Индекс цветопередачи светодиодных ламп. Что такое индекс цветопередачи и как он измеряется

30.07.2019

Еще в 70-е годы прошлого века, ученые и исследователи в области света, начали измерять и оценивать качество цветопередачи от различных источников, при этом описывая полученный результат всего одной цифрой.

Этот параметр или коэффициент назвали CRI. У него есть еще и другое обозначение — Ra. По сути это одно и тоже.

CRI расшифровывается как Color Rendering Index — индекс отображения цвета.

Что такое CRI

Именно он отвечает за то, что один и тот же апельсин, в одном случае будет выглядеть вполне натурально, а в другом совсем не будет похож сам на себя. Это и называется естественность передачи цветов.

Кстати, многие наверное помнят загадку, разделившую интернет на два лагеря — «какого цвета на фото платье»? Этот индекс здесь сыграл существенную роль.

То есть, коэфф. отвечает насколько натурально и естественно выглядит объект под той или иной лампой или освещением. Для вас это может быть и без разницы, вы все равно съедите апельсин или наденете платье, а вот художнику или фотографу этот параметр ой как важен.

Кстати, этот момент относится не только к процессу написания картины, но и к ее демонстрации в галереях.

А еще это может увеличить или наоборот снизить продажи в продуктовых магазинах. Не каждый захочет купить подозрительно выглядящий лимон или другой фрукт.

Хотя на самом деле продукты будут абсолютно спелыми и здоровыми, но всю картинку испортит неправильно подобранное освещение.

Точно таким же образом супермаркеты могут и обманывать. Покупаешь вроде бы с витрины красивые и спелые яблоки, привозишь их домой, разворачиваешь, а они уже не выглядят так аппетитно как в магазине.

Испортится за такой короткий промежуток времени они безусловно не могли, однако нужно отдать должное местному персоналу, который в отличие от вас, оказался знаком с понятием цветопередачи и подбором нужного CRI.

Спектр света и его влияние

Максимальное значение CRI=100. Именно такой коэффициент у солнечного света. У искусственных светильников чем он выше, тем лучше.

Конечно здорово иметь светодиодную экономную лампочку на 100% имитирующую солнце. Но во-первых, это технически трудно реализуемо, во-вторых неоправданно дорого.

При этом не стоит путать такие понятия, как «цветовая температура» и «индекс цветопередачи». Это разные вещи.

Например два светильника могут одновременно иметь одну и ту же температуру, но передавать цвета при этом будут совершенно по-разному.

Перед тем, как непосредственно перейти к индексу и его методам расчета, стоит напомнить что такое спектральный состав излучения. Ведь это как раз таки напрямую влияет на CRI.

Так вот, любой свет имеет в своем составе сразу несколько цветов. А все что нас окружает, поглощает или отражает эти цвета.

При этом предметы или растения которые кажутся зелеными, потому и обладают данной расцветкой, так как именно зеленый они и отражают. Все остальные цвета на их поверхности в этом случае поглощаются.

Хотя по большей части, цвет формируется именно в нашей голове. Это некое ощущение. Каждый кто «получал в глаз», это может подтвердить 🙂

Предметы имеющие черный цвет, поглощают практически все падающее на них излучение. Вот и получается, что если в источнике света или лампочке изначально не будет какого-то цвета, то соответственно и отражаться будет нечему.

Поэтому ярко-красное платье при солнечном излучении, в котором вы были неотразимы, под искусственным светом софитов в клубе или ресторане, таковым может уже и не являться.

Чтобы знать насколько хорошо искусственный источник света близок к солнечному, и придумали коэффициент цветопередачи.

Как он определяется и рассчитывается? Для его измерения берутся специальные образцы или шаблоны цвета и сравнивается цветовой сдвиг с подопытным светильником.

Первоначально было всего 8 шаблонов, но позже решили добавить к ним еще 6, более насыщенных по оттенку. Первые восемь образцов это основа. Именно они и учитываются в расчетах.

Сравнение сдвигов идет относительно солнечного света или так называемого идеального источника, аналогичного солнечному излучению. Весь процесс выглядит следующим образом.

Берется испытуемая лампочка или светильник, и свет от них поочередно направляется на каждый шаблон.

Далее специальными приборами замеряется цвет, который приобрел шаблон.

После этого, эти же самые образцы освещают солнечным эталонным светом и опять проводят измерения.

