеров Macintosh, в отличие от IBMPC, не была открытой. Поэтому, несмотря на свои более продвинутые по сравнению с IBM PC графические возможности, «Маки» не смогли завоевать такой обширный рынок. Численность «Маков» в десятки раз меньше численности IBM PC – совместимых компьютеров.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы - вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, - ней-рокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.


Министерство образования и науки украины

Донецкий Университет Экономики и Права

По дисциплине

Информатика и компьютерная техника