Как работает стек протоколов tcp ip. SNMP протокол (основы)

02.08.2019

Для упорядочения обмена данными между компьютерами применяются наборы правил, или протоколы . В настоящее время наиболее широко распространен набор протоколов под общим названием TCP/IP . (Следует помнить, что во многих странах Европы применяется протокол X.25 ). Основные функции семейства протоколов TCP/IP : электронная почта, передача файлов между компьютерами и удаленный вход в систему.

Пользовательская команда mail , пользовательские команды обработки сообщений (MH) и команда сервера sendmail могут применять TCP/IP для передачи сообщений между системами, а основные сетевые утилиты (BNU) могут применять TCP/IP для передачи файлов и команд между системами.

TCP/IP - это набор протоколов, который задает стандарты связи между компьютерами и содержит подробные соглашения о маршрутизации и межсетевом взаимодействии. TCP/IP широко применяется в Internet, поэтому с его помощью могут общаться пользователи из исследовательских институтов, школ, университетов, правительственных учреждений и промышленных предприятий.

TCP/IP обеспечивает связь подключенных к сети компьютеров, обычно называемых хостами. Любую сеть можно подключить к другой сети и организовать связь с ее хостами. Несмотря на то, что существуют различные сетевые технологии, многие из которых основаны на коммутации пакетов и потоковом режиме передачи, набор протокол TCP/IP обладает одним важным преимуществом: он обеспечивает аппаратную независимость.

Так как в протоколах Internet определяется только блок передачи и способ его отправки, TCP/IP не зависит от особенностей сетевого аппаратного обеспечения, позволяя организовать обмен информацией между сетями с различной технологией передачи данных. Система IP-адресов позволяет установить соединение между любыми двумя машинами сети. Кроме того, в TCP/IP также определены стандарты для многих служб связи, предназначенных для конечных пользователей.

TCP/IP обеспечивает средства, позволяющие вашему компьютеру выступать в роли хоста Internet, который может подключиться к сети и установить соединение с любым другим хостом Internet. В TCP/IP предусмотрены команды и средства, которые позволяют выполнять следующие действия:

