Как найти линию уровня. Простой класс для построения линий уровня двумерной сеточной функции

26.04.2019

Инструкция

При построении линий уровня исходите из того, что они являются проекциями на плоскость с нулевой аппликатой линий пересечения графика заданной функции с некоторой горизонтальной плоскостью. Аппликата этой плоскости сечения и является константой, к которой нужно приравнять уравнение функции, чтобы получить координаты точек линии. Она может меняется с заданным в условиях задачи шагом, если построить требуется набор линий. А если построить нужно всего одну линию уровней, в условиях могут быть даны координаты точки лежащей на ней. Графики с этой страницы можно сохранить или отредактировать в интерактивном режиме.

Приведите заданную в условиях задачи функцию к виду f(x,y) = const. Например, если дана z = x² + y² - 4*y, ее можно записать в альтернативной форме, чтобы лучше представить форму графика функции, и приравнять к константе c: c+4 = x²+(y-2)². Объемный график такой функции представляет собой бесконечный , а все его сечения горизонтальной плоскостью, поднятой на разные , (т.е. искомые линии уровней) будут концентрическими кругами с радиусом, определяемым по формуле √(c+4).

Подставьте вместо константы c заданное в условиях значение для линии уровня. Если оно не дано - выберите сами, исходя из области значений функции. Например, для приведенного выше примера минимальным значением константы может быть число -4. Константу можно приравнять к 5 и в этом случае графиком функции будет круг с радиусом √(5+4) = 3 и центром в точке с абсциссой, равной 0 и ординатой, равной 2.

Если нужно построить несколько линий уровней, повторите предыдущий шаг нужное число раз.

В интернете можно найти сервисы, которые помогут с построением линий уровней. Например, ниже приведена ссылка на сервис WolframAlpha. В поле ввода на его странице введите формулу функции и щелкните по кнопке со значком равенства. Использованную в примере функцию z = x² + y² - 4*y надо вводить в таком виде: x^2+y^2-4*y. Через несколько секунд на странице появятся двух- и трехмерные цветные графики с линиями уровней, а также фигуры, описываемой формулой, альтернативные формы ее записи и другие функции, которые можно использовать при построении линий уровней.

Источники:

  • Сервис WolframAlpha

Не каждому хочется быть семейным деспотом, но даже самые робкие и самодостаточные люди нуждаются в том, чтобы к их мнению хотя бы прислушивались. Как правильно выстроить линии влияния ? Влиять можно только на того, кто в чем-либо нуждается, поэтому рассмотрим, как использовать потребности партнера для получения от него желаемого, используя пирамиду Маслоу.

Инструкция

В основе сферы потребностей человека лежат потребности , это в первую очередь жажда, голод и половое влечение. Партнеров дрессируют как собаку Павлова при использовании всех методов, но этот метод наименее тонкий. Так, некоторые жены в молодости лишают мужа близких отношений за малейшую провинность, то же делают мужья в более по отношению к , которые не угодили. Однако гораздо эффективнее использовать этот метод положительно, то есть в ответ на уступки дарить любимому пьянящую, феерическую близость.

Выше в иерархии стоит потребность в безопасности. Каждый человек хочет жить комфортно, со стабильным укладом жизни, ничего не опасаясь. Когда обиженная жена вдруг отказывается готовить для мужа, она неосознанно ломает его бытовые привычки, причиняя боль. Это не всегда разумная политика, в негативных ситуациях лучше вести себя нейтрально, а малейшие позитивные изменения вознаграждать любимым блюдом мужа или тем, с которым у вас связаны романтические ассоциации.

Следующие два уровня рассмотрим вместе, потому что они близки по смыслу – это потребности в уважении и любви. Оскорбления больно ранят, а известный вопрос «Ты меня ?» с последующими попытками манипулировать изрядно портят кровь и мужчинам, и женщинам. А ведь на этом уровне многие люди очень зависимы и уязвимы. Поощрение правильного поведения достигается путем искренних похвал, особенно при посторонних, нежных прикосновений и влюбленных взглядов.

Венчает пирамиду потребность в самореализации. Неправильное поведение здесь – высмеивание вкусов, духовных нужд и стремлений любимого. После каждого нужного Вам решения не скупитесь на знаки внимания к творчеству партнера. Это может проявляться в мелочах, например,вы смеетесь над его удачными шутками и пересказываете их другим людям со ссылкой на автора. Также хорошо создавать любимому человеку условия для творчества в той сфере, где он действительно талантлив.

