Какие бывают каналы передачи информации. Передача информации по каналам связи основные характеристики каналов связи

01.04.2019

Рассмотрим каналы, отличающиеся по типу используемых в них линий связи.

1. Механические , в которых для передачи информации используется перемещение каких-либо твердых, жидких или газообразных тел. В первом случае могут использоваться рычаги или тросы (например − органы управления автомобилем), во втором – гидравлические системы (например − тормозная система автомобиля), в третьем – разного рода пневматические устройства (широко используются, например, в газовой промышленности).

2. Акустические . Используют механические колебания звуковой и ультразвуковой частоты, особенно хорошо распространяющиеся в жидких средах. Широко применяются, например, для передачи информации людям или устройствам, находящимся под водой или в другой жидкой среде, а также при проведении медицинских исследований (УЗИ). Акустический канал в газовой среде – едва ли не основной для передачи информации между людьми (речь). Акустические сигналы низкой интенсивности безвредны для здоровья человека.

4. Электрические каналы. Наиболее распространены в настоящее время при передаче информации на малые расстояния. Основа – проводные линии связи.

5. Радиоканалы. Как и оптические, используют для передачи информации электромагнитные волны. Однако намного более низкой частоты. Благодаря способности таких волн огибать препятствия и отражаться от плазменных слоев, окружающих Землю, становится возможным передача информации на большие расстояния, в том числе в масштабе всей Земли. Эти преимущества, однако, являются источником недостатков. Радиоканалы сильно подвержены влиянию помех и менее скрытны. Радиоканал, наряду с оптическим, может использоваться для подключения к компьютерной сети Интернет в районах со слаборазвитой инфраструктурой проводной электросвязи.

Конец работы -

Эта тема принадлежит разделу:

Теория информации и кодирования

Сочинский государственный университет.. туризма и курортного дела.. Факультет информационных технологий и математики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Курс лекций
Эффективная организация обмена информации приобретает все большее значение как условие успешной практической деятельности людей. Объем информации, необходимый для нормального функционирования совре

Определение понятия информация
Слово информация происходит от латинского informare – изображать, составлять понятие о чем-либо, осведомлять. Информация наряду с материей и энергией является первичны

Фазы обращения информации
Система управления состоит из объекта управления, комплекса технических средств, состоящего из компьютера, входящих в его состав устройств ввода-вывода и хранения информации, устройств сбора переда

Некоторые определения
Данные или сигналы, организованные в определенные последовательности, несут информацию не потому, что они повторяют объекты реального мира, а по общественной договоренности о кодировании, т.е. одно

Меры информации
Прежде, чем перейти к мерам информации, укажем, что источники информации и создаваемые ими сообщения разделяются на дискретные и непрерывные. Дискретные сообщения слагаются из конечно

Геометрическая мера
Определение количества информации геометрическим методом сводится к измерению длины линии, площади или объема геометрической модели данного носителя информации или сообщения. По геометрическим разм

Аддитивная мера (мера Хартли)
Аддитивную меру можно рассматривать как более удобную для ряда применений комбинаторную меру. Наши интуитивные представления об информации предполагают, чтобы количество информации увеличивалось пр

Энтропия и ее свойства
Существует несколько видов статистических мер информации. В дальнейшем будем рассматривать только одну их них ─ меру Шеннона. Мера Шеннона количества информации тесно связана с понятие

Энтропия и средняя энтропия простого события
Рассмотрим подробнее понятие энтропии в разных вариантах, так как оно используется в шенноновской теории информации. Энтропия - мера неопределенности некоторого опыта. В простейшем случае его ис

Метод множителей Лагранжа
Если нужно найти экстремум (максимум, минимум или седловую точку) функции n переменных f(x1, x2, …, xn), связанных k

Вывод формулы среднего значения энтропии на букву сообщения
Предположим, имеется сообщение, состоящее из n букв: , где j=1, 2, …, n ─ номера букв в сообщении по порядку, а i1, i2, … ,in номера букв

