Как определить напряжение на вольтметре. Цифровой измеритель напряжения и тока

04.03.2019

Измерение тока. Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть I А измеряемого тока I, обратно пропорциональная его сопротивлению R А. Бо льшая часть I ш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора R A и шунта R ш можно по току I А, фиксируемому прибором, определить измеряемый ток:

I = I А (R А +R ш)/R ш = I А n (105)

где n = I/I А = (R A + R ш)/R ш - коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора I А,

R ш = R A /(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (R д) (рис. 332,г). При этом на прибор приходится лишь часть U v измеряемого напряжения U, пропорциональная сопротивлению прибора R v .

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения U v , фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (R v +R д )/R v * U v = nU v (107)

Величина n = U/U v =(R v +R д)/R v показывает, во сколько раз измеряемое напряжение U больше напряжения U v , приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле R д =(n- 1) R v .

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения. Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U 1 к выходному U 2 (рис. 333, а) называется коэффициентом деления . При холостом ходе U 1 /U 2 = (R 1 +R 2)/R2 = 1 + R 1 /R 2 . В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра R v достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы. Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную - к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U 1 и U 2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков? 1 и? 2 обеих обмоток трансформатора, т. е.

U 1 /U 2 = ? 1 /? 2 = n (108)

Таким образом, подобрав соответствующее число витков? 1 и? 2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U 1 может быть определено умножением измеренного вторичного напряжения U 2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I 1 и I 2 , проходящие по его обмоткам, будут обратно пропорциональны числу витков? 1 и? 2 этих обмоток, т.е.

I 1 /I 2 = ? 1 /? 2 = n (109)

Следовательно, подобрав соответствующим образом число витков? 1 и? 2 обмоток трансформатора, можно измерять большие токи I 1 , пропуская через электроизмерительный прибор малые токи I 2 . Ток I 1 может быть при этом определен умножением измеренного вторичного тока I 2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I 1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU 1 /U 2 и I 1 /I 2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

В радиолюбительской практике это наиболее распространенный вид измерений. Например, при ремонте телевизора измеряются напряжения в характерных точках устройства, а именно на выводах транзисторов и микросхем. Если есть под рукой принципиальная схема, и на ней указаны режимы транзисторов и микросхем, то найти неисправность опытному мастеру не составит труда.

При налаживании конструкций, собранных своими руками, без измерения напряжений обойтись нельзя. Исключения составляют лишь классические схемы, про которые пишут примерно так: «Если конструкция собрана из исправных деталей, то наладки не требуется, заработает сразу».

Как правило, это классические схемы электроники, например, . Такой же подход может получиться даже к усилителю звуковой частоты, если он собран на специализированной микросхеме. Как наглядный пример TDA 7294 и еще много микросхем этой серии. Но качество «интегральных» усилителей невелико, и истинные ценители строят свои усилители на дискретных транзисторах, а порою на электронных лампах. И вот тут-то без налаживания и связанных с этим измерений напряжений просто не обойтись.

Как и что предстоит измерять

Показано на рисунке 1.

Рисунок 1.

Возможно, кто-то скажет, мол, что тут можно измерять? И какой смысл собирать подобную цепь? Да, практического применения для такой схемы найти, наверно, трудно. А для познавательных целей она вполне подойдет.

Прежде всего, следует обратить внимание на то, как подключается вольтметр. Поскольку на рисунке показана цепь постоянного тока, то и вольтметр подключается с соблюдением полярности, указанной на приборе в виде знаков «плюс» и «минус». В основном это замечание справедливо для стрелочного прибора: при несоблюдении полярности стрелка отклонится в обратную сторону, по направлению к нулевому делению шкалы. Так что получится какой-то отрицательный ноль.

Цифровые приборы, мультиметры, в этом плане более демократичны. Даже если подключены в обратной полярности, напряжение все равно будет измерено, только на шкале перед результатом появится знак «минус».

Еще на что следует обратить внимание при измерении напряжений это диапазон измерений прибора. Если предполагаемое напряжение находится в пределах, например, 10…200 милливольт, то такому диапазону соответствует шкала прибора 200 милливольт, а измерение упомянутого напряжения по шкале 1000 вольт вряд ли даст вразумительный результат.

Так же следует выбирать диапазон измерений и в других случаях. Для измеряемого напряжения 100 вольт вполне подойдет диапазон 200В и даже 1000В. Результат будет один и тот же. Это что касается .

Если же измерения производятся старым добрым стрелочным прибором, то для измерения напряжения 100В следует выбрать диапазон измерений, когда показания находятся в середине шкалы, что позволяет осуществить более точный отсчет.

И еще одна классическая рекомендация по использованию вольтметра, а именно: если величина измеряемого напряжения неизвестна, то измерения следует начинать, установив вольтметр на самый большой диапазон. Ведь если измеряемое напряжение будет 1В, а диапазон будет 1000В, самая большая опасность в неверных показаниях прибора. Если же получится наоборот, - диапазон измерений 1В, а измеряемое напряжение 1000, покупки нового прибора просто не избежать.

Что покажет вольтметр

Но, пожалуй, вернемся к рисунку 1, и попробуем определить, что, же покажут оба вольтметра. Для того, чтобы это определить, придется . Задачу можно решить за несколько шагов.

Во-первых, рассчитать ток в цепи. Для этого надо напряжение источника (на рисунке это гальваническая батарея с напряжением 1,5 В) разделить на сопротивление цепи. При последовательном соединении резисторов это будет просто сумма их сопротивлений. В виде формулы это выглядит примерно так: I = U / (R1 + R2) = 4,5 / (100 + 150) = 0,018 (А) = 180 (мА).

Маленькое замечание: если выражение 4,5 / (100 + 150) скопировать в буфер обмена, затем вставить в окно виндоус-калькулятора, то после нажатия клавиши «равно» будет получен результат вычислений. На практике вычисляются еще более сложные выражения, содержащие квадратные и фигурные скобки, степени и функции.