Конечно, можно добиваться поставленных задач путем лишения партнера необходимого. Но по-настоящему укрепить и обогатить отношения можно только стараясь удовлетворить потребности близкого человека по высшему классу. Беззаветная и неэгоистичная любовь поможет Вам угадать, в отдельно взятой ситуации.

Видео по теме

Обратите внимание

Пользуясь свойством линейности задачи, соединяем эти точки так называемой переходной прямой. Линия влияния, составленная из двух построенных ветвей графика S3−4 (x) и переходной прямой образуют линию влияния усилия S3−4 , означающую зависимость этого усилия от места положения единичной нагрузки (рис. 97). Строим линию влияния усилия в стойке 3-8 при движении единичного груза понизу.

Источники:

  • Кинематический метод построения линий влияния в балке в 2019

Мир, который нас всех окружает, имеет три измерения, а вот лист бумаги или холст, на котором мы пытаемся изобразить окружающую реальность, увы, всего-навсего двухмерный. Для того, чтобы изображаемые нами объекты казались максимально объёмными и реалистичными, нужно соблюдать определенные правила и верно выстраивать перспективу .

Вам понадобится

  • лист бумаги, карандаш, линейка

Инструкция

Далее определяем, где относительно линии горизонта будет располагаться предмет. Если он находится на уровне глаз (то есть на линии горизонта), то мы смотрим на предмет прямо. Если предмет выше линии горизонта, мы смотрим на него снизу, соответственно, в этом случае становится видно нижнюю часть . Если же предмет поместить ниже линии горизонта, то видимой окажется верхняя часть. Строим предмет, проверяем при помощи линейки, чтобы все параллельные линии сходились в одной точке.

Видео по теме

Обратите внимание

Также при построении преспективы нужно помнить не только о том, что все параллельные прямые сходятся в одной точке, но и о том, что по мере удаления все изображаемые предметы уменьшаются. Сильно удаленные предметы и вовсе превращаются в точки.

В последнее время кровельные материалы с прозрачным покрытием все чаще используются при строительстве гаражей. Преимущество прозрачной крыши состоит в том, что она пропускает большое количество дневного света, а уровень освещения позволяет работать без дополнительного искусственного освещения.

Вам понадобится

  • - рулетка;
  • - фломастер;
  • - дрель;
  • - шурупы;
  • - шуруповерт;
  • - прозрачный пластик;
  • - уплотнительные кольца;
  • - герметик;
  • - профилированный пенопласт.

Инструкция

Замерьте крыши с помощью рулетки. Разметьте кровельное покрытие так, чтобы его листы ложились внахлест. Ширина нахлеста – полтора сантиметра. Отметьте линию среза цветным фломастером. Учтите, что торец должен примыкать к кромке под углом 90 градусов.

Просверлите в листах пластика отверстия под шурупы. Диаметр отверстия должен быть больше диаметра метизов на 4 мм. Закрепите на с помощью шурупов. Крепления должны находиться на каждом втором гребне рельефного листа. Пластик – достаточно хрупкий материал, поэтому в процессе его крепления ограничьте механическое воздействие. Рекомендуется использовать – шуруповерт.

При монтаже кровельного покрытия необходимо установить уплотнительные кольца и пластмассовые колпачки между и стенами. В качестве дополнительного уплотнителя можно использовать профилированный , который крепится с помощью шурупов в сквозных отверстиях.

Видео по теме

Обратите внимание

Крыша гаража будет смотреться правильно и красиво лишь в том случае, если стропильные рамы имеют одинаковую форму и правильно выставлены. Поэтому при производстве подготовительных и кровельных работ следует использовать шаблоны. В качестве такого шаблона используется первая сборная рама.

Полезный совет

Чтобы в процессе резки прозрачное покрытие не смещалось, его нужно зажать инструментом, используя деревянные дощечки в качестве прокладок. Пластиковое кровельное покрытие лучше резать пилой с мелкими зубьями. Инструмент нужно слегка наклонить и работать им без нажима. В противном случае ножовочное полотно заклинит.

Источники:

  • Устройство разных видов крыш гаражей в 2019

С наступлением лета хочется изменить свой гардероб, добавить в него новые краски и фасоны. Не обязательно для этого идти в магазин - некоторые модели одежды можно сшить самостоятельно. Одним из самых простых в изготовлении предметов одежды по праву считается сарафан. Достаточно выбрать хорошую легкую ткань, сделать выкройку и сшить все детали вместе.

Вам понадобится

  • - бумага;
  • - карандаш;
  • - сантиметровая лента;
  • - линейка;
  • - ножницы.

