История появления и развития процессора. История процессоров

12.04.2019

Сегодня уже никто не удивится тому факту, что любимая семейная фотография, хранимая и оберегаемая от коварных неожиданностей в виде, например, воды от незадачливых соседей с верхнего этажа, забывших закрыть кран, может представлять собой какой-то непонятный набор цифр и, вместе с тем, оставаться семейной фотографией. Домашний компьютер стал столь же банальной вещью, что и «ящик» с голубым экраном. Не удивлюсь, если скоро домашний ПК будет приравниваться к бытовой электротехнике. Кстати, «двигатель прогресса», всем знакомая Intel, это нам и пророчит, продвигая идею цифрового дома.
Итак, персональный компьютер занял свою нишу во всех сферах жизни человека. Его появление и становление как неотъемлемого элемента уклада жизни уже стало историей. Когда мы говорим о ПК, то имеем в виду IBM PC-совместимые системы, и вполне справедливо. Мало кто из читателей вообще своими глазами видел не IBM PC-совместимую систему, тем более пользовался такой.

Все компьютеры IBM PC и совместимые с ними основываются на процессорах с архитектурой х86. Честно говоря, иногда мне кажется, что это не только процессорная архитектура, а архитектура всего ПК, вроде идеологии строения системы в целом. Сложно сказать, кто кого тянул за собой, то ли разработчики периферийного оборудования и конечных продуктов подстраивались под архитектуру х86, или, наоборот, они прямо или косвенно формировали пути развития х86 процессоров. История х86 — не ровная асфальтированная дорожка, а совокупность различных по «степени тяжести» и гениальности шагов разработчиков, сильно переплетающихся с экономическими факторами. Знание истории процессоров х86 вовсе не обязательно. Сравнивать процессор сегодняшней реальности с его давними предками попросту бессмысленно. Но чтобы отследить общие тенденции развития и попытаться сделать прогноз, экскурс в историческое прошлое архитектуры х86 необходим. Конечно, серьезный исторический труд может занять не один том, и претендовать на объективный и широкий охват темы бессмысленно. Поэтому вдаваться в перипетии «лайф-тайма» каждого поколения процессоров х86 не будем, а ограничимся важнейшими событиями во всей эпопее х86.

1968 год
Четверо сотрудников компании Fairchild Semiconductor: Боб Нойс, менеджер и изобретатель интегральной микросхемы в 1959 году, Гордон Мур, возглавлявший научные исследования и конструкторские разработки, Энди Гроув, специалист в области химических технологий, и Артур Рок, осуществлявший финансовую поддержку, основали фирму Intel. Это название образовано от Integral Electronic.


1969 год
Бывшим директором маркетингового отдела Fairchild Semiconductor Джерри Сандерсом и несколькими его единомышленниками была основана фирма AMD (Advanced Micro Devices), занявшаяся производством микроэлектронных устройств.

1971 год
При выполнении одного из заказов на микросхемы оперативной памяти сотрудник Intel Тед Хофф предложил создать универсальную «умную» ИМС. Разработку возглавил Федерико Феджин. В итоге родился первый микропроцессор Intel 4004.

1978 год
Весь период до этого — предыстория, хотя и неотрывная от случившихся далее событий. В этом году началась эра х86 — фирмой Intel был создан микропроцессор i8086, который имел частоты 4.77,8 и 10MHz. Смешные частоты? Да, это частоты современных калькуляторов, но с них все начиналось. Чип изготавливался по 3-мкм технологии и имел внутренний 16-битный дизайн и 16-битную шину. То есть появились 16-битная поддержка и, следовательно, 16-разрядные операционные системы и программы.
Чуть позже, в том же году, был разработан i8088, основным отличием которого являлась 8-разрядная внешняя шина данных, обеспечивавшая совместимость с 8-разрядной обвязкой и памятью, использовавшейся ранее. Также доводом в его пользу была совместимость с i8080/8085 и Z-80, относительно низкая цена. Как бы там ни было, но в качестве ЦП для своего первого ПК IBM выбрала i8088. С тех пор процессор Intel станет неотъемлемой частью персонального компьютера, а сам компьютер долго будут именовать IBM PC.

1982 год
Объявлен i80286. «Двести восемьдесят шестой» стал первым процессором х86, проникшим на советское и постсоветское пространство большим количеством. Тактовые частоты 6, 8, 10 и 12 МГц, производился по 1.5-мкм техпроцессу и содержал около 130000 транзисторов. Данный чип имел полную 16-битную поддержку. Впервые с появлением i80286 появилось такое понятие, как «защищенный режим», но тогда еще разработчики программного обеспечения не использовали его возможности в полной мере. Процессор мог адресовать более 1 Мб памяти, переключившись в защищенный режим, но назад вернуться можно было после полного перезапуска, а сегментированная организация доступа к памяти требовала значительных дополнительных усилий при написании программного кода. Из этого вытек тот факт, что i80286 использовался скорее как быстрый i8086.

Производительность чипа по сравнению с 8086 (а особенно по сравнению с i8088) увеличилась в несколько раз и достигала 2.6 миллионов операций в секунду. В те годы производители стали активно использовать открытую архитектуру IBM PC. Тогда же начался период клонирования процессоров архитектуры х86 от Intel сторонними производителями. То есть чип выпускался другими фирмами в виде точной копии. Intel 80286 стал основой новейшего по тем меркам ПК IBM PC/AT и его многочисленных клонов. Основными преимуществами нового процессора оказались повышенная производительность и дополнительные режимы адресации. И главное — совместимость с существующим программным обеспечением. Естественно, процессор был также лицензирован сторонними производителями…
В том же году фирма AMD заключает с Intel лицензионное соглашение и на его основе начинает производство клонов процессоров x86.

1985 год
В этом году произошло, наверное, самое значительное событие в истории процессоров с архитектурой х86 — компанией Intel был выпущен первый процессор i80386. Он стал, можно сказать, революционным: 32-разрядный многозадачный процессор с возможностью одновременного выполнения нескольких программ. В сущности, самые современные процессоры представляют собой ничто иное, как быстрые 386-е. Современное программное обеспечение использует ту же архитектуру 386, просто современные процессоры делают то же самое, только быстрее. Intel 386™ стал большим шагом вперед по сравнению с i8086 и i80286. В сущности, самые современные процессоры представляют собой ничто иное, как быстрые 386-е. Современное программное обеспечение использует ту же архитектуру 386, просто современные процессоры делают то же самое, только быстрее. Intel 386™ стал большим шагом вперед по сравнению с i8086 и i80286. Intel 386™ имел значительно улучшенную систему управления памятью по сравнению с i80286, а встроенные средства многозадачности позволили разработать операционную систему Microsoft Windows и OS/2.