  • Передавать файлы в другую систему
  • Входить в удаленную систему
  • Выполнять команды в удаленной системе
  • Печатать файлы в удаленной системе
  • Отправлять электронные сообщения удаленным пользователям
  • Вести интерактивный диалог с удаленными пользователями
  • Управлять сетью
Примечание: TCP/IP предусмотрены только основные функции управления сетью. По сравнению с TCP/IP, Простой протокол управления сетью (SNMP) предоставляет более широкий набор команд и функций управления.
  • Терминология TCP/IP
    Ознакомьтесь с основными понятиями Internet, связанными с TCP/IP.
  • Планирование сети TCP/IP
    Стек протоколов TCP/IP - это гибкое средство организации сетевого взаимодействия, поэтому каждый пользователь может настроить его с учетом собственных потребностей. При планировании сети обратите внимание не следующие вопросы. Более подробно эти вопросы обсуждаются в других разделах. Данный список следует рассматривать лишь как общий обзор задач.
  • Установка TCP/IP
    В этом разделе рассмотрена процедура установки TCP/IP .
  • Настройка TCP/IP
    Настройку программного обеспечения TCP/IP можно начинать сразу после его установки в системе.
  • Идентификация и защищенные rcmds
    Теперь у этих команд появились дополнительные способы идентификации.
  • Настройка TCP/IP
    Для настройки TCP/IP создайте файл .netrc .
  • Способы организации взаимодействия с другой системой или пользователем
    Существует несколько способов организации взаимодействия с другой системой или пользователем. В данном разделе описаны два возможных способа. Во-первых, можно установить соединение между локальным и удаленным хостами. Второй способ - это диалог с удаленным пользователем.
  • Передача файлов
    Несмотря на то, что сравнительно небольшие файлы можно передавать с помощью электронной почты, для больших файлов существуют более эффективные способы передачи.
  • Печать на удаленном принтере
    Если к вашему хосту подключен локальный принтер, то с помощью приведенной в этом разделе информации вы сможете печатать на удаленном принтере. Кроме того, если локального принтера нет, то вы сможете печатать на удаленном принтере, отличном от заданного по умолчанию.
  • Печать файлов из удаленной системы
    Вам может понадобиться напечатать файл, который расположен на удаленном хосте. В этом случае расположение напечатанного файла зависит от того, какие удаленные принтеры доступны удаленному хосту.
  • Просмотр сведений о состоянии
    С помощью команд TCP/IP вы можете получить информацию о состоянии, пользователях и хостах сети. Эта информация может потребоваться для связи с другим хостом или пользователем.
  • Протоколы TCP/IP
    Протоколом называется набор правил, задающих форматы сообщений и процедуры, которые позволяют компьютерам и прикладным программам обмениваться информацией. Эти правила соблюдаются каждым компьютером в сети, в результате чего любой хост-получатель может понять отправленное ему сообщение. Набор протоколов TCP/IP можно рассматривать как многоуровневую структуру.
  • Карты сетевых адаптеров локальной сети TCP/IP
    Карта сетевого адаптера - это физическое устройство, которое непосредственно подключается к сетевому кабелю. Она отвечает за прием и передачу данных на физическом уровне.
  • Сетевые интерфейсы TCP/IP
    На уровне сетевого интерфейса TCP/IP создает из IP-дейтаграмм пакеты, которые могут интерпретироваться и передаваться с помощью определенных сетевых технологий.
  • Адресация TCP/IP
    Схема IP-адресации, применяемая в TCP/IP , позволяет пользователям и приложениям однозначно идентифицировать сети и хосты, с которыми устанавливаются соединения.
  • Преобразование имен TCP/IP
    Несмотря на то, что 32-разрядные IP-адреса позволяют однозначно идентифицировать все хосты в сети Internet, пользователям гораздо удобнее работать с осмысленными, легко запоминающимися именами хостов. В Протоколе управления передачей/Протоколе Internet (TCP/IP) предусмотрена система имен, поддерживающая как одноуровневую, так и иерархическую структуру сети.
  • Планирование и настройка преобразования имен LDAP (Схема IBM SecureWay Directory)
    Упрощенный протокол доступа к каталогам (LDAP) - это открытый стандартный протокол, регламентирующий способ получения и изменения информации в каталоге.
  • Планирование и настройка преобразования имен NIS_LDAP (схема RFC 2307)
    В AIX 5.2 реализован новый механизм преобразования имен NIS_LDAP.
  • Присвоение адреса и параметров TCP/IP - протокол динамической настройки хостов
    предназначен для организации связи между компьютерами с определенными адресами. Одной из обязанностей администратора сети является присвоение адресов и задание параметров для всех машин в сети. Обычно администратор информирует пользователей о том, какие адреса выделены их системам, и предоставляет пользователям возможность самим выполнить настройку. Однако ошибки при настройке или неправильное понимание могут вызвать у пользователей вопросы, которые администратор должен будет рассматривать индивидуально. позволяет администратору централизованно настраивать сеть без участия конечных пользователей.
  • Протокол динамической настройки хостов версии 6
    Протокол динамической настройки хостов (DHCP) позволяет работать с сетевыми конфигурациями из централизованного расположения. Этот раздел посвящен DHCPv6 ; под IP-адресами понимаются адреса IPv6, а под DHCP - DHCPv6 (если не сказано обратное).
  • Демон PXE Proxy DHCP
    Сервер PXE Proxy DHCP работает примерно так же, как и сервер DHCP : он просматривает сообщения клиентов DHCP и отвечает на некоторые запросы. Однако, в отличие от сервера DHCP , сервер PXE Proxy DHCP не управляет сетевыми адресами, а всего лишь отвечает на запросы клиентов PXE.
  • Демон согласования загрузочных образов (BINLD)
    Сервер демона согласования загрузочных образов (BINLD) применяется на третьем этапе загрузки клиентов PXE.
  • Демоны TCP/IP
    Демоны (или серверы ) - это процессы, которые работают в фоновом режиме и выполняют запросы других процессов. Протокол управления передачей/Протокол Internet применяет программы-демоны для выполнения определенных функций в операционной системе.
  • Маршрутизация TCP/IP
    Маршрутом называется путь, по которому пакеты пересылаются от отправителя к получателю.
  • Mobile IPv6
    Протокол Mobile IPv6 обеспечивает поддержку переадресации для IPv6 . С его помощью пользователь может применять один и тот же IP-адрес в любой точке земного шара, а приложения, работающие с этим адресом, сохраняют связь и соединения верхнего уровня, независимо от местонахождения пользователя. Поддержка переадресации осуществляется в однородных и разнородных средах.
  • Виртуальный IP-адрес
    Виртуальный IP-адрес устраняет зависимость хоста от отдельных сетевых интерфейсов.
  • Канал EtherChannel и объединение линий IEEE 802.3ad
    Канал EtherChannel и объединение линий IEEE 802.3ad - это технологии объединения сетевых портов, позволяющие объединить несколько адаптеров Ethernet в одно псевдоустройство Ethernet.
  • Протокол IP для InfiniBand (IPoIB)
    Пакеты IP-протокола могут быть отправлены через интерфейс InfiniBand (IB). При этом IP-пакеты заключаются в пакеты IB с помощью сетевого интерфейса.
  • Инициатор ПО iSCSI и целевой объект ПО
    Программный инициатор iSCSI позволяет AIX получать доступ к запоминающим устройствам по сети TCP/IP с использованием адаптеров Ethernet. Целевой объект ПО iSCSI обеспечивает AIX доступ других инициаторов iSCSI к экспортированной локальной памяти с использованием протокола iSCSI, определенного в RFC 3720.