Инструкция

Возьмите сантиметровую ленту и измерьте следующие расстояния: ДСП – длина спины до талии, ДСБ – длина спины до бедер, ПГ – расстояние от плеча до верхней точки груди, ОТ – объем талии, ОБ – объем бедер, ОГ – объем груди, ВТ – расстояние между верхними точками груди, ДИ – длина изделия (от плеча до подола).

Возьмите большой лист бумаги (лучше специальной бумаги для выкроек с миллиметровой разметкой) и начертите прямоугольник, длина которого равна ДИ, а ширина равна четверти ОГ. Если ваш объем бедер больше, чем объем груди, ширина прямоугольника должна быть равна четверти ОБ. Это будет половинка переда. Cразу отметьте одну из вертикальных сторон как середину.

Найдите линию талии, груди и бедер. Для этого от верхней границы прямоугольника отмерьте расстояния, равные ПГ, ДСТ, и ДСБ и проведите на этом уровне горизонтальные линии.

Найдите верхнюю точку груди. Для этого по линии груди от середины переда отмерьте половину ВТ. Проведите от этой точки вертикальную черту через весь прямоугольник.

В месте пересечения этой черты с линией талии сделайте вытачку, для этого вправо и влево от точки пересечения отложите по 2 – 4 см. Соедините эти две точки с верхней точкой груди и с линией бедер. У вас должен получиться длинный вертикальный ромб. Вторую вытачку сделайте вдоль бокового шва (получится половина ромба).

Оформите верхнюю часть сарафана по своему желанию в виде буквы «Л». Можете сделать круглый, треугольный или прямой вырез. Пройму сделайте низкую или высокую, в зависимости от вашей фигуры. На вершине буквы «Л» (на пересечении проймы и выреза) закрепите бретели.

Таким же образом постройте выкройку спинки. Отличие спинки от переда в том, что верхняя часть будет просто горизонтально срезана, по высоте пересечения линии проймы с боковой линией.

Вырежьте детали выкройки сарафана и приступайте к шитью.

Подмостки – это площадки возле береговой линии, как будто парящие над водой.

Обычно они деревянные и представляют собой продолжение садовой тропинки. На подмостки можно поставить деревянную беседку или скамейку, сидя на которой приятно ловить рыбу или просто любоваться прудом. А если в водоеме можно купаться, то более удобного места для ныряний не найти.

Проектирование и установка подмостков – интересная и творческая задача:

1. Сначала устанавливаются сваи, их можно сделать из металлической трубы (100х100 мм),

2. Затем к ним крепится деревянная или металлическая рама, к которой уже крепятся доски настила. Между ними для вентиляции древесины оставляются зазоры.

3. На берегу через каждые три метра, сооружаются фундаментные столбы, на которые опирается настил. Они должны возвышаться над водой на 20-30 см., учитывая то, что в периоды дождей уровень воды повышается. По мнению специалистов, подмостки делаются не больше 25% от зеркала воды.

Пусть Z = F (M ) – функция, определенная в некоторой окрестности точки М(у; х); L ={ Cos ; Cos } – единичный вектор (на рис. 33 1=, 2=); L – направленная прямая, проходящая через точку М ; М1(х1; у1), где х1=х+х и у1=у+у – точка на прямой L ; L – величина отрезка ММ1 ; Z = F (х+х, у+у)- F (X , Y ) – приращение функции F (M ) в точке М(х; у).

Определение. Предел отношения , если он существует, называется Производной функции Z = F ( M ) в точке M ( X ; Y ) по направлению вектора L .

Обозначение.

Если функция F (M ) дифференцируема в точке М(х; у) , то в точке М(х; у) существует производная по любому направлению L , исходящему из М ; вычисляется она по следующей формуле:

(8)

Где Cos И Cos - направляющие косинусы вектора L .

Пример 46. Вычислить производную функции Z = X 2 + Y 2 X в точке М(1; 2) по направлению вектора ММ1 , где М1 – точка с координатами (3; 0).

. Найдем единичный вектор L , имеющий данное направление:

Откуда Cos = ; Cos =- .

Вычислим частные производные функции в точке М(1; 2) :

По формуле (8) получим

Пример 47. Найти производную функции U = Xy 2 Z 3 в точке М(3; 2; 1) В направлении вектора MN , где N (5; 4; 2) .

. Найдем вектор и его направляющие косинусы:

Вычислим значения частных производных в точке М :

Следовательно,

Определение. Градиентом Функции Z = F (M ) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным и, взятым в точке М(х; у).