В отличие от i80286 Intel 386™ мог свободно переключаться из защищенного режима в реальный и обратно и имел новый режим — виртуальный 8086. В этом режиме процессор мог выполнять несколько различных программных нитей одновременно, так как каждая из них выполнялась на изолированной «виртуальной» 86-й машине. В процессоре были введены дополнительные режимы адресации памяти с переменной длиной сегмента, что значительно упростило создание приложений. Процессор производился по 1-мкм технологическому процессу. Впервые процессор Intel был представлен несколькими моделями, которые образовали семейство 386-х. Здесь и начинается знаменитая маркетинговая игра компании Intel, позднее вылившаяся в разделение одного разработанного ядра на два торговых варианта, в некотором круге пользователей и специалистов называемое: «Pentium для богатых, Celeron для бедных». Хотя что здесь плохого — и волки сыты, и овцы целы.
Были выпущены следующие модели:

386DX с частотой 16, 20, 25 и 33 МГц имел 4 ГБ адресуемой памяти;
386SX с частотой 16, 20, 25 и 33 МГц в отличие от 386DX имел 16, а не 32-битную шину данных, и соответственно 16 Мб адресуемой памяти (подобным образом в свое время процессор i8088 был «создан» из i8086 за счет уменьшения разрядности внешней шины для обеспечения совместимости с имеющимися внешними устройствами);
386SL в октябре 1990 года — мобильная версия процессора Intel 386SX с частотой 20 и 25MHz.

1989 год
Корпорация Intel выпускает свой очередной процессор — Intel 486™ DX с частотой 25, 33 и 50 МГц. Intel 486 ™ DX стал первым процессором в семействе 486 и имел значительный (более чем в 2 раза при той же частоте) прирост производительности по сравнению с семейством 386. У него появился кэш первого уровня объемом 8 Кб, интегрированный в чип, а максимальный размер L2-кэша увеличился до 512 Kb. В i486DX был интегрирован блок вычислений с плавающей точкой (FPU — Floating Point Unit), который раньше выполнялся в виде внешнего математического сопроцессора, устанавливаемого на системную плату. Кроме того, это первый процессор, ядро которого содержало пятиступенчатый конвейер. Таким образом, команда, прошедшая первую ступень конвейера, продолжая обрабатываться на второй, высвобождала первую для следующей инструкции. По своей сути, процессор Intel 486™DX представлял собой быстрый Intel 386DX™, объединенный с математическим сопроцессором и 8 кБ кэш-памяти на одном кристалле. Такая интеграция позволила увеличить скорость коммуникаций между блоками до очень высоких значений.
Фирмой Intel была развернута рекламная кампания с лозунгом «Intel: The Computer Inside». Пройдет время, и она превратится в знаменитую рекламную кампанию «Intel Inside».

1991 год
Был создан собственный процессор фирмы AMD — Am386™. Этот был частично построен под действием лицензии, частично по собственной разработке и работал на максимальной частоте 40 МГц, что превышало аналогичный показатель процессора Intel.
Немного ранее произошли первые судебные разбирательства между Intel и AMD по поводу намерения AMD продавать свой клон Intel 386™. Крепко укрепившая свои позиции Intel перестала нуждаться в раздаче лицензий сторонним производителям и делиться пирогом собственного приготовления ни с кем не собиралась. В результате AMD впервые вступила на рынок х86 процессоров как конкурент. За ней последовали и другие компании. Так началось продолжающееся до сих пор великое противостояние двух гигантов (остальные конкуренты сошли с дистанции), которое дало миру много хорошего. Негласным лозунгом конкурентов Intel стала фраза: «то же, что у Intel, но за меньшую цену».
В то же время Intel выпускает i486SX, в котором для удешевления продукта отсутствует блок FPU (интегрированный сопроцессор), что, конечно же, негативно сказалось на производительности. Других отличий от i486DX не было.

1992 год
С выходом процессора Intel 486DX2 впервые был использован коэффициент умножения частоты шины. До этого момента внутренняя частота ядра была равна частоте внешней шины данных (FSB), но появилась проблема ее наращивания, так как локальные шины периферии (в то время VESA VL-bus), да и сами периферийные устройства проявляли нестабильность работы при частоте, превышающей 33 МГц. Теперь при частоте шины FSB 33 МГц тактовая частота ядра составляла 66 МГц за счет умножения на 2. Такой прием надолго вошел в историю и используется поныне, только множитель в современных CPU может превышать 20. Intel 486™ DX2 надолго стал популярным процессором и продавался в огромных количествах, впрочем, как и его клоны от конкурентов (AMD, Cyrix и другие), которые теперь уже имели некоторые отличия от «интеловского оригинала».

1993 год
В свет вышел первый суперскалярный процессор х86, то есть способный выполнять более одной команды за такт — Pentium (кодовое название P5). Это достигалось наличием двух независимых параллельно работающих конвейера. Первые процессоры имели частоту 60 и 66 МГц и получили 64-разрядную шину данных. Впервые кэш-память первого уровня была разделена на две части: отдельно для инструкций и данных. Но одним из самых значительных нововведений был полностью обновленный блок вычислений с плавающей точкой (FPU). Фактически до этого на платформе x86 еще не было настолько мощного FPU, и лишь через многие годы после выхода Intel Pentium конкуренты смогли достичь его уровня производительности. Также впервые в процессор был включен блок предсказания ветвлений, с тех пор активно развивающийся инженерами.

