История возникновения эвм. Краткая история эвм

30.01.2019

Современному человеку сегодня трудно представить свою жизнь без электронно-вычислительных машин (ЭВМ). В настоящее время любой желающий, в соответствии со своими запросами, может собрать у себя на рабочем столе полноценный вычислительный центр. Так было, конечно, не всегда. Путь человечества к этому достижению был труден и тернист. Много веков назад люди хотели иметь приспособления, которые помогали бы им решать разнообразные задачи. Многие из этих задач решались последовательным выполнением некоторых рутинных действий, или, как принято говорить сейчас, выполнением алгоритма. С попытки изобрести устройство, способное реализовать простейшие из этих алгоритмов (сложение и вычитание чисел), все и началось...

Вода достаточно хорошо, но не там, где это необходимо. № 2: Глобальное потепление. Вторая взаимозависимость - хаос, вызванный глобальным потеплением. Рэй Хэммонд согласен с теми, кто говорит, что люди не виноваты в глобальном потеплении. Но факт остается фактом - независимо от причины, планета нагревается, и это приводит к все более частым экстремальным явлениям природы. Важно найти способы замедлить эти изменения климата. В течение следующих 50 лет мы должны двигаться дальше, чтобы тратить меньше энергии, - сказал Хэммонд.

№ 3: Производство электроэнергии Согласно футурологу, это третья нить, в которой необходимы изменения для защиты планеты. Наиболее реалистично ожидать развития альтернативных источников энергии. Это абсолютно необходимо. Цикл истощения диоксида углерода составляет 30 лет.

Блез Паскаль

Точкой отсчета можно считать начало XVII века (1623 год), когда ученый В. Шикард создал машину, умеющую складывать и вычитать числа. Но первым арифмометром, способным выполнять четыре основных арифметических действия, стал арифмометр знаменитого французского ученого и философа Блеза Паскаля . Основным элементом в нем было зубчатое колесо, изобретение которого уже само по себе стало ключевым событием в истории вычислительной техники. Хотелось бы отметить, что эволюция в области вычислительной техники носит неравномерный, скачкообразный характер: периоды накопления сил сменяются прорывами в разработках, после чего наступает период стабилизации, во время которого достигнутые результаты используются практически и одновременно накапливаются знания и силы для очередного рывка вперед. После каждого витка процесс эволюции выходит на новую, более высокую ступень.

№ 4: Глобализация. Эта извитость Рэя Хэммонда определяет необходимость поддерживать самые бедные регионы мира. Это, по мнению футуролога, является «способом обогатить жизнь каждого из нас». «Если вы предоставляете молодого человека работу в бедной стране, возможности для обучения и развития карьеры, вы снижаете уровень терроризма», - сказал футуролог. В настоящее время около 2 миллиардов беднейших людей в мире, проживающих в 58 наиболее слаборазвитых странах, прежде всего в Африке, к югу от Сахары, не подвержены глобальному воздействию, и, по словам Хаммонда, важно включить их в этом процессе. Есть африканская поговорка: если мы не примем мальчика в его деревне, когда он станет человеком, он вернется и зажжет его.

Густав Лейбниц

В 1671 году немецкий философ и математик Густав Лейбниц также создает арифмометр на основе зубчатого колеса особенной конструкции - зубчатою колеса Лейбница. Арифмометр Лейбница, как и арифмометры его предшественников, выполнял четыре основных арифметических действия. На этом данный период закончился, и человечество в течение почти полутора веков копило силы и знания для следующего витка эволюции вычислительной техники. XVIII и XIX века были временем, когда бурно развивались различные науки, в том числе математика и астрономия. В них часто возникали задачи, требующие длительных и трудоемких вычислений.

Мы, живущие в развитом мире, не можем игнорировать 2 миллиарда чрезвычайно бедных людей на планете, - добавил футуролог. № 5: Революционные изменения в медицине. В рамках этой тенденции Хэммонд отметил, что технологии, позволяющие ДНК захватывать всех при рождении, а также прогресс в стволовых клетках становятся все более доступными. Эти и другие достижения в медицине окажут огромное влияние на улучшение здоровья людей и увеличение продолжительности их жизни. Большинство из вас - присутствующие в этой комнате будут жить как минимум на 20 лет дольше, чем вы ожидаете.

Чарльз Бэббидж

Еще одним известным человеком в истории вычислительной техники стал английский математик Чарльз Бэббидж . В 1823 году Бэббидж начал работать над машиной для вычисления полиномов, но, что более интересно, эта машина должна была, кроме непосредственного производства вычислений, выдавать результаты - печатать их на негативной пластине для фотопечати. Планировалось, что машина будет приводиться в действие паровым двигателем. Из-за технических трудностей Бэббиджу до конца не удалось реализовать свой проект. Здесь впервые возникла идея использовать некоторое внешнее (периферийное) устройство для выдачи результатов вычислений. Отметим, что другой ученый, Шойц, в 1853 году все же реализовал машину, задуманную Бэббиджем (она получилась даже меньше, чем планировалась). Наверное, Бэббиджу больше нравился творческий процесс поиска новых идей, чем воплощение их в нечто материальное. В 1834 году он изложил принципы работы очередной машины, которая была названа им «Аналитической». Технические трудности вновь не позволили ему до конца реализовать свои идеи. Бэббидж смог довести машину лишь до стадии эксперимента. Но именно идея является двигателем научно-технического прогресса. Очередная машина Чарльза Бэббиджа была воплощением следующих идей:

Помните об этом при подготовке планов выхода на пенсию, - сказал британский футуролог. Если вы хотите, вы можете посмотреть видео со всеми его выступлениями здесь. Следующие 20 технологий через ваши глаза. Предсказание будущего одновременно очень сложно и очень легко. Это трудно, когда вы ищете доверие и вероятность того, что это произойдет. Это легко, когда ему все равно, будет ли он или она догадываться или нет. В любом случае будущее может смело предсказать всех. И почему бы и нет, даже если даже самые известные метеорологи не гарантируют 100% даже для прогноза погоды завтрашнего дня.

