Как подключить лазерный диод, схема.

04.05.2019

— это усовершенствованная схема защиты лазерного диода от бросков напряжения. Дорогие полупроводниковые лазеры не обладают устойчивостью к быстрым скачкам напряжения или тока. Для снижения риска их повреждения используются стандартные схемы ограничения на полевых транзисторах с р-n переходом. Именно они в отсутствие напряжения закорачивают лазер, защищая его от таких бросков (Рисунок 1).

Когда на отрицательной шине питания появляется напряжение, полевой транзистор закрывается. Схема эффективна для защиты маломощных лазерных диодов, но плохо подходит для диодов с током потребления более 150 мА. Этот предел обусловлен значением максимального тока полевого транзистора. Если в аварийном режиме возникает необходимость ограничения тока лазерного диода, выбранный полевой транзистор может не справиться с этой задачей. Правда, существуют и сильноточные полевые транзисторы с р-n переходом, однако они существенно дороже, и их сложно найти в продаже.

Схема на Рисунке 2 позволяет избежать этих недостатков. Она похожа на стандартную схему с полевым транзистором. Но дополнена биполярным транзистором, который шунтирует большую часть отрицательных токов, когда полевой транзистор открыт. Резистор R2 фиксирует потенциал затвора транзистора Qb a R3 обеспечивает быстрое выключение транзистора Q2. Диод 1 N914 принимает на себя любые положительные броски тока. RC-цепочка устанавливает
достаточно низкую скорость отклика, сглаживая переходы от открытого состояния к закрытому.

По сравнению со светом обычных светодиодов лазерный свет имеет высокую концентрацию, он имеет более узкий угол обзора. Для подключения лазерного диода к электронной цепи понадобится специальная схема, называемая драйвером лазерного диода. В данном материале будет показано, как самостоятельно собрать простой драйвер лазерного диода на основе LM317.



Драйвер лазерного диода – это схема, которая используется для ограничения тока и затем подачи его на лазерный диод, чтобы он работал должным образом. Если мы напрямую подключим его к источнику питания, из-за потребности в большем токе он может не заработать или даже привести к некоторым повреждениям цепи.


Если ток будет небольшим, лазерный светодиод не будет работать из-за отсутствия достаточной мощности для включения. Таким образом, необходима схема драйвера для обеспечения правильного значения тока, при котором лазерный диод перейдет в рабочее состояние. Простому светодиоду нужен только резистор для ограничения тока, но в случае с лазерным диодом нам нужна правильная схема для ограничения и регулирования тока. Для регулирования мощности в цепи драйвера лазерного диода можно использовать LM317.


Трехвыводная микросхема LM317 представляет собой стабилизатор напряжения. На своем выходе он может выдавать от 1.25 до 37 вольт. Внешний вид LM317 с подписанными выводами представлен на изображении ниже.



LM317 является регулируемым стабилизатором, иными словами можно изменять значение напряжения на выходе в зависимости от потребностей, используя два внешних резистора, подключенных к линии регулировки (Adjust). Эти два резистора работают как цепь делителя напряжения, используемая для увеличения или уменьшения выходного напряжения. LM317 обеспечивает ограничение тока и защиту от тепловой перегрузки.


Схема драйвера лазерного диода на основе стабилизатора напряжения LM317 показана на рисунке ниже.



Ее довольно быстро можно собрать на макетной плате.



Работает схема следующим образом. Когда батарея начинает подавать напряжение, оно сначала протекает через керамический конденсатор (0.1 мкФ). Этот конденсатор используется для фильтрации высокочастотного шума от нашего источника постоянного тока и обеспечивает входной сигнал для LM317. Потенциометр (10 КОм) и резистор (330 Ом), подключенные к линии регулировки, используются в качестве схемы ограничения напряжения. Выходное напряжение полностью зависит от значения этого резистора и потенциометра. Выходное напряжение стабилизатора попадает на фильтр второго конденсатора (1 мкФ). Этот конденсатор ведет себя как балансировщик мощности для фильтрации флуктуирующих сигналов. В итоге можно регулировать интенсивность лазерного излучения, вращая ручку потенциометра.

Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

1. Небольшое вступление.

Давным давно, на сайте лазерорг, была выложена интересная схемка драйвера питания синего лазерного диода. Выложил ее пользователь под ником ArtDen . За основу взят чип tps61030 от компании техас инструментс. (стоит около 150-250руб). На первый взгляд схема подкупает своей простотой, небольшим количеством обвески. Но это не совсем так. Одному Богу известно сколько этих чипо в было спалено. В итоге, после сбора, не все умудрялись стабильно запустить драйвер, как правило выгорала микросхема, а иногда даже и ЛД диоды отправлялись на тот свет.

2. Характеристики драйвера

Внимание! Этот драйвер нельзя включать без нагрузки или некачественно (без пайки) подключать к нагрузке! Такое включение убивает микросхему!

1.Диапазон входного напряжения зависит от ЛД (445 нм) для сини это 1.8...5В, для фиолета (405нм) - 1.8...5.5В.
2.Напряжение на выходе 5 вольт.
3.При запитке синего лд 1ватт ток на выходе 1.3а. (Снимали до 2а.) Ток регулируется резистором R2.
4.Ток потребляния 3-4а.
5.КПД 72-80%

3. Схема и детали


На рисунке 1 можем наблюдать схему драйвера. Большинство деталей можно легко найти на старых платах, а некоторые необходимо будет купить. Схема очень нежная, уж очень любит дохнуть. В ваших интересах не жечь микросхемы попусту, ибо чипы не дешевые.