Во-вторых, получить результаты измерений, как падение напряжения на каждом резисторе:

U1 = I * R1 = 0,018 * 100 = 1,8 (В),

U2 = I * R2 = 0,018 * 150 = 2,7 (В),

Для проверки правильности вычислений достаточно сложить оба получившиеся значения падения напряжений. Сумма должна быть равна напряжению батареи.

Возможно, у кого-то может возникнуть вопрос: «А если делитель будет не из двух резисторов, а из трех или даже из десяти? Как определить падение напряжения на каждом из них?». Точно так же, как и в описанном случае. Сначала надо определить общее сопротивление цепи и рассчитать общий ток.

После чего этот уже известный ток просто умножить на . Иногда такие вычисления делать приходится, но тут тоже есть одно но. Чтобы не сомневаться в полученных результатах ток в формулы следует подставлять в Амперах, а сопротивление в Омах. Тогда, вне всяких сомнений, результат получится в Вольтах.

Сейчас все привыкли пользоваться приборами китайского производства. Но это не говорит о том, что качество у них никудышное. Просто в отечестве никто не додумался до производства собственных мультиметров, а стрелочные тестеры делать, видимо, разучились. Просто обидно за державу.

Рис. 2. Мультиметр DT838

Когда-то в инструкциях к приборам указывались их технические характеристики. В частности для вольтметров и стрелочных тестеров это было входное сопротивление, и указывалось оно в Килоомах/Вольт. Были приборы с сопротивлением 10 К/В и 20 К/В. Последние считались более точными, поскольку меньше подсаживали измеряемое напряжение и показывали более точный результат. Сказанное можно подтвердить рисунком 3.

Рисунок 3.

Действующее напряжение U составляет 0,707 амплитудного напряжения Uм.

U = Uм/√2 = 0,707 * Uм, откуда можно сделать вывод, что Uм = U * √2 = 1,41 * U

Здесь уместно привести широко распространенный пример. При измерении переменного напряжения прибор показал 220В, значит, амплитудное значение по формуле получится

Uм = U * √2 = 1,41 * U = 220 * 1,41 = 310В.

Этот расчет подтверждается каждый раз, когда сетевое напряжение выпрямляется диодным мостом после которого стоит хотя бы один электролитический конденсатор: если померить постоянное напряжение на выходе моста, то прибор покажет как раз 310В. Эту цифру следует запомнить, она может пригодиться при разработке и ремонте импульсных блоков питания.

Указанная формула справедлива для всех напряжений, если они будут иметь синусоидальную форму. Например, после понижающего трансформатора имеется 12В переменки. Тогда после выпрямления и сглаживания на конденсаторе получится

12 * 1,41 = 16,92 почти 17В. Но это если не подключена нагрузка. При подключенной нагрузке постоянное напряжение подсядет почти до 12В. В случае, когда форма напряжения иная, чем синусоида эти формулы не работают, приборы показывают не то, что от них ожидалось. На этих напряжениях измерения производятся другими приборами, например, осциллографом.

Еще один фактор, влияющий на показания вольтметра это частота. Например, цифровой мультиметр DT838 согласно своих характеристик меряет переменные напряжения в диапазоне частот 45…450Гц. Несколько лучше в этом плане выглядит старенький стрелочный тестер ТЛ4.

В диапазоне напряжений до 30В его частотный диапазон составляет 40…15000Гц (почти весь звуковой диапазон, можно пользоваться при настройке усилителей), но с увеличением напряжения допустимая частота падает. В диапазоне 100В это 40…4000Гц, 300В 40…2000Гц, а в диапазоне 1000В всего 40…700Гц. Вот тут уже бесспорная победа над цифровым прибором. Эти цифры также справедливы лишь для напряжений синусоидальной формы.

Хотя иногда и не требуется никаких данных о форме, частоте и амплитуде переменных напряжений. Например, как определить работает гетеродин коротковолнового приемника или нет? Почему приемник ничего не «ловит»?

Оказывается, все очень просто, если воспользоваться стрелочным прибором. Надо включить его на любой предел измерения переменных напряжений и одним щупом (!) коснуться выводов транзистора гетеродина. Если есть высокочастотные колебания, то они продетектируются диодами внутри прибора, и стрелка отклонится на некоторую часть шкалы.

Напряжений, токов и сопротивлений, едва ли сходу сможет ответить на этот вопрос: что измеряет вольтметр? Поскольку ответ очевиден, если просто прочитать вторую половину заглавия статьи, раскроем чуть подробнее данную тему. В частности, рассмотрим измерение напряжения в быту, характеристики приборов, принцип работы.

Определение

Вольтметр - это измерительное устройство, позволяющее получать значение напряжения или в цепи постоянного или переменного тока. Диапазон прибора может простираться до 1000 В и более. Все зависит от его предназначения. Чтобы лучше понимать, что это такое, рассмотрим определение электродвижущей силы. Поскольку очень часто она путается с напряжением в сети, их следует отделить друг от друга.

ЭДС и напряжение: разница

Итак, ЭДС - характеризующая работу, производимую какими-либо силами неэлектрического характера по перемещению единичного положительного заряда вдоль рассматриваемого контура. В самом обычном случае она показывает способность источника энергии создавать ту или иную разность потенциалов в двух разнесенных точках цепи. Измеряется, как и напряжение, в вольтах. Отличается от него тем, что характеризует источник питания на холостом ходу, то есть без подключения к сети.

Когда в контуре имеется ток, то есть он замкнут, появляется еще одно, более привычное слуху понятие - напряжение. Причем оно может браться как для самого источника питания на его клеммах, так и в любом участке цепи. Измерение напряжения представляет собой выявление разности потенциалов между двумя разнесенными точками. Для источника питания оно обычно несколько меньше электродвижущей силы, когда тот включен в цепь потребления. По сути, и ЭДС, и напряжение - это одно и то же, с различием лишь в том, какой физический процесс порождает появление разности потенциалов между двумя точками, в которых проводится измерение.