  • Управление производственным процессом. Машина управляла работой ткацкого станка, изменяя узор создаваемой ткани в зависимости от сочетания отверстий на специальной бумажной ленте. Эта лента стала предшественницей таких знакомых нам всем носителей информации, как перфокарты и перфоленты.
  • Программируемость. Работой машины также управляла специальная бумажная лента с отверстиями. Порядок следования отверстий на ней определял команды и обрабатываемые этими командами данные. Машина имела арифметическое устройство и память. В состав команд машины входила даже команда условного перехода, изменяющая ход вычислений в зависимости от некоторых промежуточных результатов.

В разработке этой машины принимала участие графиня Ада Августа Лавлейс, которую считают первой в мире программистом.

Следуя этой линии мышления, мы решили рассказать о величайшем авторитете для нас - ваше мнение. Активное участие более 400 из вас в ноябрьском онлайн-опросе сайта сайта показало, что наши прогнозы низкого участия читателей совершенно неадекватны. Естественно, это радует нас, но есть что-то, что только что поразило нас - тот факт, что большинство из вас довольно близко к мнению ряда авторитетных аналитиков и футурологов. В этом случае вы сможете проверить предыдущие строки этой статьи, сравнив их с кратким изложением ответов читателя на вопрос.

Идеи Чарльза Бэббиджа развивались и использовались другими учеными. Так, в 1890 году, на рубеже XX века, американец Герман Холлерит разработал машину, работающую с таблицами данных (первый Excel?). Машина управлялась программой на перфокартах. Она использовалась при проведении переписи населения в США в 1890 году. В 1896 году Холлерит основал фирму, явившуюся предшественницей корпорации IBM. Со смертью Бэббиджа в эволюции вычислительной техники наступил очередной перерыв вплоть до 30-х годов XX века. В дальнейшем все развитие человечества стало немыслимым без компьютеров.

«Как вы думаете, технологические инновации или тенденции, которые в ближайшие годы повлияют на нашу жизнь?». Квантовые вычисления, компьютеры и процессоры. Огромное разнообразие ответов позволило нам рассчитать проценты для любого из них, но невооруженным глазом было видно, что преобладают квантовые технологии, квантовые процессоры и компьютеры.

К сожалению, мы не увидим большую часть этих инвестиций здесь, хотя более трех лет назад болгарское правительство объявило, что оно будет инвестировать в развитие нанотехнологий. Следующая большая ставка на человечество - биотехнологии - способствует не только вам, но и прогрессивных мыслителей и практиков, начиная с каменного века. Несмотря на довольно большой площади, покрытой термином «биотехнологии» имеет одно кажется бесспорным - тот факт, что этот тип технологии будет продолжать оказывать огромное влияние на нашу повседневную жизнь и будущее.

В 1938 году центр разработок ненадолго смещается из Америки в Германию, где Конрад Цузе создает машину, которая оперирует, в отличие от своих предшественниц, не десятичными числами, а двоичными. Эта машина также была все еще механической, но ее несомненным достоинством было то, что в ней была реализована идея обработки данных в двоичном коде. Продолжая свои работы, Цузе в 1941 году создал электромеханическую машину, арифметическое устройство которой было выполнено на базе реле. Машина умела выполнять операции с плавающей точкой.

Голограммы, новые типы дисплеев и виртуальной реальности. Мы не можем обойтись без самой зрелищной части, которая медленно, но верно проникает в нашу повседневную жизнь. Там нет причин, чтобы не думать, что в ближайшие несколько лет эта история будет повторяться и с дополненной реальностью и голографическими изображениями.

Эти технологии также были сделаны, вы просто должны «созреть» для его массового распространения. Два взаимосвязанных мечты от того времени, когда Азимов написал «Я, робот», что все больше и больше конверсий на практике - машины, которые могут выполнять не только запрограммированные действия, но и импровизировать. Если все это будет влиять на нашу повседневную жизнь? Представляется несомненным, особенно с учетом того, что «образование» роботов включает в себя поглощение некоторых очень человеческих навыков - например, лежать.

За океаном, в Америке, в этот период также шли работы по созданию подобных электромеханических машин. В 1944 году Говард Эйкен спроектировал машину, которую назвали Mark-1 . Она, как и машина Цузе, работала на реле. Но из-за того, что эта машина явно была создана под влиянием работ Бэббиджа, она оперировала с данными в десятичной форме.

Конечно, среди более чем 400 ответов на вопросник было много других предсказаний потенциально важным в нашей жизни технологиях - такие, как интерфейсы мозга, развитие новых источников энергии и многих других. Некоторые из них были очень умные и, безусловно, получить то, что они заслуживают в ближайшее время, но что именно сбудется в реальности еще предстоит увидеть еще. Будем надеяться, что мы будем делать это вместе, мы установили часы, скажем, еще через 20 лет.

Вот его рассказ о славном компьютерном прошлом Болгарии. Затем он дал мне рекомендацию и отправил меня Жиро Пенчеву в Центральный институт вычислительной техники и технологии, который был создан 4 года назад. Это были логические задачи, которые занимают много времени, большинство изображений. Например, покажите вам 3 фотографии, и вам нужно выбрать четвертую из нескольких возможных. В соревновании было около 40 человек. Тот, кто стал первым, имел в два раза больше очков, чем второй. Его достижение было феноменальным.