В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное - не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

TCP/IP

Стек TCP/IP - сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

Стек протоколов сети TCP/IP имеет 4 уровня:

  1. Канальный (Link).
  2. Сетевой (Internet).
  3. Транспортный (Transport).
  4. Прикладной (Application).

Прикладной уровень

Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

  • HTTP;
  • SMTP;

Каждый протокол определяет собственный порядок и принципы работы с данными.

HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент - сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

Служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

Используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

  1. Определение адреса отправителя. Это необходимо для возвращения писем.
  2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
  3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

Заголовок (Header)

В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

Транспортный уровень

На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

Протоколы передачи данных:

Самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

UDP (User Datagram Protocol) - второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

TCP или UDP?

У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки - важнейший фактор.

Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

Сетевой уровень

Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

IP-адрес (Internet Protocol address) - логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: .

MAC-адрес (Media Access Control address) - физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: .

Сетевой уровень отвечает за:

  • Определение маршрутов доставки.
  • Передачу пакетов между сетями.
  • Присвоение уникальных адресов.

Маршрутизаторы - устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

Самый популярный протокол этого уровня - IP.

IP (Internet Protocol) - интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

Виды IP-адресов

В сетях используются два вида IP-адресов:

  1. Публичные.
  2. Приватные.

Публичные (Public) используются в Интернете. Главное правило - абсолютная уникальность. Пример их использования - маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример - локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

IPv4

Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи - четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса - 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

Формат записи: .

IPv6

Эта версия предназначается для решения проблем предыдущей версией. Длина адреса - 128 бит.

Основная проблема, которую решает IPv6 - это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

Главное преимущество IPv6 - более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

Пример записи: .

Существует три типа IPv6-адресов:

  1. Unicast.
  2. Anycast.
  3. Multicast.

Unicast - тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес имеет маску . В таком случае формат записи будет выглядеть так . Число «24» - это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети можно представить в двоичной системе счисления таким образом: . В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете - 8 значений. Видим, что три из них заполнены единицами, складываем и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес и маска подсети . Считаем и записываем: . Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем .

Подсеть и хост

Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

Хост - это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: . Так как первые три октета - подсеть, то остается . Это и есть номер хоста.

Диапазон адресов хоста - от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

Адресация

Для адресации в стеке протоколов TCP/IP используются три типа адресов:

  1. Локальные.
  2. Сетевые.
  3. Доменные имена.

Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

Доменные имена - это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация - с локальными (.us, .ru). Они, как правило, привязаны территориально.

Домены низших уровней - это все остальное. Он может быть любого размера и содержать любое количество значений.

Например, "www.test.quiz.sg" - корректное доменное имя, где «sg» - локальный домен первого (верхнего) уровня, «quiz.sg» - домен второго уровня, «test.quiz.sg» - домен третьего уровня. Доменные имена также могут называться DNS-именами.

DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот и вернет его в виде веб-страницы.

Канальный уровень

На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

Самые распространенные протоколы:

  1. Ethernet.
  2. WLAN.

Ethernet - наиболее распространенная технология проводных локальных сетей.

WLAN - локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода - Wi-Fi.

Настройка TCP/IP для использования статического IPv4-адреса

Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

Настройка TCP/IP для использования динамического IPv4-адреса

Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

Способы передачи данных

Данные передаются через физическую среду тремя способами:

  • Simplex.
  • Half-duplex.
  • Full Duplex.

Simplex - это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

Примеры симплексной связи:

  • Телевещание.
  • Сигнал от спутников GPS.

Half-duplex - это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

Пример полудуплексной связи - общение по рации на одной частоте.

Full Duplex - полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

Пример - общение по телефону через мобильную сеть.

TCP/IP vs OSI

Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

  1. Физический (Physical).
  2. Канальный (Data Link).
  3. Сетевой (Network).
  4. Транспортный (Transport).
  5. Сеансовый (Session).
  6. Представительский (Presentation).
  7. Прикладной (Application).

В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

Транспортный уровень остается без изменений. Выполняет одинаковые функции.

Сетевой уровень также не изменен. Выполняет ровно те же задачи.

Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

Физический представляет собой собственно физическую связь - электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.

Когда статья начинала формироваться, планировалось уложиться в одну, но к завершению, размеры статьи стали неподъемные, было решено разделить статью на две: теория сетей и работа сетевой подсистемы в линукс. Ну что ж, начнем с теории...