Суть заключается в следующем: в любой программе присутствует множество условных переходов, когда в зависимости от условия выполнение программы должно пойти по тому или иному пути. В конвейер можно поместить только одну из нескольких ветвей перехода, и если он оказывается заполненным кодом не той ветви, то его приходится очищать и заполнять заново несколько тактов (в зависимости от количества ступеней конвейера). Для решения этой проблемы и используются механизмы предсказания ветвлений. Процессор содержал 3,1 млн. транзисторов и изготавливался по 0.8-мкм процессу. Все эти изменения позволили поднять производительность нового процессора на недосягаемую высоту. В действительности же оптимизация кода «под процессор» первое время была редкой и требовала применения специальных компиляторов. И еще долго новейшему процессору приходилось выполнять программы, предназначенные для процессоров семейств 486 и 386.
В том же году появилось второе поколение Pentium на ядре P54, в котором были устранены все недостатки Р5. При изготовлении использовались новые технологические процессы 0.6, а позднее и 0.35-мкм. До 1996 года новым процессором были охвачены тактовые частоты от 75 до 200 МГц.
Первый Pentium сыграл важную роль в переходе на новые уровни производительности персонального компьютера, дал толчок и определил ориентиры развития на будущее. Но при большом рывке в производительности он не привнес никаких кардинальных изменений в архитектуру х86.

1994 год
Появившиеся Intel 486™DX4, AMD Am486DX4 и Cyrix 4х86 продолжили линейку 486-х и использование умножения частоты шины данных. Процессоры имели утроение частоты. Процессоры DX4 от Intel работали на 75 и 100 МГц, а Am486DX4 от AMD достиг 120 МГц. В процессорах стала широко применяться система управления энергопотребления. Других принципиальных отличий от 486DX2 не обнаружилось.

1995 год
Анонсирован Pentium Pro (ядро P6). Новая процессорная шина, три независимых конвейера, оптимизация под 32-битовый код, от 256 Kb до 1 Mb L2-кэша, интегрированного в процессор, причем работающего на частоте ядра, усовершенствованный механизм предсказания ветвлений — по количеству нововведений новый процессор чуть ли не бил рекорды, ранее установленные Intel Pentium.

Процессор позиционировался на использование в серверах и имел очень высокую цену. Самое примечательное, что вычислительное ядро Pentium Pro фактически не было ядром архитектуры х86. Машинные коды x86, поступающие в CPU, внутри декодировались в RISC-подобный микрокод, и уже именно его исполняло ядро процессора. Набор CISC-команд, как набор команд процессора х86, подразумевал переменную длину команд, что определяло сложность нахождения каждой отдельной команды в потоке и, следовательно, создавало трудности в разработке программ. CISC-команды являются сложными и комплексными. RISC-команды упрощенные, короткие, требующие значительно меньшее время на выполнение команды с фиксированной длиной. Использование RISC-команд позволяет значительно увеличить распараллеливание процессорных вычислений, то есть использовать больше конвейеров и, следовательно, уменьшать время исполнения команд. Ядро P6 легло в основу трех следующих процессоров Intel — Pentium II, Celeron, Pentium III.
В этом году состоялось также знаковое событие — компания AMD купила фирму NexGen, имеющую к тому времени передовые архитектурные разработки. Слияние двух инженерных команд позже принесет миру процессоры х86 с отличной от Intel микроархитектурой и даст толчок новому витку жестокой конкуренции.
На Микропроцессорном Форуме впервые был представлен новый процессор MediaGX от Cyrix, и его отличительной особенностью являются интегрированные контроллер памяти, графический ускоритель, интерфейс шины PCI и производительность, соизмеримая с производительностью Pentium. Это была первая попытка такой плотной интеграции устройств.

1996 год
Появился новый процессор AMD К5 с суперскалярным RISC-ядром. Однако RISC-ядро с его набором команд (ROP-команд) скрыты от программного обеспечения и конечного пользователя, а команды х86 преобразуются в RISC-команды. Инженеры AMD использовали уникальное решение — команды х86 частично преобразуются еще во время помещения в кэш-память процессора. В идеале процессор K5 может выполнять до четырех команд х86 за один такт, но на практике в среднем за такт обрабатываются только 2 инструкции.

Кроме того, традиционные для RISC-процессоров изменения порядка вычислений, переименование регистров и другие «приемы» позволяют увеличить производительность. Процессор К5 явился детищем объединенной команды инженеров AMD и NexGen. Максимальная тактовая частота так и не превысила 116 МГц, но производительность К5 была выше, чем у процессоров Pentium с такой же тактовой частотой. Поэтому в маркетинговых целях впервые в практике маркировки CPU был использован рейтинг производительности (Performance Rating), который явно противопоставлялся тактовой частоте равных по производительности Pentium. Но процессор все-таки не мог достойно потягаться с ним, так как Pentium уже тогда достиг частоты 166 МГц.
В том же году увидел свет Intel Pentium MMX. Главное нововведение процессора P55C — дополнительные команды MXX к набору команд, который почти не претерпевал изменений со времен создания процессоров третьего поколения. Технология MMX — это использование команд, ориентированных на работу с мультимедиаданными. Специальный набор команд SIMD (Single Instruction — Multiple Data — одна команда — множественные данные) повышает производительность при выполнении векторных, циклических команд и обработке больших массивов данных — при применении графических фильтров и различных спецэффектов.

По сути это 57 новых инструкций, призванных ускорить обработку видео и звука. Остальными изменениями ядра стали уже типичные увеличение объема кэш-памяти, улучшение схем работы кэш-памяти и других блоков. Производился процессор по 0.35-мкм процессу, 4.5 млн. транзисторов. Максимальная частота 233 МГц.
Начался выпуск суперскалярных процессоров Cyrix 6х86 на ядре М1, который на самом деле являлся процессором 5-го поколения, отличительной особенностью которого были «глубокие» конвейеры и использование классических х86 команд без каких-либо дополнительных наборов инструкций.
В конце года, пока в Intel велась разработка PentiumII, снова заявила о себе AMD, выпустив процессор шестого поколения К6. В основу AMD-K6 легло ядро, разработанное инженерами компании NexGen для процессора Nx686 и существенно доработанное в AMD. Как и К5, ядро К6 оперировало не х86 инструкциями, а RISC-подобным микрокодом. Процессор поддерживал команды MMX и 100-мегагерцевую системную шину и имел увеличенный до 64 Кб объем кэш-памяти первого уровня. Вскоре стало ясно, что PentiumII окажется К6 не по зубам.