Естественно, из-за большого удельного веса механических частей эти машины были обречены. Нужно было искать новую, более технологичную элементную базу. И тогда вспомнили об изобретении Фореста, который в 1906 году создал трех электродную вакуумную лампу, названную триодом. В силу своих функциональных свойств она стала наиболее естественной заменой реле. В 1946 году в США, в университете города Пенсильвания, была создана первая универсальная ЭВМ - ENIAC . ЭВМ ENIAC содержала 18 тыс. ламп, весила 30 тонн, занимала площадь около 200 квадратных метров и потребляла огромную мощность. В ней все еще использовались десятичные операции, и программирование осуществлял ось путем коммутации разъемов и установки переключателей. Естественно, что такое «программирование» влекло за собой появление множества проблем, вызванных, прежде всего, неверной установкой переключателей. С проектом ENIAC связано имя еще одной ключевой фигуры в истории вычислительной техники - математика Джона фон Неймана. Именно он впервые предложил записывать программу и ее данные в память машины так, чтобы их можно было при необходимости модифицировать в процессе работы. Этот ключевой принцип, был использован в дальнейшем при создании принципиально новой ЭВМ EDVAC (1951 год). В этой машине уже при меняется двоичная арифметика и используется оперативная память, построенная на ультразвуковых ртутных линиях задержки. Память могла хранить 1024 слова. Каждое слово состояло из 44 двоичных разрядов.

Никому, даже в Штатах, не удалось добиться такого результата. Те, кто на моем испытании, казались бесконечно легкими. Затем Болгария работала в Советском Союзе. В то время как русские разрушили возможности человеческого мозга, американцы добивались огромных успехов в области вычислительной техники. Когда русские почувствовали, что им пришлось их поймать, они были бесконечно отсталыми. Единственный способ как-то компенсировать - это скопировать с американцев.

Оранжевая часть внизу - центральный процессор. Черный ящик справа - это устройство для чтения карт памяти с перфорированными перфокартами. Слева - ленточные устройства. Компьютеры американцев для массового использования были 3 типа - большие машины, мини-машины и микромашины. В настоящее время микроавтобусы стали очень популярными, но в то время в Болгарии мы слышали о ПК только теоретически. Были только большие машины и мини-машины, из которых лагерь должен был скопировать технологию.

После создания EDVAC человечество осознало, какие высоты науки и техники могут быть достигнуты тандемом человек-компьютер. Данная отрасль стала развиваться очень быстро и динамично, хотя здесь тоже наблюдалась некоторая периодичность, связанная с необходимостью накопления определенного багажа знаний для очередного прорыва. До середины 80-х годов процесс эволюции вычислительной техники принято делить на поколения. Для полноты изложения дадим этим поколениям краткие качественные характеристики:

Мы, программисты, изучали программное обеспечение. Они пришли из одного имени и только начали. Программная программа имеет 3 состояния, похожие на этапы развития бабочки, гусеницы и бабочки. Но если вы хотите изменить его, вы должны перейти от своего основного состояния, то есть от гусеницы, которое на компьютерном языке называется источником. Затем на большой машине у нас были только исполняемые программы, бабочки, но не обратные программы, которые бы превратили машинный код в Ассемблер. Таким образом, нам пришлось играть роль самих программ.

Первое поколение ЭВМ (1945-1954 гг.) В этот период формируется типовой набор структурных элементов, входящих в состав ЭВМ. К этому времени у разработчиков уже сложилось примерно одинаковое представление о том, из каких элементов должна состоять типичная ЭВМ. Это - центральный процессор (ЦП), оперативная память (или оперативно запоминающее устройство - ОЗУ) и устройства ввода-вывода (УВВ). ЦП, в свою очередь, должен состоять из арифметико-логического устройства (АЛУ) и управляющею устройства (УУ). Машины этого поколения работали на ламповой элементной базе, из-за чего поглощали огромное количество энергии и были очень не ненадежны. С их помощью, в основном, решались научные задачи. Программы для этих машин уже можно было составлять не на машинном языке, а на языке ассемблера.

Мы рассмотрели машинный код и описали его - это инструкция, это данные, инструкция и т.д. мы сначала отметили их, а затем перевели все цифры в инструкции Ассемблера, и мы сделали вид источника. Мы подробно изучили логику программ и прокомментировали их. Мы изменили все английские тексты - на русском и болгарском языках, и мы позволили программе снова запустить, как будто это было наше. Он назывался ЕС - единой системой.

В конце концов, вышло четвертое поколение. Программное обеспечение понятное - мы перерабатывали его. Таким образом, в ЦИТТ появилась большая машина четвертого поколения, похожая на американскую. Он был единственным в своем роде у всей клубной девушки.

Второе поколение ЭВМ (1955-1964 гг.). Смену поколений определило появление новой элементной базы: вместо громоздкой лампы в ЭВМ стали применяться миниатюрные транзисторы, линии задержки как элементы оперативной памяти сменила память на магнитных сердечниках. Это в конечном итоге привело к уменьшению габаритов, повышению надежности и производительности ЭВМ. В архитектуре ЭВМ появились индексные регистры и аппаратные средства для выполнения операций с плавающей точкой. Были разработаны команды для вызова подпрограмм.