Стек протоколов TCP/IP

Собственно, что есть сеть ? Сеть - это более 2х компьютеров, объединенных между собой какими-то проводами каналами связи, в более сложном примере - каким-то сетевым оборудованием и обменивающиеся между собой информацией по определенным правилам. Эти правила "диктуются" стеком протоколов TCP/IP.

Transmission Control Protocol/Internet Protocol (Стек протоколов TCP/IP) - если сказать простым языком, это набор взаимодействующих протоколов разных уровней (можно дополнить, что каждый уровень взаимодействует с соседним, то есть состыковывается, поэтому и стек , имхо, так проще понять), согласно которым происходит обмен данными в сети. Каждый протокол - это набор правил, согласно которым происходит обмен данными. Итого, стек протоколов TCP/IP - это набор наборов правил Тут может возникнуть резонный вопрос: а зачем же иметь много протоколов? Неужели нельзя обмениваться всем по одному протоколу?

Все дело в том, что каждый протокол описывает строго отведенные ему правила. Кроме того, протоколы разделены по уровням функциональности, что позволяет работе сетевого оборудования и программного обеспечения становится гораздо проще, прозрачнее и выполнять "свой" круг задач. Для разделения данного набора протоколов по уровням была разработана модель сетевого взаимодействия OSI (англ. Open Systems Interconnection Basic Reference Model, 1978 г., она же - базовая эталонная модель взаимодействия открытых систем). Модель OSI состоит из семи различных уровней. Уровень отвечает за отдельный участок в работе коммуникационных систем, не зависит от рядом стоящих уровней – он только предоставляет определённые услуги. Каждый уровень выполняет свою задачу в соответствии с набором правил, называемым протоколом. Проиллюстрировать работу модели OSI можно следующим рисунком: Как передаются данные?

Из рисунка видно, что существует 7 уровней сетевого взаимодействия , которые делятся на: прикладной, представлений, сеансовый, транспортный, сетевой, канальный, физический . Каждый из уровней содержит свой набор протоколов. Список протоколов по уровням взаимодействия хорошо представлен в Википедии:

Сам стек протоколов TCP/IP развивался параллельно с принятием модели OSI и "не пересекался" с ней, в результате получилось небольшое разногласие в несоответствии стека протоколов и уровней модели OSI. Обычно, в стеке TCP/IP верхние 3 уровня (прикладной, представления и сеансовый ) модели OSI объединяют в один - прикладной . Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP относительно модели OSI можно представить так:

Данную модель сетевого взаимодействия еще называют модель DOD (от бурж. Department of Defense - Министерство обороны США). Итак, общее представление о сетевом взаимодействии рассмотрели. Для более глубокого понимания сути вопроса, могу посоветовать скачать и почитать книгу (Вито Амато "Основы организации сетей Cisco Т1 и Т2" ), ниже.

Адресация

В сети, построенной на стеке протоколов TCP/IP каждому хосту (компьютеру или устройству подключенному к сети) присвоен представляет собой 32-битовое двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. В общем случае, IP-адрес делиться на две части : адрес сети (подсети) и адрес хоста :

Как видно из иллюстрации, есть такое понятие как сеть и подсеть . Думаю, что из значений слов понятно, что IP адреса делятся на сети, а сети в свою очередь делятся на подсЕти с помощью маски подсетИ (корректнее будет сказать: адрес хоста может быть разбит на подсЕти ). Изначально, все IP адреса были поделены на определенные группы (классы адресов/сети). И существовала классовая адресация, согласно которой сети делились на строго определенные изолированные сети:

Нетрудно посчитать, что всего в пространстве адресов IP - 128 сетей по 16 777 216 адресов класса A, 16384 сети по 65536 адресов класса B и 2 097 152 сети по 256 адресов класса C, а также 268 435 456 адресов многоадресной рассылки и 134 317 728 зарезервированных адресов. С ростом сети Интернет эта система оказалась неэффективной и была вытеснена CIDR (бесклассовой адресацией), при которой количество адресов в сети определяется маской подсети.

Существует так же классификация IP адресов, как "частные" и "публичные". Под частные (они же локальные сети) сети зарезервированы следующие диапазоны адресов:

  • 10.0.0.0 - 10.255.255.255 (10.0.0.0/8 или 10/8),
  • 172.16.0.0 - 172.31.255.255 (172.16.0.0/12 или 172.16/12),
  • 192.168.0.0 - 192.168.255.255 (192.168.0.0/16 или 192.168/16).
  • 127.0.0.0 - 127.255.255.255 зарезервировано для петлевых интерфейсов (не используется для обмена между узлами сети), т.н. localhost

Кроме адреса хоста в сети TCP/IP есть такое понятие как порт. Порт является числовой характеристикой какого-то системного ресурса. Порт выделяется приложению, выполняемому на некотором сетевом хосте, для связи с приложениями, выполняемыми на других сетевых хостах (в том числе c другими приложениями на этом же хосте). С программной точки зрения, порт есть область памяти, которая контролируется каким-либо сервисом.