Виды вольтметров

Здесь следует выделить два основных вида: переносные и стационарные. Портативный прибор для измерения напряжения можно не только перетаскивать вручную. Обычно он включает функционал для проверки токов и сопротивления в цепи, а также температуры проводников и т.д. Стационарные приборы зачастую конструктивно объединены с самой сетью, в которой осуществляется измерение, например, в электрораспределительных щитах, панелях и т.п.

Что касается классификации по принципу действия, то можно выделить несколько видов электромеханических вольтметров и два типа электронных. Последние - это аналоговые и цифровые. Электромеханические вольтметры используют магнитную преобразовательную систему для получения значений напряжения. Электронные приборы оцифровывают получаемый сигнал при помощи АЦП. Показания вольтметра в зависимости от принципа представления данных показываются либо стрелочным указателем, либо на специальном цифровом табло.

Еще одна классификация - по назначению. Она позволяет разделить приборы на измерители постоянного и переменного тока, а также фазочувствительные, импульсные и универсальные. Для последних доступна практически вся гамма сигналов, напряжение которых необходимо узнать.

Основные технические характеристики

Зависят от предназначения прибора. К примеру, вольтметр постоянного тока обычно имеет несколько диапазонов измерения, поэтому их число будет одной из важнейших технических характеристик. Кроме того, практически все приборы имеют определенное входное сопротивление, зависящее, кстати, от того, в каких пределах находится напряжение исследуемого участка цепи.

Еще важными характеристиками являются, конечно же, погрешности, а также разрешение шкалы либо минимальный шаг показаний, если речь о цифровом вольтметре. Если пользователю достался универсальный прибор для измерения напряжения, к вышеперечисленным могут добавляться пределы величин, с которыми он способен работать, например, токов, сопротивлений, температур, а также диапазоны, погрешности и частоты для переменных сигналов.

Принцип работы

Распространенные в последнее время в быту цифровые вольтметры имеют большое количество электроники под крышкой. Это связано с преобразованием аналогового сигнала, получаемого на входе прибора, в цифровую форму с использованием АЦП. Кому действительно интересно, можно ознакомиться с большим количеством литературы по теме. Такой вольтметр, цена которого колеблется в пределах нескольких сотен рублей, конечно, не претендует на богатый выбор возможностей и огромную точность, однако вполне способен измерить напряжение на клеммах автомобильного аккумулятора или в сети 220 В.

Подключение в цепь

Вольтметр в цепи всегда подключается параллельно нагрузке либо источнику питания, если нужно измерить его ЭДС или напряжение на клеммах. Именно поэтому существуют такие жесткие требования к входному сопротивлению прибора, поскольку подобное его подсоединение подразумевает появление дополнительной проводимости в цепи.

Ни в коем случае не следует подключать вольтметр, цена которого хоть сколько-нибудь велика, в контур последовательно. Иначе пользователь рискует банально сжечь прибор, так и не успев выяснить то, ради чего все затевалось. Если даже если тот выдержит такое варварское обращение, его показаниям не следует доверять, поскольку ток в цепи претерпевает серьезные изменения при таком подключении вольтметра, опять же отодвигая в неизвестное возможность узнать действительное напряжение участка, в котором производятся измерения.

Меры безопасности при эксплуатации

Поскольку сопротивление самого вольтметра в большинстве случаев достаточно велико, а схема подключения, соответственно, используется параллельная, риск получить какой-либо серьезный в низковольтной цепи минимален. Однако если речь о промышленных приборах, особенно в стационарном исполнении, это подразумевает огромные значения измеряемых величин как напряжений, так и, скорее всего, токов. Поэтому здесь техника безопасности должна быть на высочайшем уровне, и без достаточных знаний, резиновых перчаток, ковриков и других соответствующих мер, естественно, какая-либо активность противопоказана. То, что измеряет вольтметр, скорее всего, очень опасно для жизни, поэтому рекомендуем не испытывать судьбу. В любом случае прикасаться к даже если цепь по определению низковольтная, не следует.

Заключение

Отвечая на вопрос о том, что измеряет вольтметр, мы рассмотрели в общих чертах его устройство, основные технические характеристики, классификацию. Конечно, этот небольшой обзор не претендует на всеобъемлющую полноту, особенно в условиях недостаточного количества базовых знаний по электротехнике у читателя.

Подытоживая, следует отметить, что измеряет вольтметр, конечно же, напряжение на участке цепи, к которому он подключен параллельно. В противном случае его показания будут недостоверны, не говоря уже об опасности возможной потери дорогостоящего оборудования. Читателю следует быть внимательным при эксплуатации прибора в домашних условиях, поскольку контакт с высоковольтными участками цепей опасен для жизни.

Хочу представить вашему вниманию модернизированную версию для лабораторного блока питания. Добавилась возможность отключать нагрузку при превышении определенного установленного заранее тока. Прошивку улучшенного вольтамперметра можно .

Схема цифрового измерителя тока и напряжения

В схему так же добавилось несколько деталей. С органов управления - одна кнопка и переменный резистор номиналом от 10 килоом до 47 килоом. Его сопротивление не критично для схемы, и как видно может варьироваться в довольно широких пределах. Немножко изменился и внешний вид на экране. Добавил отображение мощности и ампер*часов.

Переменная тока отключения сохраняется в EEPROM. По этому после выключения не нужно будет все настраивать заново. Для того, чтоб зайти в меню установки тока нужно нажать на кнопку. Поворачивая ручкой переменного резистора надо установить ток, при котором произойдет отключение реле. Оно подключено через ключ на транзисторе к выводу PB5 микроконтроллера Atmega8 .

В момент отключения на дисплее высветиться надпись о том, что максимальный установленный ток был превышен. После нажатия на кнопку мы перейдем снова в меню установки максимального тока. Нужно еще раз нажать на кнопку, чтоб перейти в режим измерения. На выход PB5 микроконтроллера подастся лог 1 и при этом включится реле. Такое слежение за током имеет и свои минусы. Защита не сможет сработать мгновенно. Срабатывание может занять несколько десятков миллисекунд. Для большинства подопытных устройств данный недостаток не критичен. Для человека эта задержка не видна. Все происходит сразу. Новая печатная плата не разрабатывалась. Кто захочет повторить устройство может немного подредактировать печатную плату от предыдущего варианта. Изменения будут не значительны.