Когда пользователи называют их, что они обнаружили ошибку, они удаляют ее и выпускают новую версию. Терминальные устройства социалистического суперкомпьютера. В начале 1970-х годов он был одним из самых модных в мире. Только центральная часть его стоила более 1 миллиона долларов. Если с ней что-то случилось, офис компании в Софии через 24 часа привез запасные части Вены сюда и немедленно заменил их. Жесткие диски составляли 5 мегабайт. Их коллеги решили освободить их от таможни, и там, на развилке, они подняли один из дисков, он наклонился вперед, начальник вычислительного центра Весо Вальков попытался удержать его, но диск упал на него и избил его.

Появились языки программирования высокого уровня - Algol, FORTRAN, COBOL, - создавшие предпосылки для появления переносимого программного обеспечения, не зависящего от типа ЭВМ. С появлением языков высокого уровня возникли компиляторы для них, библиотеки стандартных подпрограмм и другие хорошо знакомые нам сейчас вещи.

Важное новшество, которое хотелось бы отметить, - это появление так называемых процессоров ввода-вывода. Эти специализированные процессоры позволили освободить центральный процессор от управления вводом-выводом и осуществлять ввод-вывод с помощью специализированного устройства одновременно с процессом вычислений. На этом этапе резко расширился круг пользователей ЭВМ и возросла номенклатура решаемых задач. Для эффективного управления ресурсами машины стали использоваться операционные системы (ОС).

Парень лежал год в гипсе, который был раздавлен этим монстром, 300-мегабайтным диском. Центральный процессор большой машинной машины. Под ним появились кабели и соединения между различными устройствами - принтеры, считыватели карт, стримеры, дисководы и многое другое. Была специальная пожарная система. Нам было предложено немедленно покинуть помещение, когда срабатывал сигнал пожара, потому что после двух-трех минут после пожара углекислый газ автоматически отбрасывался.

Другие устройства были раздельными. В комнате было кондиционирование воздуха, чтобы поддерживать постоянную температуру. Холодильники и вентиляторы постоянно охлаждают оборудование. Если какой-либо из холодильников сломается, машина немедленно остановится. Если температура немного повышается, это может стать большим запахом.

Третье поколение ЭВМ (1965-1970 гг.). Смена поколений вновь была обусловлена обновлением элементной базы: вместо транзисторов в различных узлах ЭВМ стали использоваться интегральные микросхемы различной степени интеграции. Микросхемы позволили разместить десятки элементов на пластине размером в несколько сантиметров. Это, в свою очередь, не только повысило производительность ЭВМ, но и снизило их габариты и стоимость. Появились сравнительно недорогие и малогабаритные машины - Мини-ЭВМ. Они активно использовались для управления различными технологическими производственными процессами в системах сбора и обработки информации.

Это означает следующее: если процессор равен 1 ГГц, он может выполнять 2 миллиарда операций в секунду. Теперь новые многоядерные процессоры не знают, насколько они сильны - они, вероятно, выполняют 100 миллиардов операций. В современном процессоре, хотя они выглядят настолько маленькими, есть 800 миллионов транзисторов. Устройство хранения магнитных дисков.

Там внешние устройства - экраны, диски, принтеры и т.д. имели свои собственные процессоры и работали со своей логикой, бесконечно медленно продвигаясь к центральному процессору. Он был создан, чтобы поймать Запад, но после краха клуба вы больше не крали и не копировали работу американцев. Тема деятельности Института была отброшена.

Увеличение мощности ЭВМ сделало возможным одновременное выполнение нескольких программ на одной ЭВМ. Для этого нужно было научиться координировать между собой одновременно выполняемые действия, для чего были расширены функции операционной системы.

Одновременно с активными разработками в области аппаратных и архитектурных решений растет удельный вес разработок в области технологий программирования. В это время активно разрабатываются теоретические основы методов программирования, компиляции, баз данных, операционных систем и т. д. Создаются пакеты прикладных программ для самых различных областей жизнедеятельности человека.

Теперь уже становится непозволительной роскошью переписывать все программы с появлением каждого нового типа ЭВМ. Наблюдается тенденция к созданию семейств ЭВМ, то есть машины становятся совместимы снизу вверх на программно-аппаратном уровне. Первая из таких семейств была серия IBM System/360 и наш отечественный аналог этого компьютера - ЕС ЭВМ.

Четвертое поколение ЭВМ (1970-1984 гг.). Очередная смена элементной базы привела к смене поколений. В 70-е годы активно ведутся работы по созданию больших и сверхбольших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее существенное снижение размеров и стоимости ЭВМ. Работа с программным обеспечением стала более дружественной, что повлекло за собой рост количества пользователей.

В принципе, при такой степени интеграции элементов стало возможным попытаться создать функционально полную ЭВМ на одном кристалле. Соответствующие попытки были предприняты, хотя они и встречались, в основном, недоверчивой улыбкой. Наверное, этих улыбок стало бы меньше, если бы можно было предвидеть, что именно эта идея станет причиной вымирания больших ЭВМ через каких-нибудь полтора десятка лет.

Тем не менее в начале 70-х годов фирмой Intel был выпущен микропроцессор (МП) 4004. И если до этого в мире вычислительной техники были только три направления (супер ЭВМ, большие ЭВМ (мэйнфреймы) и мини-ЭВМ), то теперь к ним прибавилось еще одно - микропроцессорное. В общем случае под процессором понимают функциональный блок ЭВМ, предназначенный для логической и арифметической обработки информации на основе принципа микропрограммного управления. По аппаратной реализации процессоры можно разделить на микропроцессоры (полностью интегрированы все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем.