Энтропия сложного события, состоящего из нескольких зависимых событий
Теперь предположим, что элементы сообщения (буквы) взаимозависимы. В этом случае вероятность появления последовательности из нескольких букв не равна произведению вероятностей появ

Избыточность сообщения
Как отмечалось, энтропия максимальна, если вероятности сообщений или символов, из которых они составлены, одинаковы. Такие сообщения несут максимально возможную информацию. Если же сообщение имеет

Содержательность информации
Мера содержательности обозначается cont (от английского Content ─ содержание). Содержательность события I выражается через функцию меры содержательности его о

Целесообразность информации
Если информация используется в системах управления, то ее полезность разумно оценивать по тому эффекту, который она оказывает на результат управления. В связи с этим в 1960 г. советским ученым А.А.

Динамическая энтропия
Здесь энтропия рассматривается как функция времени. При этом преследуется цель – избавиться от неопределенности, т.е. добиться положения, когда энтропия равна 0. Такая ситуация характерна для задач

Энтропия непрерывных сообщений
Исходные данные часто представляются в виде непрерывных величин, например, температура воздуха или морской воды. Поэтому представляет интерес измерение количества содержащейся в таких сообщениях ин

Первый случай (значения сл. величины ограничены интервалом)
Случайная величина a ограничена интервалом . В этом случае определенный интеграл ее плотности распределения вероятностей (дифференциального закона распределения вероятностей) на

Второй случай (заданы дисперсия и математическое ожидание сл. величины)
Предположим теперь, что область определения значений случайной величины не ограничена, но задана ее дисперсия D и математическое ожидание M. Заметим, что дисперсия прямо пропорциональ

Квантование сигналов
Непрерывные сигналы – носители информации – представляют собой непрерывные функции непрерывного аргумента – времени. Передача таких сигналов может выполняться при помощи непрерывных каналов связи,

Виды дискретизации (квантования)
Наиболее простыми и часто используемыми видами квантования являются: · квантование по уровню (будем говорить просто квантование); · квантование по времени (будем называть

Критерии точности представления квантованного сигнала
В результате обратного преобразования из непрерывно-дискретной формы в непрерывную получается сигнал, отличающийся от исходного на величину ошибки. Сигнал называется воспроизводящей функц

Элементы обобщенной спектральной теории сигналов
Обобщенная спектральная теория сигналов объединяет методы математического описания сигналов и помех. Эти методы позволяют обеспечить требуемую избыточность сигналов с целью уменьшения влияния помех

О практическом использовании теоремы Котельникова
Возможную схему квантования-передачи-восстановления непрерывного сигнала можно представить в виде, изображенном на рис. 2.5. Рис. 2.5. Возможная схема квантования-передачи-

Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
В результате квантования по времени функции x(t) получается ряд значений x(t1), x(t2), … квантуемой величины x(t) в дискретные моменты времени t

Интерполяция при помощи полиномов Лагранжа
Воспроизводящая функция в большинстве случаев рассчитывается по формуле: , где − некоторые функции. Эти функции обычно стремятся выбрать так, чтобы. (2.14) В этом случае,

Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
Найдем погрешность интерполяции. Представим ее виде: , (2.16) где K(t) – вспомогательная функция, которую надо найти. Для произвольного t* имеем: (

Обобщение на случай использования полиномов Лагранжа произвольного порядка
Интерполяция полиномами n-го порядка рассматривается аналогично предыдущим случаям. При этом наблюдается значительное усложнение формул. Обобщение приводит к формуле следующего вида:

Выбор интервала дискретизации по критерию среднеквадратического отклонения
Рассмотрим случай дискретизации случайного стационарного эргодического процесса x(t) с известной корреляционной функцией. Восстанавливать будем при помощи полиномов Лагранжа. Наиболее часто