Все что осталось — сравнить разницу в цветах между первым и вторым облучением.

Когда сделаны все замеры, высчитывают среднеарифметическое значение между восемью основными шаблонами. Обязательно сравнивают именно 8, а не все 14.

Особенности красного цвета

Полная проверка происходит в отдельных случаях, однако при этом, очень часто в измерения добавляют шаблон №9 — насыщенный красный.

Для чего это делается? Сравнение с ним отвечает за естественность передачи оттенка кожи человека.

Наши глаза очень чутко реагируют на не естественное изменение именно этого оттенка. При некачественном освещении, мы моментально замечаем бледность кожи и все ее дефекты (прыщи, воспаления и т.п.).

Есть теория, что это было заложено в нас изначально с первобытных времен. Когда мать могла по незначительному изменению цвета кожи, моментально определить, болен ее ребенок или нет. Других то способов не существовало.

При этом по цвету лица, легко читались эмоции сородичей.

Хорошими значениями считаются коэффициенты цветопередачи от 90% и выше. При таком свете, глаза не будут напрягаться и уставать, даже если вы делаете какую-то сложную и мелкую работу.

Если у лампочки низкая цветопередача (менее 80Ra), то все предметы выглядят тускло. В результате теряется контрастность.

Отсутствие контрастности воспринимается нашим мозгом как потеря резкости. Он рефлекторно начинает напрягать мышцы глаз, чтобы вернуть резкость в норму.

Отсюда появляется напряжение, быстрая утомляемость и даже головокружение.

А вообще стандартные значения CRI для различных помещений должны быть следующими:

  • от 90 до 100 - музеи, выставки, магазины, витрины
  • от 70 до 90 - общественные здания, офисы, больницы, школы, жилые помещения
  • от 50 до 60 - базы, складские помещения


Кстати, ни лампочки накаливания, ни солнечный свет в небе северного полушария нашей планеты, хоть условно и имеют CRI=100, однако по факту не являются идеалом.

Лампочка с вольфрамовой нитью, довольно слабо передает синие оттенки предметов, а северное небо - красные.

Человеческий глаз начинает хорошо различать разницу в цветопередаче при коэффициентах отличающихся более чем на 5 единиц. А вот отличить светильник с CRI=80 или CRI=84 для нас будет проблематично.

Почему CRI не подходит для светодиодов

Однако в процессе проверок и измерений исследователи выяснили, что у белых светодиодов, есть большие проблемы с точной передачей цвета по девятому шаблону (красному).

С чем это связано? Объясняется это тем, что в его спектре интенсивность в красной области несколько ниже, чем в остальных.

В итоге, данные индекса CRI для большинства светодиодов, получаются не совсем корректными.

Для светильников с результатами CRI>90, нет особого несоответствия. Однако если более пристально подходить к изучению лампочек с CRI<90, то появляются большие вопросы.

Например разные светодиодные светильники, имея вроде бы одинаковый коэффициент цветопередачи, по факту будут освещать предметы совершенно по-разному.

И чем меньше будет этот коэффициент, тем нагляднее вы будете это замечать невооруженным взглядом. Для источников с так называемым непрерывным спектром (солнце, галогенки, вольфрамовые лампы), это не является проблемой.

А вот для белых светодиодов, да.

А ведь именно светодиодные лампочки прочно вымещают в наших квартирах все остальные.

И дело здесь не только в экономии, но и

  • в снижении нагрузки на электропроводку
  • большей долговечности
  • меньшей температуре нагрева

К примеру 1квт галогенок, могут запросто поднять температуру в доме на 2-3 градуса.

  • большим выбором светильников

В особенности для натяжных потолков. У светодиодных нет такого большого ограничения по мощности и температуре.

Поэтому в 2007 году специальная международная комиссия постановила, что все светильники с белыми светодиодами не стоит оценивать при помощи коэффициента CRI.

Внезапно данный индекс оказался уже не "торт". Появилась необходимость придумать новый расчет и новый параметр.

Кстати "погрешность" CRI, в равной степени может сказаться и на других лампах, не только белых светодиодах.

Допустим у вас есть две лампочки. У одной наблюдается цветовой провал в диапазоне 450нм, а у другой в области 534нм. Если их сравнивать насколько они отклонены от "идеального" луча солнца, то результаты для обоих будут почти одинаковы.

Хотя на самом деле, при свечении первой вы будете видеть белый свет, а у второй - фиолетовый.