с 1997 года до наших дней…
К 1997 году уже сложились направления инженерных разработок архитектуры х86 ведущих производителей. Следующий этап в развитии процессоров x86 можно охарактеризовать как противостояние архитектур, которое продолжается и поныне. На дистанцию по крупному счету вышли: захватившая 90 % рынка Intel, упорно с ней бьющаяся AMD, многократно проигрывающая в производственных мощностях, и Cyrix, которая впоследствии будет куплена компанией VIA, а затем и вовсе, не выдержав конкуренции, канет в неизвестность. Остальные производители не смогут достойно конкурировать и будут вынуждены искать другие ниши на рынке. Намечен переход от CISC к RISC-подобным микрокомандам в меньшей степени у Intel, в большей у AMD. Причем на вход и выход процессоров х86 по-прежнему поступают CISC-команды. А почему, собственно, стали вводить в х86 процессоры с родной ей CISC-архитектурой внутреннюю RISC-архитектуру, позволяющую углублять распараллеливание выполнения команд? Да просто из CISC-архитектуры х86 еще во времена четвертого поколения было выжато все, и способов повышать производительность на уровне базисных наборов команд не осталось.

Принципиально новых изменений и прорывов в развитии архитектуры с тех пор не было, хотя современные процессоры быстрее, например, «386-го» в сотни раз. Инженеры оттачивают и совершенствуют уже существующие микроархитектуры ядер, а новые представляют собой лишь переработанные старые. Все усовершенствования и попытки повысить производительность сводятся к оптимизации существующих решений, введению различных исправлений и «костылей» для хромающих FPU, системы организации конвейеров и кэшей. Избитыми, но все же действенными средствами является постоянное увеличение объема кэш-памяти и частоты шины FSB. Современные процессоры имеют до 2 Мб кэш-памяти, работающей на частоте ядра, а частоты системных шин достигают 800 МГц, и то с использованием множителя, так как реальная генерируемая частота всего 200 МГц. За последние 7 лет в процессоры х86 были введены следующие «новшества-подпорки»: кэш-память окончательно переехала на кристалл процессора и переведена на частоту ядра, введены и постоянно совершенствуются блоки предсказания ветвлений как компенсация увеличению длины (количества стадий) конвейера, механизм динамического изменения порядка исполнения инструкций, уменьшающий количество холостых тактов, механизм предвыборки данных для более рационального использования кэш-памяти. Множатся дополнительные наборы команд: SSE, SSE2, SSE3, 3DNow!, 3DNow Professional. Если MMX еще можно было с натяжкой назвать дополнительным набором инструкций х86, то все последующие наборы вряд ли, так как к командам х86 добавлять уже нечего. Смысл же появления этих наборов заключается в попытке как можно меньше использовать блок вычислений с плавающей точкой (FPU) в таком виде, в каком он есть, так как, обладая высокой производительностью, он отличается малой приспособленностью для высокоточных вычислений, капризностью внутренней архитектуры и ее непредсказуемостью, что усложняет жизнь программистам. То есть фактически ввели специализированный расчетный блок, ориентированный не на вычисления вообще, а на реальные, часто встречающиеся задачи, выполнять которые предлагается в обход классического FPU.

Как-то это больше похоже на борьбу с последствиями интеграции математического сопроцессора в CPU в далеком 1989 году. Во всяком случае, если задуматься и подсчитать, то большую часть времени процессор тратит «на себя» — на всевозможные преобразования, предсказания и многое другое, а не на выполнение программного кода.
Глядя назад, видно, что не все было гладко. Введение коэффициента умножения и полученная в итоге асинхронность, а также увеличение количества стадий конвейера — все это палки о двух концах. С одной стороны, это позволило увеличить тактовые частоты процессора почти до 4 ГГц (и это еще не предел), с другой — получили узкое место в виде шины FSB и проблему с условными переходами. Но всему свое время, и тогда, видимо, это были разумные решения, так как всегда присутствует очень злой экономический фактор.
Нельзя не отметить, что по-настоящему блистательных успехов за последние годы добились в области полупроводникового производства. Уже освоен 90-нанометровый технологический процесс изготовления процессоров х86, который позволяет достигать близких к СВЧ-диапазону тактовых частот, а количество транзисторов в кристалле достигает 170 млн (Pentium 4 EE).
Мы привыкли считать, что процессор — это главное устройство в ПК и что именно он задает тон глобальной компьютеризации. А ведь победоносное шествие архитектуры х86, длящееся более четверти века, началось не конкретно с процессора, а с конечного пользовательского устройства в целом — IBM PC. Тогда еще в компании IBM не догадывались, какое блистательное будущее ждет этот ПК и, не придав проекту никакого значения, сделали его открытым для всех. Именно открытости концепции, успеху программного обеспечения и MS DOS обязан успех IBM PC. А процессор в нем мог стоять любой архитектуры, но так уж получилось, что IBM выбрала i8088 и i8086, а потом уже все закрутилось, завертелось… Но из процессора х86 в итоге не получилось эдакого универсального вычислителя на все случаи жизни или «умного» устройства, вездесущего и все способного сделать, как об этом мечтали раньше. Да и «закон» Гордона Мура (каждые 2 года количество транзисторов в кристалле процессора будет увеличиваться вдвое) стал законом только для Intel, которая поставила его на острие своей маркетинговой политики, а отказываться от данного слова ей неудобно, видимо.

Сегодня можно уже твердо сказать, что архитектура х86 зашла в тупик. Вклад ее в популяризацию компьютера как устройства огромен, и с этим никто не спорит. Однако нельзя быть актуальной вечно. Молодой и сильный некогда жеребец стал старой клячей, которую продолжают запрягать в телегу. Аппетиты пользователей ненасытны, и вскоре архитектура х86 не сможет их удовлетворить. Конечно, переход связан с титаническими усилиями в связи с тем, что многомиллионный мировой парк ПК в своем почти абсолютном большинстве использует процессоры архитектуры х86, и что самое важное, использует программное обеспечение для х86 кода. Одним днем все не перевернуть, нужны годы. Но разработки 64-битных процессоров и программ набирают обороты с завидной скоростью, Intel представила Itanium2, а AMD уже почти год выпускает свои Athlon 64, которые имеют совсем не х86 архитектуру, хотя и полностью совместимы с ней и еще могут выполнять все старые программы. Таким образом, можно сказать, что AMD Athlon 64 положил начало уходу от архитектуры х86 и тем самым открыл переходный период.
Как видите, заявления о том, что процессор — самый быстро развивающийся компонент ПК, далеко не беспочвенны. Представьте себе, какими процессорами будут оснащаться компьютеры наших детей. Подумать страшно!