Оптимальное квантование по уровню
Рисунком 2.13 иллюстрируется принцип квантования по уровню. Рис. 2.13. Квантование по уровню. Это квантование сводится к замене значения исходного сигнала уровн

Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования
Рис. 2.19. Обозначения Зададимся теперь числом шагов квантования n, границами интервала (xmin, xmax

Общие понятия и определения. Цели кодирования
Кодирование − операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Код (франц. code), совокупность зна

Элементы теории кодирования
Некоторые общие свойства кодов. Рассмотрим на примерах. Предположим, что дискретный источник без памяти, т.е. дающий независимые сообщения – буквы – на выходе, име

Неравенство Крафта
Теорема 1. Если целые числа n1, n2, …, nk удовлетворяют неравенству, (3.1) существует префиксный код с алфавитом объемом m,

Теорема 2.
Формулировка. Пусть задан код с длинами кодовых слов n1, n2, … , nk и с алфавитом объема m. Если код однозначно декодируем, неравенство Крафта удовле

Теорема 3.
Формулировка. При заданной энтропии H источника и объеме m вторичного алфавита существует префиксный код с минимальной средней длиной nср min

Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
Рассмотрим теперь случай кодирования не отдельных букв источника, а последовательностей из L букв. Теорема 4. Формулировка. Для данного дискретного источника

Оптимальные неравномерные коды
Определения. Неравномерными называют коды, кодовые слова которых имеют различную длину. Оптимальность можно понимать по-разному, в зависимости о

Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
Формулировка. Для любого источника с k>=2 буквами существует оптимальный (в смысле минимума средней длины кодового слова) двоичный код, в котором два наименее вероятных сло

Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
Формулировка. Если некоторый префиксный код редуцированного ансамбля U"является оптимальным, то соответствующий ему префиксный код исходного ансамбля т



Особенности эффективных кодов
1. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Помехоустойчивое кодирование
Как следует из названия, такое кодирование предназначено для устранения вредного влияния помех в каналах передачи информации. Уже сообщалось, что такая передача возможна как в пространстве, так и в

Простейшие модели цифровых каналов связи с помехами
Свойство помехоустойчивых кодов обнаруживать и исправлять ошибки в сильной степени зависит от характеристик помех и канала передачи информации. В теории информации обычно рассматривают две простые

Расчет вероятности искажения кодового слова в ДСМК
Положим, кодовое слово состоит из n двоичных символов. Вероятность неискажения кодового слова, как несложно доказать, равна: . Вероятность искажения одного символа (однокра

Общие принципы использования избыточности
Для простоты рассмотрим блоковый код. С его помощью каждым k разрядам (буквам) входной последовательности ставится в соответствие n-разрядное кодовое слова. Количество разного вида

Граница Хэмминга
Граница Хэмминга Q, определяет максимально возможное количество разрешенных кодовых слов равномерного кода при заданных длине n кодового слова и корректирующей способности кода КСК

Избыточность помехоустойчивых кодов
Одной из характеристик кода является его избыточность. Увеличение избыточности в принципе нежелательно, т.к. увеличивает объемы хранимых и передаваемых данных, однако для борьбы с искажениями избыт

Линейные коды
Рассмотрим класс алгебраических кодов, называемых линейными. Определение: Линейными называют блоковые коды, дополнительные разряды которых образуются

Определение числа добавочных разрядов m
Для определения числа добавочных разрядов можно воспользоваться формулой границы Хэмминга: . При этом можно получить плотноупакованный код, т.е. код с минимальной при заданных пар

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов, образующих, кстати, группу, можно выделить подмножества из k слов, обладающих св

Порядок кодирования

Порядок декодирования

Двоичные циклические коды
Вышеприведенная процедура построения линейного кода имеет ряд недостатков. Она неоднозначна (МДР можно задать различным образом) и неудобна в реализации в виде технических устройств. Этих недостатк

Некоторые свойства циклических кодов
Все свойства циклических кодов определяются образующим полиномом. 1. Циклический код, образующий полином которого содержит более одного слагаемого, обнаруживает все одиночные ошибки.