Итак, первый микропроцессор 4004 был создан фирмой Intel на рубеже 70-х годов. Он представлял собой 4-разрядное параллельное вычислительное устройство, и его возможности были сильно ограничены. 4004 мог производить четыре основные арифметические операции и применялся поначалу только в карманных калькуляторах. Позднее сфера его применения была расширена за счет использования в различных системах управления (например, для управления светофорами). Фирма Intel, правильно предугадав перспективность микропроцессоров, продолжила интенсивные разработки, и один из ее проектов в конечном итоге привел к крупному успеху, предопределившему будущий путь развития вычислительной техники.

Им стал проект по разработке 8-разрядного процессора 8080 (1974 г.). Этот микропроцессор имел довольно развитую систему команд и умел делить числа. Именно он был использован при создании персонального компьютера Альтаир, для которого молодой Билл Гейтс написал один из своих первых интерпретаторов языка BASIC. Наверное, именно с этого момента следует вести отсчет 5-го поколения.

Пятое поколение ЭВМ (1984 г. – наши дни) можно назвать микропроцессорным. Заметьте, что четвертое поколение закончилось только в начале 80-х, то есть родители в лице больших машин и их быстро взрослеющее и набирающее силы «чадо» В течение почти 10 лет относительно мирно существовали вместе. Для них обоих это время пошло только на пользу. Проектировщики больших компьютеров накопили огромный теоретический и практический опыт, а программисты микропроцессоров сумели найти свою, пусть поначалу очень узкую, нишу на рынке.

В 1976 году фирма Intel закончила разработку 16-разрядного процессора 8086. Он имел достаточно большую разрядность регистров (16 бит) и системной шины адреса (20 бит), за счет чего мог адресовать до 1 Мбайт оперативной памяти.

В 1982 году был создан 80286. Этот процессор представлял собой улучшенный вариант 8086. Он поддерживал уже несколько режимов работы: реальный, когда формирование адреса производилось по правилам i8086, и защищенный, который аппаратно реализовывал многозадачность и управление виртуальной памятью. 80286 имел также большую разрядность шины адреса - 24 разряда против 20 у 8086, и поэтому он мог адресовать до 16 Мбайт оперативной памяти. Первые компьютеры на базе этого процессора появились в 1984 году. По своим вычислительным возможностям этот компьютер стал сопоставим с IBM System/370. Поэтому можно считать, что на этом четвертое поколение развития ЭВМ завершилось.

В 1985 году фирма Intel представила первый 32-разрядный микропроцессор 80386, аппаратно совместимый снизу вверх со всеми предыдущими процессорами этой фирмы. Он был гораздо мощнее своих предшественников, имел 32-разрядную архитектуру и мог прямо адресовать до 4 Гбайт оперативной памяти. Процессор 386 стал поддерживать новый режим работы - режим виртуального 8086, который обеспечил не только большую эффективность работы программ, разработанных для 8086, но и позволил осуществлять параллельную работу нескольких таких программ. Еще одно важное нововведение - поддержка страничной организации оперативной памяти - позволило иметь виртуальное пространство памяти размером до 4 Тбайт.

Процессор 386 был первым микропроцессором, в котором использовалась параллельная обработка. Так, одновременно осуществлялись: доступ к памяти и устройствам ввода-вывода, размещение команд в очереди для выполнения, их декодирование, преобразование линейного адреса в физический, а также страничное преобразование адреса (информация о 32-х наиболее часто используемых страницах помещалась в специальную кэш-память).

Вскоре после процессора 386 появился 486. В его архитектуре получили дальнейшее развитие идеи параллельной обработки. Устройство декодирования и исполнения команд было организовано в виде пятиступенчатого конвейера, на втором в различной стадии исполнения могло находиться до 5 команд. На кристалл была помещена кэш-память первого уровня, которая содержала часто используемые код и данные. Кроме этого, появилась кэш-память второго уровня емкостью до 512 Кбайт. Появилась возможность строить многопроцессорные конфигурации. В систему команд процессора были добавлены новые команды. Все эти нововведения, наряду со значительным (до 133 МГц) повышением тактовой частоты микропроцессора, значительно позволили повысить скорость выполнения про грамм.

С 1993 года стали выпускаться микропроцессоры Intel Pentium. Их появление, начале омрачилось ошибкой в блоке операций с плавающей точкой. Эта ошибка была быстро устранена, но недоверие к этим микропроцессорам еще некоторое время оставалось.

Pentium продолжил развитие идей параллельной обработки. В устройство декодирования и исполнения команд был добавлен второй конвейер. Теперь два конвейера (называемых u и v) вместе могли исполнять две инструкции за такт. Внутренний кэш был увеличен вдвое - до 8 Кбайт для кода и 8 Кбайт для данных. Процессор стал более интеллектуальным. В него была добавлена возможность предсказания ветвлений, в связи с чем значительно возросла эффективность исполнения нелинейных алгоритмов. Несмотря на то что архитектура системы оставалась все еще 32-разрядной, внутри микропроцессора стали использоваться 128- и 256-разрядные шины передачи данных. Внешняя шина данных была увеличена до 64 бит. Продолжили свое развитие технологии, связанные с многопроцессорной обработкой информации.

Появление микропроцессора Pentium Pro разделило рынок на два сектора - высокопроизводительных рабочих станций и дешевых домашних компьютеров. В процессоре Pentium Pro были реализованы самые передовые технологии. В частности был добавлен еще один конвейер к имевшимся двум у процессора Pentium. Тем самым за один такт работы микропроцессор стал выполнять до трех инструкций.