Новый индекс CQS — и его расчет

Истинные "ценители" света расценили переход на новый индекс как некий заговор. "Раз уже белые светодиоды хреново воспроизводят красную составляющую, давайте просто изменим методику и подгоним ее под нужные нам результаты" - так многие восприняли нововведение.

Таким образом, как бы "пряталась" реальная проблема и просто выпускались новые рекомендации.

Тем не менее, эту методику разработали в 2010 году и назвали ее CQS (Color Quality Scale) - шкала качества света.

Принцип измерения здесь немного похож, но только сравнение производится уже на основе 15 цветов насыщенных шаблонов.

Общий индекс CQS здесь складывается не как среднеарифметическое значение, а берется корень из суммы квадратов всех замеров.

Благодаря этому, сдвиг даже по одному цвету, уже существенным образом отразится на итоговом значении индекса качества цветопередачи, и не будет той визуальной погрешности как с CRI.

Еще в новой методике "красный" не является слишком насыщенным. Поэтому конечная цифра CQS на светодиодах, вполне соответствует визуальным ощущениям человеческого глаза.

Общая же разница между CQS и CRI заключается в малой зависимости нового коэффициента от трех параметров:

  • светлости
  • тональности
  • насыщенности

Замеры по стандарту ТМ-30

Но изыскатели на этом коэффициенте не остановились и разработали еще один стандарт TM-30-15 (не обязательный на сегодняшний день).

Он уже учитывает:

  • точность - Rf (fidelity)
  • насыщенность - Rg (gammut)

Здесь помимо старых искусственных разноцветных пластинок, для сравнения используются и "живые" объекты, встречающиеся в природе.

А всего шаблонов для сравнения, ни много ни мало - 99шт.

Обращали внимание, как сильно отличаются, например, фотографии, сделанные на улице при естественном освещении и в помещении, при освещении искусственном? Почему же так видны отличия? Это связано с таким параметром, как индекс цветопередачи лампы.

Что же это такое? Этот параметр позволяет охарактеризовать, насколько уровень цвета предмета при определенном освещении соответствует действительному уровню его цвета. Подобное определение принято на международном уровне.

Как вы понимаете, при разных типах освещения восприятие цвета предмета может быть различным. Вспомните, как часто обычный человек со здоровым цветом кожи выглядит бледным или желтоватым при нахождении в помещении с искусственным освещением. При этом даже лампы с одинаковым световым потоком, но разных типов могут передать цвет по-разному. Это связано с тем, что для спектра свечения характерна некоторая неравномерность, и цвет передается по-разному в зависимости от энергии лампочки в конкретном цветовом спектре.

Что такое цветопередача, мы разобрались. А ее индекс используется для количественного обозначения восприятия цветов. Он может быть в диапазоне 0-100, и это число показывает, насколько цвета предмета соответствуют естественным при том или ином типе освещения. Конечно, идеальное значение равно ста-,такой свет практически полностью идентичен солнечному в части цветопередачи. Обозначается этот индекс аббревиатурой CRI, что означает colour rendering index.

Метод расчета этого индекса был предложен в 70-х годах прошлого века. Он подразумевал расчет сдвигов цвета от так называемых эталонных значений. Как правило, для расчета берутся 8 цветов цветового спектра, среди которых есть оттенки грязновато-розового, светлого коричневого, оливкового и более насыщенного светлого зеленого, бирюзы, нежно-голубого, светло-фиолетового и пурпура. И чем более наш источник цвета соответствует при цветопередаче эталонным цветам, тем выше его индекс цветопередачи. Чем ниже значение индекса, тем, соответственно, хуже цветопередача.

Индекс цветопередачи ламп накаливания

А ведь совсем не случайно большинство людей предпочитают всем остальным. И это невзирая на тот факт, что эти лампы быстро выходят из строя, неэкономичны и имеют множество превосходящих их, более современных аналогов. Но тем не менее эти лампы, безусловно, впереди по одному параметру – это индекс цветопередачи, который максимально близок к 100 и составляет более 90. Их характеризует и очень хорошая степень передачи цвета (1А-максимальное значение).