Обозначение.

Пример 48. Найти градиент функции Z = X 2 +2 Y 2 -5 в точке М(2; -1) .

Решение . Находим частные производные: и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Следовательно,

Аналогично определяется производная по направлению для функции трех переменных U = F (X , Y , Z ) , выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных : в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z = F (X , Y ) , имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F (X 0 , Y 0 ) . Рассмотрим график функции. Через точку (X 0 , Y 0 , F (X 0 , Y 0 )) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0) , рассматриваемый геометрически как вектор, приложенный в точке (X 0 , Y 0 , F (X 0 , Y 0 )) , будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2) Градиент функции F (X , Y ) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0 . Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0 . Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом . Координаты этого вектора равны:

Антиградиент функции F (X , Y ) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0 . Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X , Y ) из области определения функции F (X , Y ) , таких, что F (X , Y )= Const , где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Определение. Линией уровня функции U = F ( X , Y ) называется линия F (X , Y )=С на плоскости XOy , в точках которой функция сохраняет постоянное значение U = C .

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С , которое состоит из точек трехмерного пространства с координатами (X , Y , F (X , Y )= Const ), которые, с одной стороны, принадлежат графику функции Z = F (X , Y ), с другой - лежат в плоскости, параллельной координатной плоскости ХОУ , и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z = Const и линию пересечения спроектировать на плоскость ХОУ . Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ .

Определение. Множество линий уровня называют Картой линий уровня .

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением , или Направлением наискорейшего роста .

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Пример 50. Найти линии уровня функции U = X 2 + Y 2 .

Решение. Уравнение семейства линий уровня имеет вид X 2 + Y 2 = C (C >0) . Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро - и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F (X , Y )=10х1/3у2/3 , где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

5х + 10у = 30,

Т. е. определяют линию уровня функции:

G (X , Y ) = 5х + 10у.

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30 . Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Определение. Поверхностью уровня функции U = F ( X , Y , Z ) называется поверхность F (X , Y , Z )=С, в точках которой функция сохраняет постоянное значение U = C .

Пример 52. Найти поверхности уровня функции U = X 2 + Z 2 - Y 2 .

Решение. Уравнение семейства поверхностей уровня имеет вид X 2 + Z 2 - Y 2 . Если С=0 , то получаем X 2 + Z 2 - Y 2 =0 – конус; если C <0 , то X 2 + Z 2 - Y 2 =С – Семейство двуполостных гиперболоидов.

При обработке данных в предметных областях, связанных с научной деятельностью, часто возникает необходимость в построении и визуализации функции двух независимых переменных. Типичным примером является необходимость визуального представления результатов решения двумерных дифференциальных уравнений в частных производных, получаемых в виде так называемых сеточных функций.

Предлагается простой класс для построения линий уровня (изолиний) функции: Z=F(X,Y) в виде линий на плоскости X-Y, удовлетворяющих уравнениям Z=const (где const - набор заданных значений).

Предполагается, что функция Z задана в виде массива z на произвольной сетке с четырехугольными ячейками. Сетка задается двумя массивами x, y, где J и K размеры сетки.

Значения функции определены в углах четырехугольной ячейки. В каждой ячейке проверяется прохождение рассчитываемой линии уровня через ее грани и, при условии, что линия проходит через ячейку, вычисляются координаты пересечения линии уровня с гранями. Внутри ячейки линия проводится прямолинейным отрезком.

Исходный текст снабжен подробными комментариями.

Файл LinesLevels.cs:

Using System.Collections.Generic; using System.Linq; using System.Windows; namespace WpfLinesLevels { public class LinesOfLevels { private int J, K; private double[,] X; private double[,] Y; private double[,] Z; // Список изолиний public List Lines { get; set; } ///