Общие сведения. Необходимость измерения напряжения на практике возникает очень часто. В электротехнических и радиотехнических цепях и устройствах чаще всего измеряют напряжение постоянного и переменного (синусоидального и импульсного) тока.

Напряжение постоянного тока (рис. 3.5, а ) выражается, как . Источниками такого напряжения являются генераторы постоянного тока и химические источники питания.

Рис. 3.5. Временные диаграммы напряжений: постоянного (а), переменного синусоидального (б) и переменного импульсного (в) тока

Напряжение переменного синусоидального тока (рис. 3.5, б ) выражается как и характеризуется среднеквадратичным и амплитудным значениями:

Источниками такого напряжения являются низко- и высокочастотные генераторы , электросеть.

Напряжение переменного импульсного тока (рис. 3.5 в ) характеризуется амплитудным и средним (постоянная составляющая) значениями напряжения. Источником такого напряжения являются импульсные генераторы с сигналом разной формы.

Основной единицей измерения напряжения является вольт (В).

В практике электротехнических измерений широко используются дольные и кратные единицы:

Киловольт (1 кВ - В);

Милливольт (1мВ - В);

Микровольт (1 мкВ - В).

Международные обозначения единиц измерения напряжения приведены в Приложении 1.

В каталоговой классификации электронные вольтметры обознача-ются следующим образом: В1 — образцовые, В2 — постоянного тока, ВЗ — переменного синусоидального тока, В4 — переменной) импульс-ного тока, B5 — фазочувствительные, В6 — селективные, В7 — уни-версальные.

На шкалах аналоговых индикаторов и на лицевых панелях (на пе-реключателях пределов) отечественных и зарубежных электронных и электромеханических вольтметров применяются следующие обо-значения: V — вольтметры, kV — киловольтметры, mV — милливольт-метры, V — микровольтметры.

Измерение напряжения постоянного тока. Для измерения напря-жения постоянного тока используются электромеханические вольт-метры и мультиметры, электронные аналоговые и цифровые вольт-метры, электронные осциллографы.

Электромеханические вольтметры непосредственной опенки измеряемой величины составляют большой класс приборов аналого-вого типа и имеют следующие достоинства:

Возможность работы без подключения к источнику питания;

Малые габаритные размеры;

Меньшая цена (по сравнению с электронными);

Простота конструкции и удобство эксплуатации.

Чаще всего при электротехнических измерениях в сильноточных цепях используются вольтметры на основе электромагнитной и элек-тродинамической систем, в слаботочных цепях — магнитоэлектриче-ской системы . Поскольку все названные системы сами являются из-мерителями силы тока (амперметрами), то для создания на их основе вольтметров необходимо увеличить внутреннее сопротивление при-бора, т.е. подключить последовательно с измерительным механизмом добавочный резистор (рис. 3.6, а).


Вольтметр подключается к исследуемой цепи параллельно (рис. 3.6, б), и его входное сопротивление должно быть достаточно большим.

Для расширения диапазона измерения вольтметра также использу-ют добавочный резистор, который подключают к прибору последова-тельно (рис. 3.6, в).

Значение сопротивления добавочного резистора определяется по формуле:


Рис. 3.6. Схема создания вольтметра на основе амперметра (а ), подключение вольтметра к нагрузке (6 ), подключение добавочного резистора к вольтметру (в )

(3.8)

Где — число, показывающее, во сколько раз расширяется предел измерения вольтметра:

где — исходный предел измерения;

— новый предел измерения.

Добавочные резисторы, размещенные внутри корпуса прибора, называются внутренними, подключенные к прибору снаружи — внешними. Вольтметры могут быть многопредельными. Между пределом измерения и внутренним сопротивлением многопредельного вольтметра существует прямая зависимость: чем больше предел измерения, тембольше сопротивление вольтметра.

Электромеханические вольтметры имеют следующие недостатки:

Ограниченный диапазон измерения напряжений (даже в многопредельных вольтметрах);

Малое входное сопротивление, следовательно, большое собственное потребление мощности из исследуемой цепи.

Этими недостатками электромеханических вольтметров обусловлено предпочтительное использование для измерения напряжения в электронике электронных вольтметров.

Электронные аналоговые вольтметры постоянного тока построены по схеме, представленной на рис. 3.7. Входное устройство состоит из эмиттерного повторителя (для увеличения входного сопро-тивления) и аттенюатора — делителя напряжения.

Преимущества электронных аналоговых вольтметров по сравнению с аналоговыми очевидны:

Рис. 3.7. Структурная схема электронного аналогового вольтметра постоянного тока

Широкий диапазон измерения напряжений;

Большое входное сопротивление, следовательно, малое собствен-ное потребление мощности из исследуемой цепи;

Высокая чувствительность благодаря наличию усилителя на входе прибора;

Невозможность перегрузок.

Вместе с тем электронные аналоговые вольтметры имеют ряд не-достатков:

Наличие источников питания, большей частью стабилизирован-ных;

Большая, чем у электромеханических вольтметров, приведенная относительная погрешность (2,5-6%);

Большие массогабаритные размеры, более высокая цена.

В настоящее время аналоговые электронные вольтметры постоян-ного тока применяются недостаточно широко, так как по своим пара-метрам заметно уступают цифровым вольтметрам.

Измерение напряжения переменного тока.

Для измерения напря-жения переменного тока используются электромеханические вольт-метры и мультиметры, электронные аналоговые и цифровые вольт-метры, электронные осциллографы.

Рассмотрим недорогие и достаточно точные электромеханиче-ские вольтметры. Делать это целесообразно по частотным диапазо-нам.

На промышленных частотах 50, 100, 400 и 1000 Гц широко приме-няются вольтметры электромагнитной, электродинамической, ферро-динамической, выпрямительной, электростатической и термоэлектри-ческой систем.

На низких частотах (до 15-20 кГц) применяются вольтметры вы-прямительной, электростатической и термоэлектрической систем.