Индекс цветопередачи люминесцентных ламп

Эти лампы тоже отличает достаточно высокое значение индекса, но он очень варьируется в зависимости от конструкции. Попросту говоря, чем проще конструкция, тем хуже индекс. Наиболее высоким значением характеризуются лампы с люминофором из пяти компонентов-, он не уступает этому значению у ламп накаливания (то есть составляет от 90 и выше). Если в числе компонентов лампы три, то индекс уже чуть ниже и составляет от 80 до 90, при этом падает и степень передачи цвета до значения 1В. Для еще более простых моделей значение индекса может быть еще ниже и составлять от шестидесяти до 79. Так что, как видите, при выборе очень важно обратить внимание на параметр индекса, иначе качество цветопередачи может вас сильно разочаровать.

Индекс цветопередачи галогенных ламп

Еще одним отличным, с точки зрения цветопередачи, вариантом являются . Значение их индекса цветопередачи также достаточно высоко и, как правило, составляет 90 и более. Но не забывайте, что использование этих ламп потребует от вас подключения понижающего трансформатора, что несколько усложняет процесс их монтажа. Но по части цветопередачи эти лампы являются очень хорошим выбором.

Индекс цветопередачи светодиодных ламп

С цветопередачей не все так просто. Этот показатель очень сильно связан с тем фактом, кто является производителем вашей лампочки. Надо отметить, что колебания в значении индекса в зависимости от фирмы-производителя могут быть довольно значительны и могут составлять от шестидесяти до 89. Класс цветопередачи также у разных светодиодных ламп может быть различным. Но в целом эти лампы считаются тоже весьма неплохим вариантом в части цветопередачи и их можно смело выбирать для своего дома.

А вот покупать так называемые мы вам не советуем. Их индекс цветопередачи очень низок и не превышает сорока, а это значит, что использовать подобные лампы в жилых помещениях не стоит.
Подробней характеристики цветопередачи в соотношении со степенью и коэффициентом цветопередачи можно посмотреть в таблице.

Следует отметить, что не стоит обязательно стремиться к стопроцентному индексу цветопередачи. Диапазон значений индекса, комфортных для зрения человека, составляет от восьмидесяти до ста. Причем разница значений между 90 и 100 глазу не слишком видна.

В зависимости от уровня цветопередачи разные лампы используются в разных помещениях. Это также стоит учитывать при выборе и покупке лампы. Существует шесть основных уровней цветопередачи.
Очень важно использовать лампы 1А в помещениях, где особенно важна цветопередача и яркость освещения. Помимо жилых и офисных помещений к этой категории можно отнести музеи, типографии, а также примерочные в магазинах одежды.

Уровень освещения 1В чаще применяется в бытовых целях, в том числе он широко используется для освещения школьных и дошкольных учебных заведений, спортзалов и стадионов, . Для этих же целей могут использоваться и лампы 2а, которые обладают примерно схожими характеристиками.

Третий класс ламп применяется не так широко, преимущественно там, где не очень важна цветопередача и яркость освещения. Это могут быть , промышленные помещения, где не так важна цветопередача.

А вот лампы 4 класса для помещений не слишком подходят, их цветопередача оставляет желать лучшего.

Индекс (или коэффициент) цветопередачи (обозначения: CRI — color rendering index; R a) показывает, насколько точно или достоверно источник света передает цвета освещаемых объектов по сравнению с солнечным светом или . Чем выше этот показатель, тем более естественными или натуральными выглядят цвета окружающих нас предметов. Конечно, это справедливо только для людей без серьезных дефектов зрения и нарушения восприятия цветов. Им можно эту статью не читать.

Определение индекса цветопередачи

Индекс цветопередачи — это относительная величина, которая может принимать значения от 0 до 100 и характеризующая степень соответствия цвета тела его естественному цвету при освещении его определенным источником света. По методике CIE (1995), разработанной Международной комиссией по освещению, CRI рассчитывается из разницы в цветности, возникающей при сравнительном освещении восьми стандартных цветов тестируемым образцом и эталонным источником света, имеющим ту же . Чем меньше средняя разница, тем выше значение CRI.

Значение индекса цветопередачи

Комфортное для человека (и его глаз) значение CRI лежит в пределах от 80 до 100. Более низкие значения говорят о том, что некоторые цвета могут выглядеть как-то не очень натурально. Так, главный для всех землян и марсиан естественный источник света - Солнце - имеет наилучшую цветопередачу с R a =100.

Индекс цветопередачи может быть таким разным!