В Одноклассники

Продолжая тему первой статьи - история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) - архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC - Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании - 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора - R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц - 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS - R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц - 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия - R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц - 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц - 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц - 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб - 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM - SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц - 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий - внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой - в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц - 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года - 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление - P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных - 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация - архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины - теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц - 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота - 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня - 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы - 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц - 3,8 ГГц, частота системной шины - 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу - 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.
Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 - K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров - Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.

1. Волков Ю.А. Microsoft Office 2000 Professional. 6 книг в одной. – М.: Лаборатория Базовых Знаний, 2001 – 944 с.

2. Симонович С.В. Информатика. Базовый курс – СПб.: Питер, 1999. – 640 с.

3. Информатика. 10-11 класс /Под ред. Н.В. Макаровой. – СПб.: Питер, 2000. – 304 с.

4. Стоцкий Ю. Самоучитель Office-2000. – СПб.: Питер, 1999. – 576 с.

Министерство образования Российской Федерации

Рязанская Государственная

Радиотехническая Академия

Кафедра АиММ

Курсовая работа на тему:

«Процессоры»

Рязань 2004

1.История появления процессоров. ---3стр.

2.Процессор и его составляющие. ---7стр.

3. Современная микропроцессорная технология фирмы Intel. ---11стр.

3,1. Первые процессоры фирмы Intel. ---11стр.

3,2. Процессор 8086/88. ---12стр.

3,3. Процессор 80186/88. ---12стр.

3,4. Процессор 80286. ---12стр.

3,5. Процессор 80386. ---12стр.

3,6. Процессор 80486. ---13стр.

3,7. Процессор i486SX. ---14стр.

3,8. Intel OverDrive процессор. ---14стр.

3,9. Процессор Pentium. ---16стр.

3,10. Процессор Pentium Pro---19стр.

3,10,1. Общее описание. ---19стр.

3,10,2. Два кристалла в одном корпусе. ---20стр.

3,10,3. Значения тестов для некоторых чипов фирмы Intel. ---21стр.

3,11. Intel® Pentium® 4 с технологией Hyper-Threading, Intel® Pentium® 4, Intel® Pentium® III Processor , Intel® Pentium® II-в сравнительной характеристике. ---22стр.

3,12. Hyper-Threading: зачем она нужна? ---24стр.

3,13. Pentium 5. ---27стр.

4. AMD---28стр.

4,1. Развитие семейства K-6. ---28стр.

4,2. Технология 3DNow! ---31стр.

4,3. AMD Duron 650. ---34стр.

4,4.AMD Athlon. ---37стр.

4,4,1. Архитектура. Общие положения. ---39стр.

4,5.Чипсеты. ---42стр.

4,6. AMD Athlon (Thunderbird) 800. ---42стр.

4,7. AMD Athlon XP 1800+ (1533 MHz). ---44стр.

4,8. Athlon XP 3200+.---45стр.

5.Многопроцессорные системы. (SMP). ---48стр.

5,1. Многопроцессорные системы. Opteron. ---49стр.

6. Советы по выбору процессора Intel и AMD. ---56стр.

7.Другие фирмы-производители и некоторые процессоры этих фирм. ---57стр.

7,1. Cyrix. ---57стр.

7,2.Rise. ---57стр.

7,3.Centaur. ---58стр.

7,4. VIA. ---58стр.

7,5. SiS. ---59стр.

7,6. Transmeta. ---59стр.

7,7. Compaq.---59стр.

8. Разгон процессора или overclocking. ---61стр.

9.Системы охлаждения процессора.--- 64стр.

9,1. Радиаторы. ---64стр.

9,2. Вентиляторы.--- 67стр.


История появления процессоров.

С чего же всё началось?

Может быть, всё началось с изобретения транзистора в 1947 году?

А может, всё началось с первого электронного компьютера ENIAC (1946 г.), который умел считать на три порядка быстрее релейных машин (прорыв!). Система насчитывала 18 тыс. электронных ламп, занимала помещение 9x15 кв. метров, весила 30 т, потребляла 150 кВт, имела тактовую частоту 100 кГц (разгону не поддавалась), складывала за 0,2 мс, умножала за 2,8 мс.

И, конечно, у ENIAC имелся ворох недостатков. Во-первых, десятичная система счисления. Во-вторых, чрезвычайно сложное программирование, на перепрограммирование элементарной задачи уходили недели человекотруда. Третье вытекает из второго - очень низкая надёжность системы из-за большой зависимости от человеческого фактора, а на поиск неисправности уходили часы и даже дни.

А может, всё начиналось в 1705 году, когда Фрэнсис Хуксби изобрёл свой электростатический генератор?

Вот он, самый первый электрический генератор, основанный на трении, назывался он автором “influence machine” (машина влияний).

Началось это всё в апреле 1969 года, когда некая японская компания Busicom заказала у молодой, но уже очень амбициозной Intel несколько специальных микросхем для своих будущих калькуляторов. Сама же Intel к тому времени занималась относительно мелкими заказами типа биполярной статической памяти Шотки.

Так вот, прикинув смету на заказ японцев, Intel приходит к выводу, что необходимо разрабатывать десятки микросхем. Говорят, Les Vadasz (тогдашний президент Intel) даже грязно выругался – у них просто не было достаточно людей для подобных разработок. Кроме того, японцы хотели сделать чипам дорогостоящую (по тем временам) упаковку и программировать микросхемы на языке высокого уровня, что, естественно, скорости работы им не добавляло. Но Intel, поднапрягши свои мозги, подтвердил народную русскую пословицу о том, что голь на выдумку хитра.

Вот тут на сцену и выходит Тед Хофф младший (1937 г. рождения), который предлагает все функции возложить на один-единственный центральный процессор.

Идея нравится Бобу Нойсу (на тот момент большой шишке маленькой компании), он всячески помогает Теду продолжить свои разработки. Японские же инженеры, постоянно навещающие Санта-Клару, ставят палки в колёса нового изобретения, не принимая дизайн и идеи Теда, параллельно разрабатывая свои микросхемы. Так отвергалось изобретение, которое в будущем будет стоять в одном ряду с двигателем внутреннего сгорания, радио и электрической.лампочкой. И тем не менее, на очередном собрании где-то в октябре 1969 года японцы понимают все преимущество идеи Теда и дают полное добро на новую разработку от Intel “компьютер на чипе”.