Рис.1 Схема драйвера для синего лазера


Рис.2 Печатка. Автор
Squork


Рис. 3 Еще печатка от Alex72

Рис. 4 Сама микросхема, точкой показана нога 1.

Плановые детали, по возможности, лучше купить новые, что благоприятно скажется на работе драйвера. Критичные детали - позиции 1;2;6;8 При установке диода позиция №2 РЕЗИСТОР 22кОм НЕ НУЖЕН !


Список деталей в магаине чип-дип и цена в рублях на февраль 2014г.
1 TPS61030PWP-ADJ, DC-DC преобразователь повышающий, вход 1.8-5.5В, выход 1.8-5.5В/1А HTSSOP-16 150.00
2 1N4148, Диод 150мА 100В DO-35 1.50
3 Кер. чип. конд. 0603 X7R 1мкФ 16В 10%, GRM188R71C105KA12D 1.80
4 Кер.ЧИП конд. 0.01 мкФ Y5V 50В+80-20%0402, GRM155F51H103Z 1.10
5 Кер.ЧИП конд. 2.2мкФ,X5R,10% 10В 0603, GRM188R61A225K 4.10
6 TECAP, 220 мкФ, 10 В, тип D, 10%, Конденсатор танталовый SMD 32.00
7 0.25Вт 1206 10 кОм, 1%, Чип резистор (SMD) 0.90
8 B82464G4682M, 6.8 мкГн, 4.3 А, 10х10, Катушка индуктивности SMD

Для большей надежности я ставил вот такой дроссель .
TSL1112S-6R8M4R6, 6.8 мкГн, 4.6/6.1А, Катушка индуктивности 24.00

Эксперименты с деталями могут привести к тому, что микросхема просто задымится, или будет работать не стабильно.

4. Причины нестабильной работы и перегорания.

Разберем причины из за которых чип выходит из строя. Для их выявления мне пришлось сжечь не одну микруху.

Ты будешь арать как сука, когда почуешь этот пренеприятный горелый запах! =)

1. Подключение без нагрузки - 100% дохлая микросхема. Автор, впервые выложивший эту схему, предупреждает об этом, все же я тоже проверил =) Если и вы рискнете так подключить, услышите этот звык "ПЫЩ", а микросхема испустит клуб дыма.
2. Дроссель ниже 4.a, или нонейм дроссель. Дроссель лучше купить и не рисковать. При нагрузке драйвера 1.5-2 ватта можно наблюдать как дроссель нагревается. Затем происходит насыщение дросселя, микросхема уходит в защиту и при последующем включение получаете ПЫЩ! Дроссель необходим не менее 4А по току.
3. Кривая пайка и тонкие длинные дорожки, иногда они убивают микросхему. Желательно покрывать дорожки тонким слоем припоя.
4. Нестабильный контакт по время замеров тока, или забытие выставить на мультиметре функцию замеров тока, получаете пункт 1. Если решились на замеры, тщательно проверяйте контакты. Тесты можно проводить с резистором 3-ома, дохлым синим лд.

По поводу умирание микры поговорили, теперь по поводу нестабильной работы. Иногда драйвер начинает пульсировать, нет стабилизации по току, диод мигает. Иной раз не выходит из софт старта, на выходе получаем малую мощность. А иной раз вообще не включается.

1. Нестабильная работа, диод меняет яркость гаснет и включается, нет стабилизации по току. Это происходит в следствии неправильной работы дросселя (скорее всего ваш дроссель ниже 4А), либо диод VD1 нонэйм не рассчитаный для данного устройства. Так же может быть, если ваш ЛД уже почти мертвый, при этом драйвер исправен.
2. Конденсаторы на выходе лучше танталовые иначе может вообще не включиться, или включиться но должной мощности на лазерном диоде не получите.
3. Кривая пайка так же может стать причиной нестабильной работы.

5. Подключение драйвера.

Как отмечалось выше драйвер потребляет ток 3-4а, для его питания необходим хороший li-ion аккумулятор, желательно не менее 2а/ч. Подключать драйвер только с нагрузкой. Если собираетесь запитывать сразу живой лд, необходимо поместить лд в охлаждающий коллиматор. На таких мощностях диод бует жутко греться.

Ну вот и все, никаких рассчетов, все должно работать сразу. Для питания лазерных диодов 2w. Для мощности 1.8 ватт R2 - 0.33ом, для мощности 2w - 0.25ом (при этом драйвер будет работать почти что на прееле, отдавая ток 2а, а микросхема будет нехило греться). Ниже представляю свои фото и видео лазера.




Рис. 5 Лазер в процессе сборки. Дроссель и R2 с обратной стороны платки.


Рис. 6 Луч лазера. В моем варианте 1.7-1.8ватт (R2-0.33ома)


Небольшое видео процесса:
Прожигание 2 донышек от спичечного коробка, лучом свокусированным в бесконечность.
Сокращения:
лд - лазерный диод
микра - микросхема