Индекс цветопередачи ламп накаливания

Свет ламп накаливания недалеко ушел от солнечного. Их индекс цветопередачи является самым высоким среди всех искусственных источников света и близок к 100, что позволяет получать идеальную передачу цветов. Свечи из IKEA и горящий матрас помогут вам добиться не менее впечатляющего результата, но мы не рекомендуем проделывать это у себя дома. Разве что в гостях.

Индекс цветопередачи галогенных ламп

Ничуть не хуже обычных ламп накаливания в плане цветопередачи, так что можете смело их использовать, если, конечно, у вас получится их правильно подключить.

Индекс цветопередачи люминесцентных ламп

Большинство современных люминесцентных ламп от известных производителей имеют достаточно высокие показатели CRI: от 80 до 90. Но в любом случае стоит обратить внимание на характеристики на упаковке — вас могут ждать неприятные сюрпризы (R a < 75) от очень уж бюджетных моделей.

Индекс цветопередачи светодиодных ламп

Хотя индекс цветопередачи лучших образцов светодиодных ламп может достигать значений 80 и выше, как и у хороших люминесцентных ламп, нужно учитывать, что на рынке все еще довольно много ламп с плохой цветопередачей, не считая других недостатков, связанных с особенностями применения светодиодов.

Индекс цветопередачи газоразрядных ламп высокого давления

Все очень плохо. Ртутные и натриевые лампы имеют самый низкий CRI, не дотягивающий до 40. Правда, отдельно стоит выделить металлогалогенные лампы, которые также относятся к газоразрядным лампам высокого давления, но примененные в них технологии позволили добиться индекса цветопередачи 90 и выше.

До недавнего времени основными источниками искусственного освещения выступали лампы накаливания. Они излучают мягкий, комфортный для глаз свет, но при этом не могут похвастаться высокой энергоэффективностью. КПД стандартной лампочки составляет 3–5%, т. е. основная часть потребляемого электричества перерабатывается в тепловую энергию, а не свет. Светодиоды устранили эти недостатки использования осветительных приборов. Их КПД достигает 80%, что позволило существенно сократить расходы на освещение. Это достоинство обеспечило LED-приборам широкое применение в бытовых и промышленных целях.

Классификация LED-лампочек

Существует несколько классификаций светодиодных ламп. Для разделения этих осветительных приборов на виды используют следующие параметры:

  • область применения (для внутреннего освещения жилых или офисных помещений, для уличных прожекторов, для подсветки взрывоопасных объектов);
  • тип колбы (шар, полусфера, спираль, свеча, капля, трубка);
  • свойства излучаемого цвета.

Кроме этого, LED-лампы бывают прозрачными, матовыми или зеркальными. Такой ассортимент позволяет подобрать источник света с высоким КПД для осветительных приборов любого типа и назначения.

Разновидности и особенности LED-осветителей

Светодиоды поставляются в упаковках с детальным описанием, отображающим основные технические характеристики светодиодных ламп, такие как:

  • класс энергоэффективности;
  • срок службы;
  • мощность;
  • диапазон температур окружающей среды (при какой температуре работают);
  • тип цоколя;
  • величина светового потока;
  • цветовая температура (цветопередача);
  • коэффициент пульсации (выраженность мерцания).

Все современные светодиодные лампочки представляют собой осветительные приспособления с высоким показателем энергоэффективности категории «А» («А+», «А++»). Это означает, что для получения максимально яркого светового потока LED-устройству требуется минимально возможное количество электроэнергии. Причем производители предлагают лампы, работающие при температурах от -35˚C до +90˚C, что также отображается на упаковке. Эти особенности являются главными достоинствами LED-изделий.

При соблюдении рекомендованных производителем условий эксплуатации срок службы основной массы светодиодов достигает 50 тыс. часов непрерывной работы. Мощность лампочки исчисляется в Ваттах (Вт). Значения этого параметра находятся в диапазоне 1–25 Вт, где 1 обозначают самые тусклые источники света, а 25 - самые яркие.

Помимо основных технических показателей на упаковке светодиодных излучателей указывают степени защиты изделия от влаги и пыли, а также уровень напряжения питания, который у большинства ламп составляет 12 или 220 В. Некоторые приборы китайского производства функционируют от напряжения в 110 В.

Цоколь

Для обозначения формы и размера цоколя светодиодов используется следующая маркировка:


Разнообразие цоколей позволяет заменить источники света устаревших модификаций на новые, энергосберегающие приборы.