К тому времени помогал Теду младшему некий Стен Мэйзор. Вместе они работали над системой команд, так как в архитектурных нюансах конструирования микрочипа не сильно-то и разбирались. Злые языки даже утверждают, что Хофф и Ко. “позаимствовали” систему команд из разработок IBM и Digital.

Intel постоянно искал талантливых разработчиков, и в апреле 1970 года к группе присоединяется Федерико Фэджин. Трудолюбие его не знало предела, на протяжении девяти месяцев всё возможное время Федерико посвятил разработке новых чипов.

Первый рабочий камень сошел с конвейера в январе 1971 года. Федерико получил камень около шести часов вечера, после чего заперся в лаборатории, нацепил свой футуристический (по тем временам) защитный костюм, защитные очки и стал проводить опыты. Вышел из Intel lab он только в 3 часа ночи и, качаясь от многомесячного перенапряжения, отправился домой, где его давно ожидала всё понимающая жена Эльвия. С порога бросив: “Он работает, он работает!”, он принялся её радостно обнимать.

Однако процессор содержал несколько серьёзных ошибок, и после напряженного труда, Федерико к февралю представляет вторую, подправленную, версию.

Много позже разгорятся споры, кто же из родителей первого процессора “круче”. Интересно, что об этом думают сами изобретатели:

Стен Мазор: “...самый крутой был Фэджин. Этот парень днём и ночью сидел в лабораториях и тестировал, тестировал, тестировал новое детище. Я сомневаюсь, что без Федерико этот чип действительно когда-либо заработал бы.”

Федерико Фэджин: “Ха-ха! Написать систему команд (фундаментальная работа Хоффа и Стена в 1971 году) мог каждый выпускник колледжа.”

Les Vadasz: “Безусловно, Федерико внёс огромный вклад в разработку. И, тем не менее, нельзя преуменьшать заслугу Теда Хоффа, ведь это он предложил концептуальную модель - новый скачок в информационных технологиях.”

Выходит так, что каждый внёс большой вклад в изобретение. Убрать из цепочки даже одного из них – и, вполне возможно, 4004 так бы и не увидел свет. Кроме того, задолго до 1969 года Нойс, когда он ещё работал в Fairchild Semiconductor, придумал напылять транзисторы на кремний, вместо того, чтобы изнурительным ручным трудом пытаться соединить каждый транзистор проводками с нарезанными треугольниками кремния.

Итак, 15 ноября 1971 года (в красный день календаря) Intel представила миру свой новый микрочип. Официальный День Рождения Процессора состоялся!

Характеристика нового чипа:

4-разрядный, 2300 р-канальных МОП-транзисторов, кристалл площадью 3,8x2,8мм, тактовая частота 108кГц.

Обеспечивал адресацию 4Кб ПЗУ и 512байт ОЗУ.

Позже, в 1974 году Федерико уйдёт из Intel, основывает свою компанию Zilog которая будет напрямую конкурировать с Intel.

После его ухода роль Фэджина в создании i4004 будет всячески преуменьшаться менеджерами Intel. Имя Федерико в Санта-Кларе будет всеми силами придаваться забвению.

Производство первого процессора постоянно затягивалось, что никак не радовало Busicom. Прежде всего, из-за растущей конкуренции на рынке калькуляторов. Получилось так, что к выходу i4004 Busicom просто не имел необходимой суммы денег на оплату услуг Intel. И тогда принимается соломоново решение: Intel урезает стоимость контракта на 60 тыс. долларов, но при этом все права на новую разработку остаются у Intel.

Запатентовали новое изобретение на имя всем известной, всеми любимой троицы: Хоффа, Мазора и Фэджина.

Как ни странно, рынок далеко не сразу хорошо принял нововведение. Пройдут годы и десятилетия, прежде чем новое изобретение раскроется во всей красе. Маркетологи Intel на всевозможных форумах и выставках достижений будут рассказывать о своём изобретении и его преимуществах, в космос полетит спутник, в сердце которого будет биться 4004, заработают калькуляторы в конце концов обанкротившейся Busicom.

И, тем не менее, Intel всерьёз воспринимать не будут. Стандартное мнение середины 70-ых, главный инженер DEC:

“Intel никогда не будет представлять серьёзной угрозы. Мы не берём их в расчет”.

Пройдёт 10 лет со времени изобретения первого процессора. И тогда Intel заговорит со всеми конкурентами в полный голос.

История развития процессоров

Характеристики МП

Контрольные вопросы

История развития процессоров с 1971 года до наших дней

Интересен тот факт, что первый процессор был выпущен на 10 лет раньше первого ком­пьютера IBM PC. Компания Intel создала свой первый процессор в 1971 году, а компания IBM свой первый ПК - в 1981 году. Но даже теперь, спустя более четверти века, мы продол­жаем использовать системы, в той или иной мере сходные по архитектуре с первым ПК. Про­цессоры, установленные в наших компьютерах сегодня, большей частью имеют обратную совместимость с процессором 8088, который компания IBM выбрала для своего первого персо­нального компьютера в 1981 году.

15 ноября 2001 года микропроцессор отпраздновал свое 30-летие. За эти годы его быстро­действие увеличилось более чем в 18500 раз (с 0,108 МГц до 2 ГГц). Процессор 4004 был представлен 15 ноября 1971 года; он работал на частоте 108 кГц (108000 тактов в секунду, или всего 0,1 МГц). Про­цессор 4004 содержал 2300 транзисторов и производился с использованием 10-микронной технологии. Это означает, что все линии, дорожки и транзисторы располагались от других элементов на расстоянии около 10 микрон (миллионная часть метра). Данные передавались блоками по 4 бит за такт, а максимальный адресуемый объем памяти составлял 640 байт. Процессор 4004 предназначался для использования в калькуляторах, однако в конечном ито­ге нашел и другие применения в связи с широкими возможностями программирования. На­пример, процессор 4004 использовался для управления светофорами, при анализе крови и даже в исследовательской ракете Pioneer 10, запущенной NASA!