Для каждого из протоколов TCP и UDP стандарт определяет возможность одновременного выделения на хосте до 65536 уникальных портов, идентифицирующихся номерами от 0 до 65535. Соответствие номера порта и службы, использующей этот номер можно посмотреть в файле /etc/services или на сайте http://www.iana.org/assignments/port-numbers. Весь диапазон портов делиться на 3 группы:

  • 0 до 1023, называемые привилегированными или зарезервированными (используются для системных и некоторых популярных программ)
  • 1024 - 49151 называются зарегистрированными портами.
  • 49151 - 65535 называются динамическими портами.

IP протокол , как видно из иллюстраций находится ниже TCP и UDP в иерархии протоколов и отвечает за передачу и маршрутизацию информации в сети. Для этого, протокол IP заключает каждый блок информации (пакет TCP или UDP) в другой пакет - IP пакет или дейтаграмма IP, который хранит заголовок о источнике, получателе и маршруте.

Если провести аналогию с реальным миром, сеть TCP/IP - это город. Названия улиц и проулков - это сети и подсети. Номера строений - это адреса хостов. В строениях, номера кабинетов/квартир - это порты. Точнее, порты - это почтовые ящики, в которые ожидают прихода корреспонденции получатели (службы). Соответственно, номера портов кабинетов 1,2 и т.п. обычно отдаются директорам и руководителям, как привилегированным, а рядовым сотрудникам достаются номера кабинетов с большими цифрами. При отправке и доставке корреспонденции, информация упаковывается в конверты (ip-пакеты ), на которых указывается адрес отправителя (ip и порт ) и адрес получателя (ip и порт ). Простым языком как-то так...

Следует отметить, что протокол IP не имеет представления о портах, за интерпретацию портов отвечает TCP и UDP, по аналогии TCP и UDP не обрабатывают IP-адреса.

Для того чтобы не запоминать нечитаемые наборы цифр в виде IP-адресов, а указывать имя машины в виде человекопонятного имени "придумана" такая служба как DNS (Domain Name Service) , которая заботится о преобразовании имен хостов в IP адрес и представляет собой огромную распределенную базу данных. Об этой службе я обязательно напишу в будущих постах, а пока нам достаточно знать, что для корректного преобразования имен в адреса на машине должен быть запущен демон named или система должна быть настроена на использование службы DNS провайдера.

Маршрутизация

Давайте рассмотрим (на иллюстрации) пример инфраструктуры с несколькими подсетями. Может возникнуть вопрос, а как же один компьютер соединиться с другим? Откуда он знает, куда посылать пакеты?

Для разрешения этого вопроса, сети между собой соединены шлюзами (маршрутизаторами ). Шлюз - это тот же хост, но имеющий соединение с двумя и более сетями, который может передавать информацию между сетями и направлять пакеты в другую сеть. На рисунке роль шлюза выполняет pineapple и papaya , имеющих по 2 интерфейса, подключенные к разным сетям.

Чтобы определить маршрут передачи пакетов , IP использует сетевую часть адреса (маску подсети ). Для определения маршрута, на каждой машине в сети имеется таблица маршрутизации (routing table), которая хранит список сетей и шлюзов для этих сетей. IP "просматривает" сетевую часть адреса назначения в проходящем пакете и если для этой сети есть запись в таблице маршрутизации, то пакет отправляется на соответствующий шлюз.

В Linux ядро операционной системы хранит таблицу маршрутизации в файле /proc/net/route . Просмотреть текущую таблицу маршрутизации можно командой netstat -rn (r - routing table, n - не преобразовывать IP в имена) или route . Первая колонка вывода команды netstat -rn (Destination - назначение) содержит адреса сетей (хостов) назначения . При этом, при указании сети, адрес обычно заканчивается на ноль. Вторая колонка (Gateway) - адрес шлюза для указанного в первой колонке хоста/сети. Третья колонка (Genmask) - маска подсети, для которой работает данный маршрут. Колонка Flags дает информацию об адресе назначения (U - маршрут работает (Up), N - маршрут для сети (network), H - маршрут для хоста и т.п.). Колонка MSS показывает число байтов, которое может быть отправлено за 1 раз, Window - количество фреймов, которое может быть отправлено до получения подтверждения, irtt - статистика использования маршрута, Iface - указывает сетевой интерфейс, используемый для маршрута (eth0, eth1 и т.п.)