На высоких частотах (до единиц — десятков мегагерц) используют-ся приборы электростатической и термоэлектрической систем.

Для электротехнических измерений широко используются универ-сальные приборы — мультиметры.

Мультиметры (тестеры, ампервольтомметры, комбинированные приборы) позволяют измерять множество параметров: силу постоянного и переменного тока, напряжение постоянного и переменного тока, сопро-тивление резисторов, емкость конденсаторов (не все приборы), некото-рые статические параметры маломощных транзисторов ( , , и ).

Мультиметры выпускаются с аналоговым и цифровым отсчетом.

Широкое использование мультиметров объясняется следующими ихпреимуществами:

Многофункциональность, т.е. возможность использования в каче-стве амперметров, вольтметров, омметров, фарадомеров, измерителей параметров маломощных транзисторов:

Широкий диапазон измеряемых параметров благодаря наличию нескольких пределов измерения по каждому параметру;

Возможность использования в качестве переносных приборов, поскольку отсутствует сетевой источник питания;

Небольшие массогабаритные размеры;

Универсальность (возможность измерения переменных и постоянных токов и напряжений),

Мультиметры имеют также ряд недостатков:

Узкий частотный диапазон применимости;

Большое собственное потребление мощности из исследуемой 1 цепи;

Большая приведенная погрешность у аналоговых (1,5; 2,5 и 4) и у цифровых мультиметров;

Непостоянство внутреннего сопротивления на различных пределах 4 измерения силы тока и напряжения.

По отечественной каталоговой классификации мультиметры имеют обозначение Ц43 и далее номер модели, например, Ц4352.

Для определения внутреннего сопротивления аналогового мультиметра на включенном пределе измерения в паспорте прибора может 1 быть приведено удельное сопротивление. Например, в паспорте тестера Ц4341 удельное сопротивление = 16,7 кОм/В, пределы измерения по напряжению постоянного тока составляют 1,5 — 3 — 6 — 15 В.

В этом случае сопротивление мультиметра на пределе 6 В постоянного тока определяют по формуле:

В паспорте прибора могут быть приведены сведения, необходимые для расчета сопротивления по закону Ома .

Если тестер используется как вольтметр, то его входное сопротивление определяется по формуле:

где - выбранный предел измерения;

Значение силы тока в выбранном пределе (указанное на задней пане ли прибора или в его паспорте).

Если тестер используется как амперметр, то его входное сопротив-ление определяется по формуле:

Где — выбранный предел измерения;

значение напряжения, приведенное на задней панели прибора или в его паспорте.

Например, в паспорте тестера Ц4341 приведено падение напря-жения на приборе, равное 0,3 В в пределах 0,06 — 0,6 — 6 — 60 — 600 мА постоянного тока, и падение напряжения 1,3 В в пределах: 0,3 — 3 — 30 — 300 мА переменного тока. Входное сопротивление мультиметра в пределе 3 мА переменного тока составит

Электронные аналоговые вольтметры переменного тока по-строены по одной из структурных схем (рис. 3.8), которые различа-ются последовательностью расположения основных блоков - усили-теля и преобразователя (детектора) напряжения переменного тока в напряжение постоянного тока. Свойства этих вольтметров во многом зависят от выбранной схемы.

Рис. 3.8. Структурные схемы электронных аналоговых вольтметров переменного тока тина У—Д (а ) и типа Д—У (б)

Вольтметры первой группы - типа усилитель-детектор (У—Д) — имеют высокую чувствительность, что связано с наличием дополни-тельного усилителя. Поэтому все микро- и милливольтметры построе-ны по схеме У—Д. Однако частотный диапазон таких вольтметров неширок (до единиц мегагерц), так как создание широкополосного усилителя переменного тока связано с определенными трудностями. Вольтметры типа У—Д относятся к не универсальным (подгруппа ВЗ), т.е. могут измерять только напряжение переменного тока.

Вольтметры второй группы — типа детектор—усилитель (Д—У) -имеют широкий частотный диапазон (до единиц гигагерц) и низкую чувствительность. Вольтметры этого типа относятся к универсаль-ным (подгруппа В7), т.е. измеряют напряжение не только перемен-ного, но и постоянного тока; могут измерять напряжение значитель-ного уровня, так как обеспечить большое усиление с помощью УНТ несложно.

В вольтметрах обоих типов важную функцию выполняют преоб-разователи напряжения переменного тока в напряжение постоянного тока — детекторы, которые по функции преобразования входного на-пряжения в выходное можно классифицировать на три типа: ампли-тудного, среднеквадратичного и средневыпрямленного значения.

От типа детектора во многом зависят свойства прибора. Вольт-метры с детектором амплитудного значения являются самыми высо-кочастотными; вольтметры с детектором среднеквадратичного значе-ния позволяют измерять напряжение переменного тока любой формы; вольтметры с детектором средневыпрямленного значения пригодны для измерения напряжения только гармонического сигнала и являют-ся самыми простыми, надежными и недорогими.

Детектор амплитудного значения представляет собой устройство, напряжение на выходе которого соответствует амплитудному значе-нию измеряемого сигнала, что обеспечивается путем запоминания на-пряжения на конденсаторе.

Чтобы цепь реальной нагрузки любого детектора эффективно от-фильтровывала полезный сигнал и подавляла нежелательные высоко-частотные гармоники, следует выполнить условие:

Или , (3.12)

где — емкость выходного фильтра;

— сопротивление нагрузки детектора.

Второе условие хорошей работы детектора:

На рисунке 3.9 приведены структурная схема и временные диа-граммы выходного напряжения детектора амплитудного значения с параллельным включением диода и закрытым входом. Детектор с за-крытым входом имеет последовательно включенный конденсатор, не пропускающий постоянную составляющую. Рассмотрим работу та-кого детектора при подаче на его вход синусоидального напряжения .

Рис. 3.9. Структурная схема детектора амплитудного значении параллельным включением диода и закрытым входом (а) и временные диаграммы напряжении (б) При поступлении положительной полуволны синусоиды конденса-тор С заряжается через диод VD, который в открытом состоянии имеет малое сопротивление .