В апреле 1972 года Intel выпустила процессор 8008, который работал на частоте 200 кГц. Он содержал 3500 транзисторов и производился все по той же 10-микронной технологии. Шина данных была 8-разрядной, что позволяло адресовать 16 Кбайт памяти. Этот процессор предназначался для использования в терминалах и программируемых калькуляторах.

Следующая модель процессора, 8080, была анонсирована в апреле 1974 года. Этот процессор содержал 6000 транзисторов и мог адресовать уже 64 Кбайт памяти. На нем был собран первый персональный компьютер (не PC) Altair 8800. В этом компьютере использовалась операционная система CP/M, а Microsoft разработала для него интерпретатор языка BASIC. Это была первая массовая модель компьютера, для которого были написаны тысячи программ.

Со временем процессор 8080 стал настолько известен, что его начали копировать. В конце 1975 года несколько бывших инженеров Intel, занимавшихся разработкой процессора 8080, создали компанию Zilog. В июле 1976 года эта компания выпустила процессор Z-80, который представлял собой значительно улучшенную версию 8080. Этот процессор был несовместим с 8080 по контактным выводам, но сочетал в себе множество различных функций, например интерфейс памяти и схему обновления ОЗУ (RAM), что давало возможность разрабатывать более дешевые и простые компьютеры. В Z-80 был также включен расширенный набор ко­манд процессора 8080, позволяющий использовать его программное обеспечение. В этот про­цессор вошли новые команды и внутренние регистры, поэтому программное обеспечение, разработанное для Z-80, могло использоваться практически со всеми версиями 8080. Перво­начально процессор Z-80 работал на частоте 2,5 МГц (более поздние версии работали уже на частоте 10 МГц), содержал 8500 транзисторов и мог адресовать 64 Кбайт памяти.


Компания Intel не остановилась на достигнутом, и в марте 1976 года выпустила процессор 8085, который содержал 6500 транзисторов, работал на частоте 5 МГц и производился по 3-микронной технологии. Несмотря на то что он обогнал процессор Z-80 на несколько меся­цев, ему так и не удалось достичь популярности последнего. Он использовался в основном в качестве управляющей микросхемы различных компьютеризованных устройств.

В этом же году компания MOS Technologies выпустила процессор 6502, который был аб­солютно не похож на процессоры Intel. Он был разработан группой инженеров компании Mo­torola. Эта же группа работала над созданием процессора 6800, который в будущем трансфор­мировался в семейство процессоров 68000. Цена первой версии процессора 8080 достигала 300 долларов, в то время как 8-разрядный процессор 6502 стоил всего около 25 долларов. Та­кая цена была вполне приемлема для Стива Возняка (Steve Wozniak), и он встроил процессор- 6502 в новые модели Apple I и Apple II. Процессор 6502 использовался также в системах, соз­данных компанией Commodore и другими производителями. Этот процессор и его преемники с успехом работали в игровых компьютерных системах, в число которых вошла приставка Nintendo Entertainment System (NES). Компания Motorola продолжила работу над созданием серии процессоров 68000, которые впоследствии были использованы в компьютерах Apple Macintosh. Второе поколение компьютеров Mac использовало процессор PowerPC, являю­щийся преемником 68000. Сегодня компьютеры Mac снова перешли на архитектуру PC и ис­пользуют с ними одни процессоры, микросхемы системной логики и прочие компоненты.

В июне 1978 года Intel выпустила процессор 8086, который содержал набор команд под ко­довым названием х86. Этот же набор команд до сих пор поддерживается в самых современных процессорах Core 2 и AMD Athlon 64 X2. Процессор 8086 был полностью 16-разрядным - внут­ренние регистры и шина данных. Он содержал 29000 транзисторов и работал на частоте 5 МГц. Благодаря 20-разрядной шине адреса он мог адресовать 1 Мбайт памяти. При создании про­цессора 8086 обратная совместимость с 8080 не предусматривалась. Но в то же время значи­тельное сходство их команд и языка позволили использовать более ранние версии программ­ного обеспечения. Это свойство впоследствии сыграло важную роль для быстрого перевода программ системы CP/M (8080) на рельсы PC.

Несмотря на высокую эффективность процессора 8086 его цена была все же слишком вы­сока по меркам того времени и, что гораздо важнее, для его работы требовалась дорогая мик­росхема поддержки 16-разрядной шины данных. Чтобы уменьшить себестоимость процессо­ра, в 1979 году Intel выпустила процессор 8088 - упрощенную версию 8086. Процессор 8088 использовал те же внутреннее ядро и 16-разрядные регистры, что и 8086, мог адресовать 1 Мбайт памяти, но в отличие от предыдущей версии использовал внешнюю 8-разрядную шину данных. Это позволило обеспечить обратную совместимость с ранее разработанным 8-разрядным процессором 8085 и тем самым значительно снизить стоимость создаваемых системных плат и компьютеров. Именно поэтому IBM выбрала для своего первого ПК "урезанный" процессор 8088, а не 8086.

Это решение имело далеко идущие последствия для всей компьютерной индустрии. Про­цессор 8088 был полностью программно-совместимым с 8086, что позволяло использовать 16-разрядное программное обеспечение. В процессорах 8085 и 8080 использовался очень по­хожий набор команд, поэтому программы, написанные для процессоров предыдущих версий, можно было легко преобразовать для процессора 8088. Это, в свою очередь, позволяло разра­батывать разнообразные программы для IBM РС, что явилось залогом его будущего успеха. Не желая останавливаться на полпути, Intel была вынуждена обеспечить поддержку обратной совместимости 8088/8086 с большинством процессоров, выпущенных в то время.

В те годы еще поддерживалась обратная совместимость процессоров, что ничуть не меша­ло вводить различные новшества и дополнительные возможности. Одним из основных изме­нений стал переход от 16-разрядной внутренней архитектуры процессора 286 и более ранних версий к 32-разрядной внутренней архитектуре 386-го и последующих процессоров, относя­щихся к категории IA-32 (32-разрядная архитектура Intel). Эта архитектура была представ­лена в 1985 году, однако потребовалось еще 10 лет, чтобы на рынке появились такие операци­онные системы, как Windows 95 (частично 32-разрядные) и Windows NT (требующие ис­пользования исключительно 32-разрядных драйверов). И только еще через шесть лет появилась операционная система Windows XP, которая была 32-разрядной как на уровне драйверов, так и на уровне всех компонентов. Итак, на адаптацию 32-разрядных вычислений потребовалось 16 лет. Для компьютерной индустрии это довольно длительный срок.