/// Подготовка /// /// Массив уровней /// Координаты X области /// Координаты Y области /// Сеточная функция public LinesOfLevels(double _levels, double[,] _x, double[,] _y, double[,] _z) { Lines = new List(_levels.Count()); foreach (double l in _levels) { Lines.Add(new LineLevel(l)); } X = _x; Y = _y; Z = _z; J = X.GetLength(0); K = X.GetLength(1); } /// /// Расчет изолиний. /// public void Calculate() { for (int j = 0; j < J - 1; j++) for (int k = 0; k < K - 1; k++) { Ceil ir = new Ceil(j, k, X, Y, Z); for (int l = 0; l < Lines.Count(); l++) ir.AddIntoLineLevel(Lines[l]); } } } /// /// Одна изолиния /// public class LineLevel { // Список точек изолинии в виде пар точек // принадлежащих одной четырехугольной ячеейке public ListPairs { get; set; } // Уровень изолинии public double Level { get; set; } public LineLevel(double _level) { Level = _level; Pairs = new List(); } } /// /// Пара точек изолинии, принадлежащая одной ячейке /// public class PairOfPoints { public ListPoints { get; set; } public PairOfPoints() { Points = new List(); } } /// /// Угол ячейки. /// Индексы для определения одного угла четырехугольной ячейки /// internal struct Dot { internal int j { get; set; } internal int k { get; set; } internal Dot(int _j, int _k) { j = _j; k = _k; } } /// /// Четырехугольная ячейка сетки. Определяет текущую ячейку. /// Рассчитывает отрезки изолиний в ячейке /// internal class Ceil { // Углы ячейки private Dot d = new Dot; // Координатные точки углов private Point r = new Point; // Массивы координат всей области private double[,] X; private double[,] Y; // Массив сеточной функции private double[,] Z; /// /// Определение ячейки /// Определяется левым нижним углом. Циклы перебора индексов должны быть на 1 меньше размерностей J,K массивов /// /// j - индекс левого нижнего угла /// k - индекс левого нижнего угла /// Массив X /// Массив Y /// Массив сеточной функции Z internal Ceil(int _j, int _k, double[,] _x, double[,] _y, double[,] _z) { d = new Dot(_j, _k); d = new Dot(_j + 1, _k); d = new Dot(_j + 1, _k + 1); d = new Dot(_j, _k + 1); X = _x; Y = _y; Z = _z; r = dotPoint(d); r = dotPoint(d); r = dotPoint(d); r = dotPoint(d); } /// /// Определение координатной точки Point угла /// /// Угол, заданный стуктурой Dot /// private Point dotPoint(Dot _d) { return new Point(X[_d.j, _d.k], Y[_d.j, _d.k]); } /// /// Определение функции в заданном углу /// /// Угол, заданный стуктурой Dot /// private double dotZ(Dot _d) { return Z[_d.j, _d.k]; } /// /// Определение пары точек, через которые проходит линия уровня /// Точки на границах ячейки определяются линейной интераоляцией. /// /// Значение уровня функции /// private PairOfPoints ByLevel(double _l) { PairOfPoints p = new PairOfPoints(); // Ребро 0 if ((dotZ(d) >= _l && dotZ(d) < _l) || (dotZ(d) > _l && dotZ(d) <= _l)) { double t = (_l - dotZ(d)) / (dotZ(d) - dotZ(d)); double x = r.X * t + r.X * (1 - t); double y = r.Y * t + r.Y * (1 - t); p.Points.Add(new Point(x, y)); } // Ребро 1 if ((dotZ(d) >= _l && dotZ(d) < _l) || (dotZ(d) > _l && dotZ(d) <= _l)) { double t = (_l - dotZ(d)) / (dotZ(d) - dotZ(d)); double x = r.X * t + r.X * (1 - t); double y = r.Y * t + r.Y * (1 - t); p.Points.Add(new Point(x, y)); if (p.Points.Count == 2) return p; } // Ребро 2 if ((dotZ(d) >= _l && dotZ(d) < _l) || (dotZ(d) > _l && dotZ(d) <= _l)) { double t = (_l - dotZ(d)) / (dotZ(d) - dotZ(d)); double x = r.X * t + r.X * (1 - t); double y = r.Y * t + r.Y * (1 - t); p.Points.Add(new Point(x, y)); if (p.Points.Count == 2) return p; } // Ребро 3 if ((dotZ(d) >= _l && dotZ(d) < _l) || (dotZ(d) > _l && dotZ(d) <= _l)) { double t = (_l - dotZ(d)) / (dotZ(d) - dotZ(d)); double x = r.X * t + r.X * (1 - t); double y = r.Y * t + r.Y * (1 - t); p.Points.Add(new Point(x, y)); } return p; } /// /// Добавление пары точек в линию уравня /// /// Линия уровня internal void AddIntoLineLevel(LineLevel _lL) { PairOfPoints lp = ByLevel(_lL.Level); if (lp.Points.Count > 0) _lL.Pairs.Add(lp); } } }
Для демонстрации работы класса предлагается небольшое тестовое приложение WPF, которое строит линии уровня для функции вида: z = x^2 + y^2 на сетке 10 на 10.