Постоянная времени заряда конден-сатора мала, и конденсатор быстро заряжается до макси-мального значения . При смене полярности входного сигнала диод закрыт и конденсатор медленно разряжается через сопротивление на-грузки , которое выбирается большим — 50-100 МОм.

Таким обра-зом, постоянная разряда оказывается значительно больше периода синусоидального сигнала . В результате конденсатор остается заряженным до напряжения, близкого к .

Изменение напряжения на нагрузочном резисторе определяется разностью амплитуд входного напряжения и напряжения на кон-денсаторе .В результате выходное напряжение бу-дет пульсирующим с удвоенной амплитудой измеряемого напряжения (см. рис. 3.9, б).

Это подтверждается следующими математическими выкладками:

при , , при , при .

Для выделения постоянной составляющей сигнала вы-ход детектора подключен к емкостному фильтру, подавляющему всё остальные гармоники тока.

На основании изложенного следует вывод: чем меньше период ис-следуемого сигнала (чем больше его частота), тем точнее выполняется равенство , что объясняет высокочастотные свойства детектора. При использовании в работе вольтметров с детектором амплитудного значения следует иметь в виду, что эти приборы чаще всего градуиру-ются в среднеквадратичных значениях синусоидального сигнала, т.e показания индикатора прибора равны частному от деления амплитудного значения на коэффициент амплитуды синусоиды:

где — коэффициент амплитуды.

Детектор среднеквадратичного значения (рис. 3.10) преобразу-ет напряжение переменного тока в напряжение постоянного тока, про-порциональное квадрату среднеквадратичного значения измеряемого напряжения. Следовательно, измерение среднеквадратичного напряжения связано с выполнением трех операций: возведения в квадрат мгновенного значения сигнала, усреднения его значения и извлечение корня из результата усреднения (последняя операция обеспечивается градуировкой шкалы вольтметра). Возведение в квадрат мгновенного значения сигнала обычно осуществляется диодной ячейкой путем использования квадратичного участка его характеристики.

Рис. 3.10. Детектор среднеквадратичного значения: а — диодная ячейка; б — ВАХ диода

В диодной ячейке VD, R1 (см. рис. 3.10, а) постоянное напряжение приложено к диоду VD таким образом, что он оказывается закры-тым до тех пор, пока измеряемое напряжение () на резисторе R2 не превысит значение .

Начальный участок вольтамперной характеристики диода имеет малую протяженность (см. рис. 3.10, б), поэтому квадратичную часть искусственно удлиняют методом кусочно-линейной аппроксимации путем использования нескольких диодных ячеек.

При конструировании вольтметров среднеквадратичного значения возникают трудности с обеспечением широкого частотного диапазона. Несмотря на это такие вольтметры являются самыми востребованны-ми, так как ими можно измерять напряжение любой сложной формы.

Детектор средневыпрямленного значения преобразует напряжение переменного тока в напряжение постоянного тока, пропорциональное средневыпрямленному значению напряжения. Выходной ток измери-тельного прибора с таким детектором аналогичен выходному току вы-прямительной системы.

Напряжения переменного тока, действующие в электронных устройствах, могут изменяться во времени по различным законам. На-пример, напряжение на выходе задающего генератора связного радио-передатчика изменяется по синусоидальному закону, на выходе генера-тора развертки осциллографа импульсы имеют пилообразную форму, синхроимпульсы полного телевизионного сигнала прямоугольные.

На практике приходится проводить измерения в различных участ-ках схем, напряжения в которых могут отличаться по значению и по форме. Измерение напряжения несинусоидальной формы имеет свои особенности, которые необходимо учитывать, чтобы не допустить оши-бок.

Очень важно правильно выбрать тип прибора и способ пересчета показаний вольтметра в значение необходимого параметра измеряемо-го напряжения. Для этого необходимо четко представлять себе, каким образом производится оценка и сравнение напряжений переменного тока и как влияет форма напряжения на значения коэффициентов, свя-зывающих между собой отдельные параметры напряжения.

Критерием оценки напряжения переменного тока любой формы служит связь с соответствующим напряжением постоянного тока по одинаковому эффекту теплового действия (среднеквадратичное зна-чение U ), определяемое выражением

(3.14)

где — период повторения сигнала;

— функция, описывающая закон изменения мгновенного значения на-пряжения. Далеко не всегда в распоряжении оператора может оказаться вольт-метр, с помощью которого можно измерить нужный параметр напряжения. В таком случае необходимый параметр напряжения измеряется косвенно с помощью имеющегося вольтметра, с использованием коэффициентов амплитуды и формы . Рассмотрим пример расчета необходимых параметров напряжения синусоидальной формы.

Необходимо определить амплитудное () и средневыпрямленное () значения напряжения синусоидальной формы вольтметром, градуированным в среднеквадратичных значениях напряжения синусоидальной формы, если прибор показал .

Расчет выполняем следующим образом. Так как вольтметр градуирован в среднеквадратичных значениях , то в приложении 3 для дан-ного прибора показание 10 В соответствует прямому отсчету по шкале среднеквадратичного значения, т.е.

Переменное напряжение характеризуется средним, амплитудным) (максимальным) и среднеквадратичным значениями.

Среднее значение (постоянная составляющая) за период переменного напряжения:

(3.15)

Максимальное значение — это наибольшее мгновенное значение переменного напряжения за период сигнала:

Средневыпрямленное значение — это среднее напряжение на вы-ходе двухполупериодного выпрямителя, имеющего на входе перемен-ное напряжение :

(3.17)

Соотношение среднеквадратичного, среднего и максимального зна-чений напряжения переменного тока зависит от его формы и в общем виде определяются двумя коэффициентами:

(коэффициент амплитуды), (3.18)

(коэффициент формы). (3.19)

Значения этих коэффициентов для напряжений разной формы иих соотношения приведены в табл. 3.1

Таблица 3.1

Значения и для напряжений разной формы

Примечание , - скважность: .