Световой поток

Характеристика яркости светодиодной лампы измеряется в люменах (лм). До появления светодиодов интенсивность свечения лампочки отождествляли с ее мощностью в Ваттах. Поскольку светодиодные осветители продуцируют световой поток, потребляя в 7–10 раз меньше электроэнергии, чем лампы накаливания, для обозначения яркости LED-устройств ввели новую характеристику - световой поток. На упаковках люмены приводятся в привязке к Ваттам. В зависимости от производителя яркость ламп составляет от 70 лм/Вт (тусклые) до 190 лм/Вт (самые яркие).

Угол направленности светового потока определяет степень рассеивания свечения в пространстве. Этот показатель измеряется в градусах, зависит от конструкции излучателя. Шаровидные лампы без абажура равномерно распределяют свет во все стороны, в то время как источники света с фокусирующими линзами дают узконаправленный луч, освещающий только конкретный предмет.

Цветовая температура

Определяет оттенок свечения, измеряется в градусах Кельвина, диапазон которых включает значения от 1500° до 8000°. При составлении градуации бралась температура, до которой необходимо нагреть абстрактное, абсолютно черное тело, чтобы оно начало излучать свет определенного цвета.

Различают три вида цветовой температуры:

  1. Теплая, как свет от обычной лампы накаливания.
  2. Нейтральная (белая), эталоном которой является дневной свет.
  3. Холодная, для которой характерен голубоватый оттенок свечения.

Ниже представлена шкала Кельвина, схематическая таблица.

Оттенок излучаемого лампой света определяет восприятие человеком цвета освещаемого предмета. Далее на рисунке приведено пространство световых температур.

При равном КПД и потреблении электроэнергии лампы могут совершенно по-разному передавать цвета объектов. Для измерения визуального изменения цвета в зависимости от освещенности используют коэффициент цветопередачи. Индекс цветопередачи светодиодных ламп (CRI) выступает индикатором того, насколько естественно будет выглядеть объект в свете конкретного леда. Индекс измеряется в единицах, обозначаемых символом Ra. Индекс включает значения от 0 до 100 Ra, где 0 - плохая передача цвета, а 100 - максимально натуральная. Цветопередача теплых ламп составляет порядка 90–100 Ra. Холодные LED передают цветовую палитру хуже всего, у них значения индекса не превышают 80 Ra. Наиболее комфортными для глаз считаются леды со значением CRI 80–100 Ra в температурном диапазоне 2500–3500˚К.

Мерцание

Периодические колебания интенсивности светового потока приводят к возникновению специфического мерцания, которое называют пульсацией светодиодных ламп. Для обозначения степени мерцания излучателя ввели коэффициент пульсации, измеряемый в процентах. Он рассчитывается по формуле:

Кп= (Lmax – Lmin) / L0,

где Кп - коэффициент пульсации, Lmax и Lmin - максимальное и минимальное значения интенсивности светового потока, а L0 - его средний показатель.

Излучатели с высоким коэффициентом пульсации перегружают зрение, вызывают сухость глаз, а также негативно влияют на нервную систему человека. Длительное использование таких осветительных приборов приводит к мигреням и хроническим заболеваниям глаз, поэтому стоит отдавать предпочтение лампам с наименьшими коэффициентами.

Изначально LED-устройства для освещения имели заметное мерцание и высокие показатели коэффициента пульсации. Эти недостатки устранили посредством установки драйвера, который стабилизирует подачу тока к излучателю. Добросовестные производители оснащают свою LED-продукцию качественными драйверами, поэтому у них показатели мерцания не превышают 4%. Некачественные лампочки характеризуются пульсацией в пределах 20–50%.

Важные аспекты

При выборе светодиодных ламп для дома необходимо уделить внимание калибру и типу цоколя, а также размеру колбы. Перед покупкой стоит измерить плафон осветительного прибора или вовсе взять его с собой, чтобы избежать приобретения неподходящей по размеру лампочки.

Для ламп, используемых в бытовых целях, стоит выбирать устройства с индексом передачи цвета CRI более 80 Ra при цветовой температуре 2500–3500˚К (теплый белый). Наилучшее рассеивание света обеспечивают источники с углом рассеивания потока 150–170˚. Их лучше всего использовать для потолочных осветительных приборов. Для декоративной или точечной подсветки целесообразнее приобретать устройства с углом направленности светового потока до 40˚.