Как видно в примере ниже, первая запись (строка) указана для сети 128.17.75, все пакеты для данной сети будут отправлены на шлюз 128.17.75.20, который является IP адресом самого хоста. Вторая запись - это маршрут по умолчанию , который применяется ко всем пакетам, посылаемым в сети, не указанные в данной таблице маршрутизации. Здесь маршрут лежит через хост papaya (IP 128.17.75.98), который можно считать дверью во внешний мир. Данный маршрут должен быть прописан на всех машинах сети 128.17.75, которые должны иметь доступ к другим сетям. Третья запись создана для петлевого интерфейса . Данный адрес используется, если машине необходимо подключиться к самой себе по протоколу TCP/IP. Последняя запись в таблице маршрутизации сделана для IP 128.17.75.20 и направляется на интерфейс lo, т.о. при подключении машины к самой себе на адрес 128.17.75.20, все пакеты будут посылаться на интерфейс 127.0.0.1.

Если хост eggplant пожелает послать пакет хосту zucchini , (соответственно, в пакете будет указан отправитель - 128.17.75.20 и получатель - 128.17.75.37), протокол IP определит на основании таблицы маршрутизации, что оба хоста принадлежат одной сети и пошлет пакет прямо в сеть, где zucchini его получит. Если более подробно сказать.. сетевая карта широковещательно кричит ARP-запросом "Кто такой IP 128.17.75.37, это кричит 128.17.75.20?" все машины, получившие данное послание - игнорируют его, а хост с адресом 128.17.75.37 отвечает "Это я и мой MAC - адрес такой-то...", далее происходит соединение и обмен данными на основе arp таблиц , в которых занесено соответствие IP-MAC адресов. "Кричит", то есть этот пакет посылается всем хостам, это происходит потому что, MAC-адрес получателя указан широковещательный адрес (FF:FF:FF:FF:FF:FF). Такие пакеты получают все хосты сети.

Пример таблицы маршрутизации для хоста eggplant :

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.20 255.255.255.0 UN 1500 0 0 eth0 default 128.17.75.98 0.0.0.0 UGN 1500 0 0 eth0 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.20 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Давайте рассмотрим ситуацию, когда хост eggplant хочет послать пакет хосту, например, pear или еще дальше?.. В таком случае, получатель пакета будет - 128.17.112.21, протокол IP попытается найти в таблице маршрутизации маршрут для сети 128.17.112, но данного маршрута в таблице нет, по этому будет выбран маршрут по умолчанию , шлюзом которого является papaya (128.17.75.98). Получив пакет, papaya отыщет адрес назначения в своей таблице маршрутизации:

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.98 255.255.255.0 UN 1500 0 0 eth0 128.17.112.0 128.17.112.3 255.255.255.0 UN 1500 0 0 eth1 default 128.17.112.40 0.0.0.0 UGN 1500 0 0 eth1 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Из примера видно, что papaya подключена к двум сетям 128.17.75, через устройство eth0 и 128.17.112 через устройство eth1 . Маршрут по умолчанию , через хост pineapple , который в свою очередь, является шлюзом во внешнюю сеть.

Соответственно, получив пакет для pear , маршрутизатор papaya увидит, что адрес назначения принадлежит сети 128.17.112 и направит пакет в соответствии со второй записью в таблице маршрутизации.

Таким образом, пакеты передаются от маршрутизатора к маршрутизатору, пока не достигнут адреса назначения.

Стоит отметить, что в данных примерах маршруты

128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Не стандартные. И в современном linux вы такого не увидите.

Резюме

В данной статье я постарался как можно коротко и понятно описать основные понятия взаимодействия сетевой инфраструктуры на примере нескольких взаимосвязанных сетей, в следующей части я опишу работу сети в операционной системе Linux. Буду рад Вашим комментариям и дополнениям.

В настоящее время я работаю над проектом, где мне нужно использовать Arduino Nano (http://arduino.cc/en/Main/arduinoBoardNano) для отправки данных с датчика температуры на веб-сервер.

Сначала я думал, что это будет легко, так как там очень много отличных библиотек, чтобы помочь с POST/GET и т.д. Однако мой профессор сказал мне, что мне нужно отправить данные на сервер с использованием TCP/IP, и, насколько я понимаю, POST и GET являются HTTP-методами.

Может ли кто-нибудь объяснить мне разницу между HTTP и TCP/IP? В частности, это касается отправки данных на веб-сервер. Я ищу ответ, который не слишком технический (я довольно новичок в этом).

Наконец, если есть кто-то, у кого есть опыт, когда Arduino делает то, что я описал выше, я бы очень признателен за некоторые указатели.

3 ответов

HTTP - это протокол, используемый в основном для просмотра Интернета (IE, Firefox и т.д.). Он распространяется поверх TCP, который обеспечивает надежную связь между двумя компьютерами (если пакет потерян - он повторно передается). Сам TCP проходит поверх IP-адреса, который обеспечивает унифицированную адресацию для связи между компьютерами. TCP/IP является основой для Интернета и 99% других сетей.