В ряде приборов напряжение оценивают не в абсолютных единицах измерения (В, мВ, мкВ), а в относительной логарифмической единице — децибеле (dB, или дБ). Для упрощения перехода абсолютных единиц в относительную и, наоборот, большинство аналоговых вольте метров (автономных и встроенных в другие приборы: генераторы, мультиметры, измерители нелинейных искажений) наряду с обычной шкалой имеют децибельную. Эта шкала отличается четко выраженной нелинейностью, что при необходимости позволяет получать результат сразу в децибелах, без соответствующих расчетов и применения таблиц перевода. Чаще всего у таких приборов нуль шкалы децибел соответствует входному напряжению 0,775 В.

Напряжение больше условного нулевого уровня характеризуется положительными децибелами, меньше этого уровня — отрицательными. На переключателе пределов каждый поддиапазон измерения отличается по уровню от соседнего на 10 дБ, что соответствует кратности по напряжению 3,16. Показания, снятые по шкале децибел, алгебраически складываются с показаниями на переключателе пределов измерения, а не перемножаются, как в случае абсолютного отсчета напряжений.

Например, переключатель пределов установлен на «- 10 dB», при этом стрелка индикатора установилась на отметку «- 0,5 dB». Суммар-ный уровень составит: ---- 10 + (- 0,5) = - 10,5 dB, И основу перевода напряжения из абсолютных значений в относительные положена формула

(3.20)

Где = 0,775В.

Поскольку бел — большая единица, то на практике применяют дольную (десятую) часть бела — децибел.

Импульсные и цифровые вольтметры. При измерении импульсных напряжений с малой амплитудой применяют предварительное усиление импульсов. Структурная схема аналогового импульсного вольтметра (рис. 3.11) состоит из выносного пробника с эмиттерным повторителем, аттенюатора, широкополосного предварительного усилителя, детектора амплитудного значения, усилителя постоянного тока (УПТ) и электромеханического индикатора. Вольтметры, реа-лизованные по этой схеме, непосредственно измеряют напряжения 1 мВ - 3 В с погрешностью ± (4 — 10)%, длительностью импульсов 1 - 200 мкс и скважностью 100 ... 2500.

Рис. 3.11.т Структурная схема импульсного вольтметра

Для измерения малых напряжений в широком диапазоне длитель-ностей (от наносекунд до миллисекунд) применяют вольтметры, рабо-тающие на основе автокомпенсационного метода.

Электронные цифровые вольтметры имеют существенные преиму-щества перед аналоговыми:

Высокая скорость измерений;

Исключение возможности возникновения субъективной ошибки оператора;

Малая приведенная погрешность.

Благодаря этим преимуществам цифровые электронные вольтмет-ры широко используются для измерения. На рисунке 3.12 приведена упрощенная структурная схема цифрового вольтметра.

Рис. 3.12. Упрощенная структурная схема цифрового вольтметра

Входное устройство предназначено для создания большого вход-ного сопротивления, выбора пределов измерения, ослабления помех, автоматического определения полярности измеряемого напряжения постоянного тока. В вольтметрах переменного тока входное устрой-ство включает в себя также преобразователь напряжения перемен-ного тока в постоянный.

С выхода входного устройства измеряемое напряжение подается на аналого-цифровой преобразователь (АЦП), в котором напряжение преобразуется в цифровой (дискретный) сигнал в виде электрического кода или импульсов, количество которых про-порционально измеряемому напряжению. Результат появляется на табло цифрового индикатора. Работой всех блоков управляет устрой-ство управления.

Цифровые вольтметры в зависимости от типа АЦП подразделяют-ся на четыре группы: кодоимпульсные, времяимпульсные, частотно-импульсные, пространственного кодирования.

В настоящее время широко применяются цифровые времяимпульсные вольтметры , преобразователи которых выполняют промежуточное преобразование измеряемого напряжения в пропорцио-нальный интервал времени, заполняемый импульсами с известной частотой повторения. В результате такого преобразования дискретный сигнал измерительной информации на входе АЦП имеет вид пачки счетных импульсов, количество которых пропорционально измеряе-мому напряжению.

Погрешность времяимпульсных вольтметров определяется погрешностью дискретизации измеряемого сигнала, нестабильностью частоты счетных импульсов, наличием порога чувствительности схемы сравнения, нелинейностью преобразованного напряжения на входе схемы сравнения.

Различают несколько вариантов схемотехнических решений при построении времяимпульсных вольтметров. Рассмотрим принцип работы время импульсного вольтметра с генератором линейно изменяющегося напряжения (ГЛИН).

На рисунке 3.13 представлены структурная схема цифрового времяимпульсного вольтметра с ГЛИН и временные диаграммы, поясняющие его работу.

Дискретный сигнал измерительной информации па выходе преоб-разователя имеет вид пачки счетных импульсов, количество которых пропорционально значению входного напряжения . С выхода ГЛИН на входы 1 устройств сравнения поступает линейно нарастающее во времени напряжение . Вход 2 устройства сравнения II соединен с корпусом.

В момент равенства на входе устройства сравнения II и на его выходе возникает импульс, который подается на единичный вход триггера (Т), вызывая появление сигнала на его выходе. Триггер возвращается в исходное положение импульсом, поступающим с выхода устройства сравнения II. Этот сигнал появляется в момент равенства линейно нарастающего напряжения и измеряемого . Сформированный таким образом сигнал длительностью (где коэффициент преобразования) подается на вход 1 схемы логиче-ского умножения И, а на вход 2 поступает сигнал с генератора счетных импульсов (ГСИ). Импульсы следуют с частотой . Импульсный сигнал появляется тогда, когда на обоих входах есть импульсы, т.е. счетные импульсы проходят при наличии сигнала на выходе триггера.


Рис. 3.13. Структурная схема (а) ивременное диаграммы (б) цифрового времяимпульсного вольтметра с ГЛИН

Счетчик импульсов подсчитывает количество прошедших импуль-сов (с учетом коэффициента преобразования). Результат измерения отображается на табло цифрового индикатора (ЦИ). Приве-денная формула не учитывает погрешность дискретности из-за несовпа-дения появления счетных импульсов с началом и концом интервала

Кроме того, большую погрешность вносит фактор нелинейности коэффициента преобразования . В результате цифровые время импульсные вольтметры с ГЛИН являются наименее точными среди цифровых вольтметров.