Intel Pentium II

Более того, процессор Pentium Pro позволил осуществлять динамическое исполнение команд (Dynamic Execution). Суть его в том, что три устройства декодирования команд, работая параллельно, делят команды на более мелкие части, называемые микрооперациями. Далее эти микрооперации могут исполняться параллельно пятью устройствами (двумя целочисленными, двумя с плавающей точкой и одним устройством интерфейса с памятью). На выходе эти инструкции опять собираются в первоначальном виде и порядке. Мощь Pentium Pro дополняется усовершенствованной организацией его кэш-памяти. Как и процессор Pentium, он имеет 8 Кбайт кэш-памяти первого уровня и 256 Кбайт кэш-памяти второго уровня. Однако за счет схемных решений (использование архитектуры двойной независимой шины) кэш-память второго уровня расположили на одном кристалле с микропроцессором, что значительно повысило производительность. В Pentium Pro реализовали 36-разрядную адресную шину, что позволило адресовать до 64 Гбайт оперативной памяти.

Процесс развития семейства обычных процессоров Pentium тоже не стоял на месте. Если в процессорах Pentium Pro параллелизм вычислений был реализован за счет архитектурных и схемотехнических решений, то при создании моделей процессора Pentium пошли по другому пути. В них включили новые команды, для поддержки которых несколько изменили программную модель микропроцессора. Эти команды, получившие название MMX-команд (MultiMedia eXtention - мультимедийное расширение системы команд), позволили одновременно обрабатывать несколько единиц однотипных данных.

Intel Pentium III

Следующий выпущенный в свет процессор, названный Pentium II, объединил в себе все технологические достижения обоих направлений развития архитектуры Pentium. Кроме этого он имел новые конструктивные особенности, в частности, его корпус выполнен в соответствии с новой технологией изготовления корпусов. Не забыт и рынок портативных компьютеров, в связи с чем процессором поддерживаются несколько режимов энергосбережения.

Процессор Pentium III. Традиционно он поддерживает все достижения своих предшественников, главное (и, возможно, единственное?!) его достоинство - наличие новых 70 команд, Эти команды дополняют группу MMX-команд, но для чисел с плавающей точкой. Для поддержки этих команд в архитектуру процессора был включен специальный блок.

История счётных устройств насчитывает много веков. Ниже в хронологическом порядке приводятся некоторые наиболее значимые события этой истории, их даты и имена участников. Около 500 г. н.э. Изобретение счётов (абака) - устройства, состоящего из набора костяшек, нанизанных на стержни.

1614 г. - шотландец Джон Непер изобрёл логарифмы. Вскоре после этого Р. Биссакар создал логарифмическую линейку.

1642 г. - французский ученый Блез Паскаль приступил к созданию арифметической машины - механического устройства с шестернями, колёсами, зубчатыми рейками и т.п. Она умела "запоминать" числа и выполнять элементарные арифметические операции.

1804 г. - французский инженер Жаккар изобрёл перфокарты для управления автоматическим ткацким станком, способным воспроизводить сложнейшие узоры. Работа станка программировалась колодой перфокарт, каждая из которых управляла одним ходом челнока.

1834 г. - английский ученый Чарльз Бэббидж составил проект "аналитической" машины, в которую входили: устройства ввода и вывода информации, запоминающее устройство для хранения чисел, устройство, способное выполнять арифметические операции, и устройство, управляющее последовательностью действий машины. Команды вводились с помощью перфокарт. Проект не был реализован.

1930 г. - профессор Массачусетского технологического института (МТИ) Ванневар Буш построил дифференциальный анализатор, с появлением которого связывают начало современной компьютерной эры. Это была первая машина, способная решать сложные дифференциальные уравнения, которые позволяли предсказывать поведение таких движущихся объектов, как самолет, или действие силовых полей, например, гравитационного поля.

1936 г. - английский математик Алан Тьюринг и независимо от него Э. Пост выдвинули и разработали концепцию абстрактной вычислительной машины. Они доказали принципиальную возможность решения автоматами любой проблемы при условии возможности её алгоритмизации.

1938 г. - немецкий инженер Конрад Цузе построил первый чисто механический компьютер.

1938 г. - а мериканский математик и инженер Клод Шеннон показал возможность применения аппарата математической логики для синтеза и анализа релейно-контактных переключательных схем.

1939 г. - американец болгарского происхождения профессор физики Джон Атанасофф создал прототип вычислительной машины на базе двоичных элементов.

1941 г. - Конрад Цузе сконструировал первый универсальный компьютер на электромеханических элементах. Он работал с двоичными числами и использовал представление чисел с плавающей запятой.

1944 г. - под руководством американского математика Говарда Айкена создана автоматическая вычислительная машина "Марк-1" с программным управлением. Она была построена на электромеханических реле, а программа обработки данных вводилась с перфоленты.

1945 г. - Джон фон Нейман в отчёте "Предварительный доклад о машине Эдвак" сформулировал основные принципы работы и компоненты современных компьютеров.

1946 г. - американцы Дж. Эккерт и Дж. Моучли сконструировали первый электронный цифровой компьютер "Эниак" (Electronic Numerical Integrator and Computer). Машина имела 20 тысяч электронных ламп и 1,5 тысячи реле. Она работала в тысячу раз быстрее, чем "Марк-1", выполняя за одну секунду 300 умножений или 5000 сложений.

1948 г. - в американской фирме Bell Laboratories физики Уильям Шокли, Уолтер Браттейн и Джон Бардин создали транзистор. За это достижение им была присуждена Нобелевская премия.

1949 г. - в Англии под руководством Мориса Уилкса построен первый в мире компьютер с хранимой в памяти программой EDSAC.

1951 г. - в Киеве построен первый в континентальной Европе компьютер МЭСМ (малая электронная счетная машина), имеющий 600 электронных ламп. Создатель С.А. Лебедев.