В основном это означает, что если вы сообщаете HTTP, вы делаете это с TCP/IP под ним (но я уверен, что это не то, что имел в виду ваш профессор).

Arduino Nano не поддерживает все эти функции, поэтому вам нужно что-то среднее между ними, которое будет транслировать передачу Nano на связь TCP/HTTP.

Некоторые из ваших вариантов:

  • Общение с Nano over Serial и перевод ПК на ваш последовательный протокол на HTTP/TCP
  • Switch Nano с другой платой Arduino, которая поддерживает расширение экрана Ethernet/Wifi (Uno/Mega) или выбор пользовательской платы, которая сама по себе содержит Ethernet
  • Использование другого Arduino (Uno/Mega) с экраном Ethernet в качестве дополнительной платы, которая взаимодействует с Nano over Serial или с помощью RF-модулей (я лично реализовал этот вариант в прошлом)
  • Еще один необычный вариант - подключить Nano к Android-смартфону с помощью аудиокабеля и использовать библиотеку soft-modem (https://code.google.com/p/arms22/issues/detail?id=2), которая содержит реализацию для Android и написать приложение для Android

Веб-сервер, о котором вы говорите, поддерживает HTTP только по определению, поэтому, если вы хотите общаться через TCP, вам нужно будет использовать какой-либо TCP-сервер.

Один из существующих веб-сервисов для предоставления графиков для визуализации данных Sensor - https://xively.com/ , он основан на REST, который проходит поверх HTTP. Но это не единственный.

Вкратце: TCP - это протокол транспортного уровня, а HTTP - протокол уровня приложения, который работает через TCP.

Подробнее: Чтобы понять разницу (и многие другие темы в сети), вам нужно понять идею многоуровневой сетевой модели. По сути, существуют разные протоколы, которые позволяют компьютеру разговаривать на разных расстояниях и разных уровнях абстракции.

В самом низу сетевого стека находится физический уровень. Здесь электрические сигналы или световые импульсы или радиоволны фактически передают информацию с места на место. Физический уровень действительно не имеет протоколов, но вместо этого имеет стандарты для напряжений, частот и других физических свойств. Вы можете передавать информацию прямо таким образом, но вам нужно много энергии или выделенной линии, и без более высоких уровней вы не сможете использовать пропускную способность.

Следующий слой вверх - это слой связи. Этот уровень охватывает связь с устройствами, которые совместно используют физический коммуникационный носитель. Здесь протоколы, такие как Ethernet, 802.11a/b/g/n и Token Ring, определяют, как обрабатывать несколько одновременных доступов к физическому носителю и как направлять трафик на одно устройство, а не на другое. В типичной домашней сети это то, как ваш компьютер разговаривает с вашим домашним "маршрутизатором".

Третий уровень - это сетевой уровень. В большинстве случаев в этом доминирует Internet Protocol (IP). Здесь происходит волшебство Интернета, и вы можете поговорить с компьютером на полпути по всему миру, не зная, где он находится. Маршрутизаторы обрабатывают ваш трафик из локальной сети в сеть, где живет другой компьютер, где его собственный уровень ссылок обрабатывает пакеты на нужном компьютере.

Теперь мы куда-то попадаем. Мы можем поговорить с компьютером где-то по всему миру, но на этом компьютере запущено множество разных программ. Как он должен знать, какой из них должен доставить ваше сообщение? Транспортный уровень позаботится об этом, как правило, с номерами портов. Двумя самыми популярными протоколами транспортного уровня являются TCP и UDP. TCP делает много интересного, чтобы сгладить шероховатые пятна коммуникаций с коммутацией пакетов на сетевом уровне, таких как переупорядочивание пакетов, повторная передача потерянных пакетов и т.д. UDP более ненадежный, но имеет меньше накладных расходов.

Итак, мы подключили ваш браузер к программному обеспечению веб-сервера на другом конце, но как сервер знает, какую страницу вы хотите? Как вы можете отправить вопрос или ответ? Это те вещи, которые обрабатываются протоколами прикладного уровня. Для веб-трафика это протокол передачи гипертекста (HTTP). Существуют тысячи протоколов прикладного уровня: SMTP, IMAP и POP3 для электронной почты; XMPP, IRC, ICQ для чата; Telnet, SSH, RDP для удаленного администрирования; и др.

Это пять уровней сетевой модели TCP/IP, но они действительно только концептуальны. Модель OSI имеет 7 уровней. В действительности, некоторые протоколы прокладывают между различными слоями или могут работать сразу с несколькими слоями. TLS/SSL, например, обеспечивает шифрование и информацию о сеансе между сетевым и транспортным уровнями. Над слоем приложения интерфейсы прикладного программирования (API) управляют взаимодействием с веб-приложениями, такими как Quora, Twitter и Facebook.