Цифровые вольтметры с двойным интегрированием отличаются от времяимпульсных вольтметров принципом работ Ы. В них в тече-ние времени цикла измерения формируются два временных интервала — и . В первом интервале обеспечивается интегрирование измеряемого напряжения , во втором — опорного напряжения. Вре-мя цикла измерения предварительно устанавливают кратным периоду действующей на входе помехи, что приводит к улучшению помехоустойчивости вольтметра.

На рисунке 3.14 приведены структурная схема цифрового вольтме-тра с двойным интегрированием и временные диаграммы, поясняющие его работу.

Рис. 3.14. Структурная схема (а) и временные диаграммы (6) цифрового вольтметра с двойным интегрированием

При (в момент начала измерения) управляющее устройство вырабатывает калиброванный импульс с длительностью

, (3.21) переводит ключ в положение 2 и от источника образцового напряжения (ИОН) в интегратор подает-ся образцовое отрицательное напряжение становится равным нулю, устройство сравнения выдает сигнал, по-ступающий на триггер, и возвращает последний в исходное состояние. На выходе триггера сформированный импульс напряжения

; ; (3.25)

Из полученных соотношений следует, что погрешность результата измерения зависит только от уровня образцового напряжения, а не от нескольких параметров (как в кодоимпульсном вольт метре), но здесь также имеет место погрешность дискретности.

Преимуществами вольтметра с двойным интегрированием являются высокая помехозащищенность и более высокий класс точ-ности (0,005-0,02%) по сравнению с вольтметрами с ГЛИН.

Цифровые вольтметры со встроенным микропроцессором являются комбинированными и относятся к вольтметрам наивысшего класса точности. Принцип их работы основан на методах поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.

Микропроцессор и дополнительные преобразователи, включенные в схему такого вольтметра, расширяют возможности при-бора, делая его универсальным в части измерения большого числа параметров. Такие вольтметры измеряют напряжение постоянного и переменного тока, силу тока, сопротивление резисторов, часто-ту колебаний и другие параметры. При использовании совместное с осциллографом могут измерять временные параметры: период, длительность импульсов и т.д. Наличие в схеме вольтметра микропроцессора позволяет осуществлять автоматическую коррекциям погрешности измерений, диагностику отказов, автоматическую калибровку.

На рисунке 3.15 приведена структурная схема цифрового вольтметра со встроенным микропроцессором.


Рис. 3.15. Структурная схема цифрового вольтметра со встроенным микропроцессором

С помощью соответствующих преобразователей блок нормали-зации сигналов приводит входные измеряемые параметры (97 стр) к унифицированному сигналу , поступающему на вход АЦП, ко-торый выполняет преобразование методом двойного интегрирования. Выбор режима работы вольтметра для заданного вида измерений осу-ществляет блок управления АЦП с дисплеем. Этот же блок обеспечи-вает нужную конфигурацию системы измерения.

Микропроцессор является основой блока управления и связан с другими блоками через сдвигающие регистры. С помощью клавиа-туры, находящейся на панели управления, обеспечивается управление микропроцессором. Управление может осуществляться также и через стандартный интерфейс подключаемого канала связи. В постоянном запоминающем устройстве (ПЗУ) хранится программа работы микро-процессора, которая реализуется с помощью оперативного запомина-ющего устройства (ОЗУ).

Встроенные высокостабильные и точные резистивные делители опорного напряжения, дифференциальный усилитель (ДУ) и ряд внеш-них элементов (аттенюатор, устройство выбора режима, блок опорного напряжения ) выполняют непосредственно измерения. Все блоки синхронизируются сигналами от генератора тактовых импульсов.

Включение в схему вольтметра микропроцессора и ряда дополнительных преобразователей позволяет выполнять автоматическую коррекцию погрешностей, автоматическую калибровку и диагностику отказов.

Основными параметрами цифровых вольтметров являются точность преобразования, время преобразования, пределы изменения входной величины, чувствительность.

Точность преобразования определяется погрешностью квантова-ния по уровню, характеризуемой числом разрядов в выходном коде.

Погрешность цифрового вольтметра имеет две составляющие. Пер-вая составляющая (мультипликативная) зависит от измеряемой вели-чины, вторая составляющая (аддитивная) не зависит от измеряемой величины.

Такое представление связано с дискретным принципом измерения аналоговой величины, так как в процессе квантования возникает абсо-лютная погрешность, обусловленная конечным числом уровней квантования. Абсолютная погрешность измерения напряжения выражается как

знаков) или ( знаков), (3.27)

где — действительная относительная погрешность измерения;

— значение измеряемого напряжения;

конечное значение на выбранном пределе измерения;

т знаков — значение, определяемое единицей младшего разряда ЦИ (аддитивная погрешность дискретности). Основную действительную относительную погрешность измере-ния можно представить и в другом виде:

(3.2)

Где a, b — постоянные числа, характеризующие класс точности прибора.

Первое слагаемое погрешности (а) не зависит от показаний при-бора, а второе (b) увеличивается при уменьшении .

Время преобразования — это время, затрачиваемое на выполнение одного преобразования аналоговой величины в цифровой код.

Пределы изменения входной величины это диапазоны преобразования входной величины, которые полностью определяются числом разрядов и «весом» наименьшего разряда.

Чувствительность (разрешающая способность) — это наименьшее различимое преобразователем изменение значения входной величины.

К основным метрологическим характеристикам вольтметров, которые необходимо знать для правильного выбора прибора, относятся следующие характеристики:

Параметр измеряемого напряжения (среднеквадратичное, ампли-тудное);

Диапазон измерения напряжения;

Частотный диапазон;

Допустимая погрешность измерений;

Входной импеданс ().

Эти характеристики приводятся в техническом описании и паспор-те прибора.