Теперь наблюдается очередной "скачок" в развитии архитектуры ПК - компании Intel и AMD представили 64-разрядные расширения 32-разрядной архитектуры Intel IA-64 (Intel Archi­tecture, 64-bit - 64-разрядная архитектура Intel), выпустив процессоры Itanium и Itanium 2. Од­нако данная архитектура была абсолютно несовместима с существовавшей 32-разрядной. Архи­тектура IA-64 была анонсирована в 1994 году в рамках проекта по разработке компаниями Intel и HP нового процессора с кодовым именем Merced; первые технические детали были опубликованы в октябре 1997 года. В результате в 2001 году был выпущен процессор Itanium, поддерживающий архитектуру IA-64.

К сожалению, IA-64 не являлась расширением архитектуры IA-32, а была совершенно но­вой архитектурой. Это хорошо для рынка серверов (собственно, для этого IA-64 и разрабаты­валась), однако совершенно неприемлемо для мира ПК, который всегда требовал обратной совместимости. Хотя архитектура IA-64 и поддерживает эмуляцию IA-32, при этом обеспечи­вается очень низкая производительность.

Компания AMD пошла по другому пути и разработала 64-разрядные расширения для архи­тектуры IA-32. В результате появилась архитектура AMD64 (которая также называется x86-64). Через некоторое время Intel представила собственный набор 64-разрядных расширений, кото­рый назвала EM64T (IA-32e). Расширения Intel практически идентичны расширениям AMD, что означает их совместимость на программном уровне. В результате впервые в истории сложи­лась ситуация, когда Intel следовала за AMD в разработке архитектуры ПК, а не наоборот.

Для того чтобы 64-разрядные вычисления стали реальностью, необходимы 64-разрядные операционные системы и драйверы. В апреле 2005 года компания Microsoft начала распро­странять пробную версию Windows XP Professional x64 Edition, поддерживающую дополни­тельные инструкции AMD64 и EM64T. Основные производители компьютеров уже постав­ляют готовые системы с предустановленной Windows XP Professional x64 и с 64-разрядной системой Windows Vista; они также разработали 64-разрядные драйверы для достаточно со­временных моделей устройств. Выпускаются и 64-разрядные версии Linux, благодаря чему каких-либо серьезных препятствий для перехода к 64-разрядным вычислениям нет.

Последним достижением можно считать выпуск компаниями Intel и AMD двух- и четы-рехъядерных процессоров. Они содержат два или четыре полноценных ядра на одной под­ложке; в результате один процессор теоретически может выполнять работу двух или четырех процессоров. Хотя многоядерные процессоры не обеспечивают значительного увеличения быстродействия в играх (которые в основном предполагают выполнение данных в один по­ток), они просто незаменимы в многозадачной среде. Если вы когда-нибудь пытались одно­временно выполнять проверку компьютера на наличие вирусов, работать с электронной по­чтой, а также запускать какие-то другие приложения, то наверняка знаете, что такая нагрузка может "поставить на колени" даже самый быстрый одноядерный процессор. Поскольку двухъядерные процессоры сейчас выпускаются обеими компаниями, Intel и AMD, шансы на то, что вам удастся выполнить работу гораздо быстрее благодаря многозадачности, значи­тельно возрастают. Современные двухъядерные процессоры также поддерживают 64-разряд­ные расширения AMD64 или EM64T, что позволяет воспользоваться преимуществами как двухъядерности, так и 64-разрядных вычислений.

Персональные компьютеры прошли долгий путь развития. Первый используемый в ПК процессор 8088 содержал 29 тыс. транзисторов и работал с частотой 4,77 МГц. Процессор AMD Athlon 64 FX содержит больше 105 млн. транзисторов, процессор Pentium 4 670 (ядро Prescott) работает с частотой 3,8 ГГц и содержит 169 млн. транзисторов, преимущественно благодаря наличию кэш-памяти второго уровня L2 объемом 2 Мбайт. Двухъядерные процес­соры, содержащие два ядра и кэш-память на одной подложке, характеризуются еще большим количеством транзисторов. Процессор Intel Pentium D содержит 230 млн. транзисторов, а AMD Athlon 64 X2 - более 233 млн. Последние процессоры Core 2 Duo и Core 2 Quad содер­жат 291 и 582 млн. транзисторов соответственно; при этом в последний интегрирована кэш­память второго уровня объемом 8 Мбайт. Многоядерная архитектура и постоянно растущий объем кэш-памяти второго уровня приводят к постоянному росту количества транзисторов. Скоро эта отметка перевалит за один миллиард. Все это является практическим подтвержде­нием закона Мура, в соответствии с которым быстродействие процессоров и количество со­держащихся в них транзисторов удваивается каждые 1,5-2 года.

ПРИМЕЧАНИЕ В сфере выпуска микропроцессоров с фирмой Intel постоянно конкурирует фирма AMD. Микропроцессоры фирмы AMD выпуска 2003- 2004 годов (Athlon ХР, Athlon 64) мало в чем уступают процессорам Pentium 4, а в некоторых режимах работы даже превосходят последние по быстродействию. Но, как и прежде, МП AMD сильнее греются (их штатная температура - 55-80 °С, в то время, как у МП Pentium 30-60 °С), поэтому для них необходим мощный вентилятор и надежная система защиты от катастрофического перегрева. Все МП Pentium такой системой снабжены: у них имеется датчик, который при превышении температуры 120-130 °С мгновенно выключает МП, спасая его от «сгорания». У МП Pentium есть еще более совершенная система - Thermal Monitor, принудительно замедляющая работу микропроцессора при превышении допустимой температуры

Продолжая тему первой статьи - история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) - архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC - Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании - 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора - R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц - 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS - R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц - 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия - R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц - 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц - 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц - 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб - 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM - SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц - 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий - внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой - в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц - 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года - 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление - P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных - 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация - архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины - теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц - 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота - 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня - 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы - 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц - 3,8 ГГц, частота системной шины - 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу - 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.
Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 - K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров - Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.