1951-1955 гг. - благодаря деятельности советских ученых С.А. Лебедева, М.В. Келдыша, М.А. Лаврентьева, И.С. Брука, М.А. Карцева, Б.И. Рамеева, В.С. Антонова, А.Н. Невского, Б.И. Буркова и руководимых ими коллективов Советский Союз вырвался в число лидеров вычислительной техники, что позволило в короткие сроки решить важные научно-технические задачи овладения ядерной энергией и исследования Космоса.

1952 г. - под руководством С.А. Лебедева в Москве построен компьютер БЭСМ-1 (большая электронная счетная машина) - на то время самая производительная машина в Европе и одна из лучших в мире.

1953 г. - Джей Форрестер реализовал оперативную память на магнитных сердечниках (сore memory), которая существенно удешевила компьютеры и увеличила их быстродействие. Память на магнитных сердечниках широко использовалась до начала 70-х годов. На смену ей пришла память на полупроводниковых элементах.

1955-1959 гг. - советские ученые А.А. Ляпунов, С.С. Камынин, Э.З. Любимский, А.П. Ершов, Л.Н. Королев, В.М. Курочкин, М.Р. Шура-Бура и др. создали "программирующие программы" - прообразы трансляторов. В.В. Мартынюк создал систему символьного кодирования - средство ускорения разработки и отладки программ.

1955-1959 гг. - заложен фундамент теории программирования (А.А. Ляпунов, Ю.И. Янов, А.А. Марков, Л.А. Калужин) и численных методов (В.М. Глушков, А.А. Самарский, А.Н. Тихонов). Моделируются схемы механизма мышления и процессов генетики, алгоритмы диагностики медицинских заболеваний (А.А. Ляпунов, Б.В. Гнеденко, Н.М. Амосов, А.Г. Ивахненко, В.А. Ковалевский и др.).

1958 г. - Джек Килби из фирмы Texas Instruments создал первую интегральную схему.

1957 г. - первое сообщение о языке Фортран (Джон Бэкус).

1957 г. - американской фирмой NCR создан первый компьютер на транзисторах.

1959 г. - под руководством С.А. Лебедева создана машина БЭСМ-2 производительностью 10 тыс. опер./с. С ее применением связаны расчеты запусков космических ракет и первых в мире искусственных спутников Земли.

1959 г. - создана машина М-20, главный конструктор С.А. Лебедев. Для своего времени одна из самых быстродействующих в мире (20 тыс. опер./с.). На этой машине было решено большинство теоретических и прикладных задач, связанных с развитием самых передовых областей науки и техники того времени. На основе М-20 была создана уникальная многопроцессорная М-40 - самая быстродействующая ЭВМ того времени в мире (40 тыс. опер./с.). На смену М-20 пришли полупроводниковые БЭСМ-4 и М-220 (200 тыс. опер./с.).

1959 г. - первое сообщение о языке Алгол, который надолго стал стандартом в области языков программирования.

1961 г. - фирма IBM Deutschland реализовала подключение компьютера к телефонной линии с помощью модема.

1964 г. - начат выпуск семейства машин третьего поколения - IBM/360.

1967 г. - под руководством С.А. Лебедева организован крупно-серийный выпуск шедевра отечественной вычислительной техники - миллионника БЭСМ-6, - самой быстродействующей машины в мире. За ним последовал "Эльбрус" - ЭВМ нового типа, производительностью 10 млн. опер./с.

1968 г. - основана фирма Intel, впоследствии ставшая признанным лидером в области производства микропроцессоров и других компьютерных интегральных схем.

1970 г. Швейцарец Никлаус Вирт разработал язык Паскаль.

1971 г. Эдвард Хофф разработал микропроцессор Intel-4004, состоящий из 2250 транзисторов, размещённых в кристалле размером не больше шляпки гвоздя. Этот микропроцессор стал поистине революционным изобретением, открывшем путь к созданию искусственных интеллектуальных систем вообще и персонального компьютера в частности.

1973 г. - фирма IBM (International Business Machines Corporation) сконструировала первый жёсткий диск типа "винчестер".

1974 г. - фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами.

1976 г. - студенты Стив Возняк и Стив Джобс, устроив мастерскую в гараже, реализовали компьютер Apple-1, положив начало корпорации Apple.

1978 г. - фирма Intel выпустила микропроцессор 8086.

1979 г. - фирма Intel выпустила микропроцессор 8088. Корпорация IBM приобрела крупную партию этих процессоров для вновь образованного подразделения по разработке и производству персональных компьютеров.

1980 г. - японские компании Sharp, Sanyo, Panasonic, Casio и американская фирма Tandy вынесли на рынок первый карманный компьютер, обладающий всеми основными свойствами больших компьютеров.

1981 г. - фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.

1982 г. - фирма Intel выпустила микропроцессор 80286, содержащий 134 000 транзисторов и способный выполнять любые программы, написанные для его предшественников. С тех пор такая программная совместимость остается отличительным признаком семейства микропроцессоров Intel.

1984 г. - корпорация Apple Computer выпустила компьютер Macintosh на 32-разрядном процессоре Motorola 68000 - первую модель знаменитого впоследствии семейства Macintosh c удобной для пользователя операционной системой, развитыми графическими возможностями, намного превосходящими в то время те, которыми обладали стандартные IBM-совместимые ПК с MS-DOS. Эти компьютеры быстро приобрели миллионы поклонников и стали вычислительной платформой для целых отраслей, таких например, как издательское дело и образование.