Файл MainWindow.xaml:


И файл кода MainWindow.xaml.cs:

Using System.Linq; using System.Windows; using System.Windows.Controls; using System.Windows.Media; using System.Windows.Shapes; namespace WpfLinesLevels { ///

/// Логика взаимодействия для MainWindow.xaml /// public partial class MainWindow: Window { private double Xmax; private double Xmin; private double Ymax; private double Ymin; private double xSt; private double ySt; public MainWindow() { InitializeComponent(); // Определение уровней, которые будут отображаться double levels = { 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; double[,] X = new double; double[,] Y = new double; double[,] Z = new double; // Переменные для пересчета физических координат в экранные Xmax = 10; Xmin = 0; Ymax = 10; Ymin = 0; xSt = 525 / (Xmax - Xmin); ySt = 525 / (Ymax - Ymin); // Определение массивов координат и функции for (int k = 0; k < 10; k++) for (int j = 0; j < 10; j++) { X = j; Y = k; Z = j * j + k * k; } // Создание изолиний LinesOfLevels lol = new LinesOfLevels(levels, X, Y, Z); // Их расчет lol.Calculate(); // Построение DrowLevelLine(lol, X, Y); } /// /// Метод построения изолиний /// /// Расчитанный объект с изолиниями /// массив X координат /// массив Y координат private void DrowLevelLine(LinesOfLevels lL, double[,] x, double[,] y) { Canvas can = new Canvas(); foreach (LineLevel l in lL.Lines) { foreach (PairOfPoints pp in l.Pairs) { if (pp.Points.Count() == 2) { Line pl = new Line(); pl.Stroke = new SolidColorBrush(Colors.BlueViolet); pl.X1 = xCalc(pp.Points.X); pl.X2 = xCalc(pp.Points.X); pl.Y1 = yCalc(pp.Points.Y); pl.Y2 = yCalc(pp.Points.Y); can.Children.Add(pl); } } } can.Margin = new Thickness(10, 10, 10, 10); can.VerticalAlignment = VerticalAlignment.Stretch; can.HorizontalAlignment = HorizontalAlignment.Stretch; grid1.Children.Add(can); } /// /// Пересчет физической координаты X в экранную /// /// Физическая кордината X /// Экранная координата X private double xCalc(double _x) { return xSt * (_x - Xmin); } /// /// Пересчет физической координаты Y в экранную /// /// Физическая кордината Y /// Экранная координата Y private double yCalc(double _y) { return ySt * (Ymax - _y); } } }
Результат работы тестового примера представлен на рисунке.

Определение . Пусть имеется п переменных величин, и каждому набору их значений (х х , х 2 ,..., х п ) из некоторого множества X соответствует одно вполне определенное значение переменной вели­чины z . Тогда говорят, что задана функция нескольких переменных z = f х , х 2 ,..., х п ) .

Переменные х х , х 2 ,..., х п называются независимыми переменными или аргументами, z - зависимой переменной, а символ f означа­ет закон соответствия. Множество X называется областью оп­ределения функции. Очевидно, это подмножество n-мерного пространства.

Функцию двух переменных обозначают z=f(x, у) . Тогда ее область определения X есть подмножество ко­ординатной плоскости Оху .

Окрестностью точки
называется круг, содержа­щий точку
(см. рис. 1).

Очевидно, круг на плоскости есть двумерный аналог интерва­ла на прямой.

При изучении функций нескольких переменных используется математи­ческий аппарат: любой функции z = f (x , у) можно по­ставить в соответствие пару функций одной переменной: при фиксированном значении х=х 0 функцию z =
и при фиксированном значении у=у 0 функцию z = f (x , у 0 ).

Графиком функции двух переменных z =
называется множе­ство точек трехмерного пространства (х, у, z), аппликата z кото­рых связана с абсциссой х и ординатой у функциональным соот­ношением z =
.

Для построения графика функции z=f(x, у) полезно рассмат­ривать функции одной переменной z = f (x , у 0 ) и z =
, пред­ставляющие сечения графика z = f (x , у) плоскостями, парал­лельными координатным плоскостям Oxz и Oyz , т.е. плоскостями у= у 0 и х=х 0 .

Пример 1. Построить график функции
.

Решение. Сечения поверхности
=
плоскостями, параллельными координатным плос­костямOyz и Oxz , пред­ставляют параболы (на­пример, при х = 0
, при у = 1
и т.д.). В се­чении поверхности кординатной плоско­стьюОху , т.е. плоско­стью z=0 , получается окружность
График функции представляет поверх­ность, называемую па­раболоидом (см. рис. 2)

Определение . Линией уровня функции двух переменных z=f{x, у) называется множество точек на плоскости, таких, что во всех этих точках значение функции одно и то же и равно С. Число С в этом случае называется уровнем.