Некоторые лампы оснащены регуляторами интенсивности свечения. Такие устройства стоят дороже обычных LED-приборов, но обладают несколькими достоинствами:

  • возможность менять яркость подсветки в помещении;
  • более качественное исполнение изделия;
  • высокий КПД;
  • увеличенный срок эксплуатации.

Недостатки настраиваемых ламп:

  • дороговизна;
  • ограничения по сфере применения.

Опираясь на приведенные в статье сведения, каждый сможет подобрать лед, который не только позволит сократить траты на электроэнергию, но и обеспечит комфортную подсветку помещению любого назначения.

Видео по теме

Фактически показывает, насколько точно будет передан цвет освещаемого предмета при освещении исследуемой лампой и эталоном (Эталон - солнечным светом или лампой накаливания – цвета не искажаются).
Цветовая температура - фактически цвет света, которым светится лампа . (пример: цвет испускаемого света натриевой лампы и цвет люминесцентной лампы различны. У натриевой ламы он желтый, у люминесцентной чаще всего белый)
Цветовой температурой лампы является температура, до которой необходимо нагреть некое аморфное черное тело, чтобы цвет испускаемого им света был примерно того же спектрального состава и цветовой окраски, что и свет исследуемой лампы. Единица измерения – К (градус Кельвина) цвет свечения, для примера:
Если температура «черного тела» повышается, то синяя составляющая в спектре возрастает, а красная составляющая убывает. Лампа накаливания с тепло-белым светом имеет, например, цветовую температуру 2700 К, а люминесцентная лампа с цветностью дневного света - 6000 К
Цветность света - Разные люди воспринимают один и тот же цвет по-разному. Образно говоря, понятие того или иного цвета - это всего лишь результат неписанного соглашения между людьми называть определённое ощущение зрительного нерва конкретным цветом, к примеру, «красным». Также известно, что с возрастом хрусталик желтеет, что приводит к нарушениям в идентификации цветов. То есть можно сказать, что адекватное цветовое восприятие - это результат скорее психологического процесса, чем физического.

Как видите, науке пришлось немало повозиться, что бы систематизировать и строго научно определить характеристики различных цветов спектра! Если цвет поверхности не нагретого неизлучающего предмета, то есть одну из его отражательных (а значит и фильтрующих) характеристик, можно описать длиной волны или обратной ей величиной - частотой, то с нагретыми и излучающими телами мы поступим по-другому.
Представим себе абсолютно чёрное тело, то есть тело, которое не отражает никакие световые лучи. Для примитивного эксперимента пусть это будет спираль из вольфрама в электрической лампочке. Соединим эту несчастную лампочку с электрической цепью через реостат (изменяемое сопротивление), выгоним всех из ванной комнаты, выключим освещение, подадим ток и будем наблюдать за цветом спирали, постепенно понижая сопротивление реостата. В один прекрасный момент наше абсолютно чёрное тело начнёт светиться еле заметным красным цветом. Если замерить в этот момент его температуру, то окажется, что она будет примерно равна 900 градусам по Цельсию. Поскольку все излучения происходят от скорости движения атомов, которая равна нулю при нуле градусов Кельвина (-273 °С) (на чём и основан принцип сверхпроводимости), то в дальнейшем забудем про шкалу Цельсия, и будем пользоваться шкалой Кельвина.
Таким образом, начало видимого излучения абсолютно чёрного тела наблюдается уже при 1200К, и соответствует красной границе спектра. То есть, попросту говоря, красному цвету соответствует цветовая температура 1200К. Продолжая нагревать нашу спираль, замеряя при этом температуру, мы увидим, что при 2000К её цвет станет оранжевым, а затем, при 3000К - жёлтым. При 3500К наша спираль перегорит, так как будет достигнута температура плавления вольфрама. Однако если бы этого не произошло, то мы увидели бы, что при достижении температуры 5500К цвет излучения был бы белым, становясь при 6000К голубоватым, и при дальнейшем нагревании вплоть до 18000К всё более голубым, что соответствует фиолетовой границе спектра. Эти цифры и назвали «цветовой температурой» излучения. Каждому цвету соответствует его цветовая температура. Психологически трудно привыкнуть к тому, что цветовая температура пламени свечи (1200К) в десять раз ниже (холоднее) цветовой температуры морозного зимнего неба (12000К). Тем не менее это так, цветовая температура отличается от обычной температуры. Цветность света очень хорошо описывается цветовой температурой.