1985 г. - фирма Intel выпустила микропроцессор 80386, насчитывающий уже 275000 транзисторов. Этот 32-разрядный "многозадачный" процессор обеспечивал возможность одновременного выполнения нескольких программ.

1989 г. - Фирма Intel выпустила микропроцессор Intel 486 DX. Поколение процессоров i486 ознаменовало переход от работы на компьютере через командную строку к режиму "укажи и щелкни". Intel 486 стал первым микропроцессором со встроенным математическим сопроцессором, который существенно ускорил обработку данных, выполняя сложные математические действия вместо центрального процессора. Количество транзисторов - 1,2 млн. 1990 г. - выпуск и ввод в эксплуатацию векторно-конвейерной суперЭВМ "Эльбрус 3.1". Разработчики - Г.Г. Рябов, А.А. Соколов, А.Ю. Бяков. Производительность в однопроцессорном варианте - 400 мегафлопов.

1993 г. - фирма Intel выпустила микропроцессор Pentium, который научил компьютеры работать с атрибутами "реального мира" - такими, как звук, голосовая и письменная речь, фотоизображения.

2000 г. - появление 64-разрядных микропроцессоров Itanium и AMD.

Конец работы -

Эта тема принадлежит разделу:

ИНФОРМАТИКА

МАТИ Российский Государственный Технологический Университет им К Э... Глава Базовые понятия информатики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

И Н Ф О Р М А Т И К А
Молчанова С.И. Оглавление Глава 1. Базовые понятия информатики. 2 1.1 Информатика. 5 1.2 Информация. 5 1.3 Кодирова

Свойства информации.
К свойствам информации относят: - Важность (ценность, полезность); - Достоверность (истинность, правильность): - полноту; - оперативность (своевременность):

I=log2N.
Отсюда следует, что 2I=N. Рассмотрим пример: допустим, нужно угадать число из набора целых чисел от нуля до 63. В соответствии с формулой Хартли количество информации в сообщени

Формула Шеннона.
Iср=-(p1log2p1+p2log2p2+…pNlog2pN), где р


Теоретическое обоснование таких систем дал в своих работах К. Шеннон. Рядом теорем он показал эффективность введения кодирующих и декодирующих устройств, назначение которых состоит в согласовании с

Принципы фон Неймана
В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В дальнейшем на основе этих принципов производились первые дв

ЭВМ - программно-управляемый цифровой автомат.
· ЭВМ - автомат для переработки и преобразования цифровой или дискретной информации. Это означает, что вся подаваемая на вход ЭВМ информация (текстовая, графическая, числовая и т. п.) должна быть п

Открытая архитектура.
Открытая архитектура, разработанная корпорацией IBM предполагает: - наличие общей информационной шины, к которой подключаются дополнительные устройства через разъёмы расширения; -

Первое поколение
К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, котор

Второе поколение
Второе поколение компьютерной техники - машины, сконструиро-ванные примерно в 1955-65 гг. Характеризуются использованием в них как электронных ламп, так и дискретных транзисторных логических элемен

Третье поколение
Машины третьего поколения созданы примерно после 60-x годов. Поскольку процесс создания компьютерной техники шел непрерывно, и в нём участвовало множество людей из разных стран, имеющих дело с реше

Четвертое поколение
Четвёртое поколение - это теперешнее поколение компьютерной техники, разработанное после 1970 года. Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно от

Графический способ записи алгоритмов.
При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

Псевдокод.
Псевдокод представляет собой систему обозначений и правил, предназначенных для единообразной записи алгоритмов. Псевдокод занимает промежуточное место между естественными и формальными язы

Двоично-восьмеричная система счисления.
Запишем некоторое число в двоичной системе счисления: 1001101.10112 Для того, чтобы представить исходное число в восьмеричной системе счисления разобьем его на триады.

Перечень базисов.
1. - базис Пирса (элемент Вебба); 2.

Рассмотрим практическое применение изложенного материала.
Задача 1. На вопрос, кто из трех студентов изучал логику, был получен следующий ответ: если изучал первый, то изучал и второй, но неверно, что если изучал третий, то изучал л

Задачи для самостоятельного решения.
1. В бутылке, стакане, кувшине и банке находятся молоко, лимонад, квас и вода. Известно, что вода и молоко не в бутылке, сосуд с лимонадом стоит между кувшином и сосудом с квасом, в

Регистры.
Функциональный узел ЭВМ, предназначенный для запоминания многоразрядных кодов и выполнения над ними некоторых логических преобразований называется, регистром. Регистр включает в себя отдельные триг

Счётчики.
Функциональный узел, предназначенный для подсчёта числа входных сигналов и запоминания кода этого числа соответствующими триггерами, называется счётчиком. Дешифраторы. Комбинацион

Основные функции СУБД
управление данными во внешней памяти (на дисках); управление данными в оперативной памяти с использованием дискового кэша; журнализация изменений, резервное копирование и

По способу доступа к БД
Файл-серверные В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. СУБД располагается на каждом клиентском компьютере (рабочей станции). Доступ СУ

Образцы заданий к теме «Арифметические основы ЭВМ».
1.Найти наименьшее основание позиционной системы счисления х, при котором 51х =44у. 2. Представить в виде обыкновенной дроби в десятичной системе счис

Представление целых чисел. Формат с фиксированной точкой.
Задачи: Найти дополнительные коды для чисел:-45, 123, -98, -А516, -111, -778. Формат представления данных один байт со знаком. На

Представление действительных чисел в памяти ЭВМ. Формат с плавающей точкой.
Задача 1. 2.Найти десятичное значение числа A= 42E3C000 , представленного в шестнадцатеричной системе счисления в формате с плавающей точкой. Тип числа - single для basic