На рис.3 изображены линии уровня, соответствую­щие значениям С=1 и С=2. Как видно, линия уровня состо­ит из двух непересекающихся кривых. Линия– самопере­секающаяся кривая.

Многие примеры линий уровня хорошо известны и привычны. Например, паралле­ли и меридианы на глобусе - это линии уровня функций широты и долготы. Синоптики публикуют карты с изображе­нием изотерм - линий уровня температуры.

Пример 2. Построить линии уровня функции
.

Решение. Линия уровня z = C это кривая на плоскости Оху, задаваемая уравнением х 2 + у 2 - 2у = С или х 2 + (у - I) 2 = С+1. Это уравнение окружности с центром в точке (0; 1) и радиусом
(рис. 4).

Точка (0; 1) - это вырожденная линия уровня, соответст­вующая минимальному значению функции z =-1 и достигаю­щемуся в точке (0; 1). Линии уровня - концентрические ок­ружности, радиус которых увеличивается с ростом z = C , при­чем расстояния между линиями с одинаковым шагом уровня уменьшаются по мере удаления от центра. Линии уровня по­зволяют представить график данной функции, который был ранее построен на рис. 2.

Частные производные

Дадим аргументу х приращение ∆х, аргументу у - приращение ∆у. Тогда функция z получит наращенное значение f(х+∆х, у+∆у). Величина z = f (x +∆ x , y +∆ y )- f { x , у) называется полным приращени­ем функции в точке (х; у). Если задать только приращение аргу­мента x или только приращение аргумента у, то полученные при­ращения функции соответственно иназываютсячастными.

Полное приращение функции, вообще говоря, не равно сумме частных, т.е.

Пример 15.6. Найти частные и полное приращения функции z = xy .

Решение. ;;.

Получили, что

Определение. Частной производной функции несколь­ких переменных по одной из этих переменных называется предел отношения соответст­вующего частного приращения функции к приращению рас­сматриваемой независимой переменной при стремлении последнего к нулю (если этот предел существует).

Обозначается частная производная так:
или
, или
.

Для нахождения производной
надо считать постоянной переменную у, а для нахождения
-переменную х. При этом сохраняются известные правила дифференцирова­ния.

Пример. Найти частные производные функции:

a) z = x ln y + .

Решение: Чтобы найти частную производную по х, считаем у постоянной величиной. Таким образом,
. Аналогично, дифференцируя по у, считаем х постоянной величиной, т.е
.

Дифференциал функции

Определение. Дифференциалом функции называется сумма про­изведений частных производных этой функции на приращения соот­ветствующих независимых переменных, т.е.

dz =
.
(1)

Учитывая, что для функций f(х, у)=х, g (x , у)=у согласно (1) df = dx =∆ x ; dg = dy =∆ y формулу дифференциала (1) можно запи­сать в виде dz = z " x dx + z " y dy (2) или

Определение. Функция z = f (x , у) называется дифференцируемой в точке (х, у), если ее полное приращение может быть представлено в виде (3), где dz - дифференциал функции, – ,бесконечно малые при
.

Достаточное условие дифферен­цируемости функции двух переменных.

Теорема. Если частные производные функции z " v (x , у) существу­ют в окрестности точки (х, у) и непрерывны в самой точке (х, у), то функция z = f { x , у) дифференцируема в этой точке.

Чтобы

нескольких функций

скачать график

Построение графика функции онлайн

моментально .

Онлайн сервис моментально рисует график

Поддерживаются абсолютно все математические функции

Тригонометрические функции

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

Гиперболические функции

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Округление в меньшую сторону

Округление в большую сторону

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Построить график функции

Построение поверхности 3D

Введите уравнение

Построим поверхность, заданную уравнением f(x, y, z) = 0, где a < x < b, c < y < d, m < z < n.

Другие примеры:

  • y = x^2
  • z = x^2 + y^2
  • 0.3 * z^2 + x^2 + y^2 = 1
  • z = sin((x^2 + y^2)^(1/2))
  • x^4+y^4+z^4-5.0*(x^2+y^2+z^2)+11.8=0

Канонический вид кривой и поверхности

Вы можете определить вид кривой и поверхности 2-го порядка онлайн с подробным решением:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция — экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число — "Пи", которое примерно равно 3.14 sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция — Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5 , не 7,5 2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание

Как построить график функции онлайн на этом сайте?