Взаимодействие между компьютерами в интернете осуществляется посредством сетевых протоколов, представляющих собой согласованный набор определенных правил, в соответствии с которыми разные устройства передачи данных обмениваются информацией. Существуют протоколы для форматов для контроля ошибок и другие виды протоколов. В глобальном межсетевом взаимодействии чаще всего используется протокол TCP-IP.

Что же это за технология? Название TCP-IP произошло от двух сетевых протоколов: TCP и IP. Конечно, этими двумя протоколами построение сетей не ограничивается, но они являются базовыми в том, что касается именно организации передачи данных. Фактически, TCP-IP есть набор протоколов, позволяющих индивидуальным сетям объединяться для образования

Протокол TCP-IP, описание которого невозможно обозначить только определениями IP и TCP, включает в себя также протоколы UDP, SMTP, ICMP, FTP, telnet, и не только. Эти и другие протоколы TCP-IP обеспечивают наиболее полноценную работу сети Интернет.

Ниже приведем развернутую характеристику каждому протоколу, входящему в общее понятие TCP-IP.

. Интернет-протокол (IP) отвечает за непосредственную передачу информации в сети. Информация делится на части (другими словами, пакеты) и передается получателю от отправителя. Для точной адресации нужно задать точный адрес или координаты получателя. Такие адреса состоят из четырех байт, которые отделены друг от друга точками. Адрес каждого компьютера уникален.

Однако использования одного лишь IP-протокола может быть недостаточно для корректной передачи данных, так как объем большей части пересылаемой информации более 1500 символов, что уже не вписывается в один пакет, а некоторые пакеты могут быть потеряны в процессе передачи или присланы не в том порядке, что требуется.

. Протокол управления передачей (TCP) используется на более высоком уровне, чем предыдущий. Основываясь на способности IP-протокола переносить информацию от одного узла другому, TCP-протокол позволяет пересылать большие объемы информации. TCP отвечает также за разделение передаваемой информации на отдельные части - пакеты - и правильное восстановление данных из пакетов, полученных после передачи. При этом данный протокол автоматически повторяет передачу пакетов, которые содержат ошибки.

Управление организацией передачи данных в больших объемах может осуществляться с помощью ряда протоколов, имеющих специальное функциональное назначение. В частности, существуют следующие виды TCP-протоколов.

1. FTP (File Transfer Protocol) организует перенос файлов и используется для передачи информации между двумя узлами Internet с использованием TCP-соединений в виде бинарного или же простого текстового файла, как поименованной области в памяти компьютера. При этом не имеет никакого значения, где данные узлы расположены и как соединяются между собой.

2. Протокол пользовательских дейтаграмм , или User Datagram Protocol, не зависит от подключений, он передает данные пакетами, которые называют UDP-дейтаграммами. Однако этот протокол не так надежен, как TCP, потому что отравитель не получает данных о том, был ли принят пакет в действительности.

3. ICMP (Internet Control Message Protocol) существует для того, чтобы передавать сообщения об ошибках, возникающих в процессе обмена данными в сети Internet. Однако при этом ICMP-протокол только лишь сообщает об ошибках, но не устраняет причины, которые привели к возникновению этих ошибок.

4. Telnet - который используется для реализации текстового интерфейса в сети с помощью транспорта TCP.

5. SMTP (Simple Mail Transfer Protocol) - это специальный электронными сообщениями, определяющий формат сообщений, которые пересылаются с одного компьютера, называемого SMTP-клиентом, на другой компьютер, на котором запущен SMTP-сервер. При этом данная пересылка может быть отложена на некоторое время до тех пор, пока не активируется работа как клиента, так и сервера.

Схема передачи данных по протоколу TCP-IP

1. Протокол TCP разбивает весь объем данных на пакеты и нумерует их, упаковывая в TCP-конверты, что позволяет восстановить порядок получения частей информации. При помещении данных в такой конверт происходит вычисление контрольной суммы, которая записывается потом в TCP-заголовок.

3. Затем с помощью протокола TCP происходит проверка того, все ли пакеты получены. Если во время приема вычисленная заново не совпадает с указанной на конверте, это свидетельствует о том, что часть информации была утеряна или искажена при передаче, протокол TCP-IP заново запрашивает пересылку этого пакета. Также требуется подтверждение прихода данных от получателя.

4. После подтверждения получения всех пакетов протокол TCP упорядочивает их соответствующим образом и собирает заново в единое целое.

Протоколом TCP используются повторные передачи данных, периоды ожидания (или таймауты), что обеспечивает надежность доставки информации. Пакеты могут передаваться в двух направлениях одновременно.

Тем самым протокол TCP-IP снимает необходимость использования повторных передач и ожиданий для прикладных процессов (таких, как Telnet и FTP).