Чтобы построить график функции онлайн , нужно просто ввести свою функцию в специальное поле и кликнуть куда-нибудь вне его. После этого график введенной функции нарисуется автоматически. Допустим, вам требуется построить классический график функции «икс в квадрате». Соответственно, нужно ввести в поле «x^2».

Если вам нужно построить график нескольких функций одновременно, то нажмите на синюю кнопку «Добавить еще». После этого откроется еще одно поле, в которое надо будет вписать вторую функцию. Ее график также будет построен автоматически.

Цвет линий графика вы можете настроить с помощью нажатия на квадратик, расположенный справа от поля ввода функции. Остальные настройки находятся прямо над областью графика. С их помощью вы можете установить цвет фона, наличие и цвет сетки, наличие и цвет осей, наличие рисок, а также наличие и цвет нумерации отрезков графика. Если необходимо, вы можете масштабировать график функции с помощью колесика мыши или специальных иконок в правом нижнем углу области рисунка.

После построения графика и внесения необходимых изменений в настройки, вы можете скачать график с помощью большой зеленой кнопки «Скачать» в самом низу. Вам будет предложено сохранить график функции в виде картинки формата PNG.

Зачем нужно строить график функции?

На этой странице вы можете построить интерактивный график функции онлайн .

Построить график функции онлайн

Построение графика функции позволяет увидеть геометрический образ той или иной математической функции. Для того чтобы вам было удобнее строить такой график, мы создали специальное онлайн приложение. Оно абсолютно бесплатно, не требует регистрации и доступно для использования прямо в браузере без каких-либо дополнительных настроек и манипуляций. Строить графики для разнообразных функций чаще всего требуется школьникам средних и старших классов, изучающим алгебру и геометрию, а также студентам первых и вторых курсов в рамках прохождения курсов высшей математики. Как правило, данный процесс занимает много времени и требует кучу канцелярских принадлежностей, чтобы начертить оси графика на бумаге, проставить точки координат, объединить их ровной линией и т.д. С помощью данного онлайн сервиса вы сможете рассчитать и создать графическое изображение функции моментально .

Как работает графический калькулятор для графиков функций?

Онлайн сервис работает очень просто. В поле на самом верху вписывается функция (т.е. само уравнение, график которого необходимо построить). Сразу после ввода приложение моментально рисует график в области под этим полем. Все происходит без обновления страницы. Далее, можно внести различные цветовые настройки, а также скрыть/показать некоторые элементы графика функции. После этого, готовый график можно скачать, нажав на соответствующую кнопку в самом низу приложения. На ваш компьютер будет загружен рисунок в формате.png, который вы сможете распечатать или перенести в бумажную тетрадь.

Какие функции поддерживает построитель графиков?

Поддерживаются абсолютно все математические функции , которые могут пригодиться при построении графиков. Тут важно подчеркнуть, что в отличии от классического языка математики принятого в школах и ВУЗах, знак степени в рамках приложения обозначается международным знаком «^». Это обусловлено отсутствием на клавиатуре компьютера возможности прописать степень в привычном формате. Далее приведена таблица с полным списком поддерживаемых функций.

Приложением поддерживаются следующие функции:

Тригонометрические функции

Косеканс

Котангенс

Арксинус

Арккосинус

Арктангенс

Арксеканс

Арккосеканс

Арккотангенс

Гиперболические функции

Прочее

Натуральный логарифм

Логарифм

Квадратный корень

Округление в меньшую сторону

Округление в большую сторону

Минимум

Максимум

min(выражение1,выражение2,…)

max(выражение1,выражение2,…)

Примеры. Построить линии уровня функций, соответствующие значениям

Построить линии уровня функций, соответствующие значениям .

Полагая , получим уравнения соответствующих линий уровня:

Построив эти линии в декартовой системе координат хОу, получим прямые, параллельные биссектрисе второго и четвертого координатных углов (рис.1)

Напишем уравнения линий уровня:

, , , и .

Построив их в плоскости хОу, получим концентрические окружности с центром в начале координат (рис.2)

Линии уровня этой функции , , , и представляют собой параболы, симметричные относительно Оу с общей вершиной в начале координат (рис. 3).

2. Производная по направлению

Важной характеристикой скалярного поля является скорость изменения поля в данном направлении.

Для характеристики скорости изменения поля в направлении вектора вводят понятие производной поля по направлению.

Рассмотрим функцию в точке и точке .

Проведем через точки и вектор . Углы наклона этого вектора к направлению координатных осей х, у, z обозначим соответственно a, b, g. Косинусы этих углов называются направляющими косинусами вектора .