Построение кода с заданной корректирующей способностью
Существует несложная процедура построения кода с заданной корректирующей способностью. Она состоит в следующем: 1. По заданному размеру информационной составляющей кодового слова длиной

Матричное описание циклических кодов
Циклические коды можно, как и любые линейные коды, описывать с помощью матриц. Вспомним, что KC(X) = gm(X)*И(Х) . Вспомним также на примере порядок умножения пол

Выбор образующего полинома
Ясно, что полиномы кодовых слов КС(Х) должны делиться на образующий полином g(X) без остатка. Циклические коды относятся к классу линейных. Это означает, что для этих кодов существует

Пропускная способность каналов связи
Эта тема является одной из центральных в теории информации. В ней рассматриваются предельные возможности каналов связи по передаче информации, определяются характеристики каналов, влияющие на эти в

Пропускная способность дискретного канала связи с шумом
Исследуем теперь пропускную способность дискретного канала связи с шумом. Существует большое количество математических моделей таких каналов. Простейшей из них является канал с независимой

Типичные последовательности и их свойства
Будем рассматривать последовательности статистически независимых букв. Согласно закону больших чисел, наиболее вероятными будут последовательности длиной n, в которых при количества N

Основная теорема Шеннона для дискретного канала с шумом
Формулировка Для дискретного канала в шумом существует такой способ кодирования, при котором может быть обеспечена безошибочная передача все информации, поступающей от источ

Обсуждение основной теоремы Шеннона для канала с шумом
Теорема Шеннона для канала с шумом не указывает на конкретный способ кодирования, обеспечивающий достоверную передачу информации со скоростью, сколь угодно близкой с пропускной способности канала с

Пропускная способность непрерывного канала при наличии аддитивного шума
Рассмотрим следующую модель канала: 1. Канал способен пропускать колебания с частотами ниже Fm. 2. В канале действует помеха n(t), имеющая нормальный (гау

Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы
При вводе ранее сохраненного текстового файла следует указать тип файла *.*. Это позволит во время выбора видеть в списке все файлы. Укажите свой файл. После этого на экран будет выведено окно М

Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения
Как описано в теоретическом введении, средняя энтропия находится по формулам 1 и 2. В обоих случаях нужно найти вероятности появления букв или двухбуквенных комбинаций.. Вероятности можно

Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты
Результаты вычислений представьте в виде таблицы: <Язык 1> <Язык

Подключение возможности использования нестандартных функций
Программное управление приложениями, входящими в состав Microsoft Office, осуществляется при помощи так называемых макросов. Слово Макрос – греческого происхождения. В перево

Создание нестандартной функции
Перед созданием нестандартных функций нужно открыть файл в рабочей книгой, содержащей информацию, которую нужно обработать с применением этих нестандартных функций. Если ранее эта рабочая книга был

Запись голоса и подготовка сигнала
Запись начинается и заканчивается нажатием кнопки Record (рис. 5), помеченной красный кружком. В процессе записи кнопка Recоrd выглядит вдавленной и более светлой (подсвеченной).

Импорт текстовых данных в Excel
Двойным кликом откройте текстовый файл с экспортированные из программы Wavosaur данными (рис. 23). Рис. 23. Примерный вид данных Видно, что экспортированные

Квантование по уровню сводится к замене значения исходного сигнала уровнем того шага, в пределы которого это значение попадает
Квантование по уровню – необходимое условие преобразования непрерывного сигнала в цифровую форму. Однако одного лишь квантования по уровню для этого недостаточно – для преобразования в цифровую фор

Коды Хаффмена
На этом алгоритме построена процедура построения оптимального кода, предложенная в 1952 году доктором Массачусетского технологического института (США) Дэвидэм Хаффменом: 5) буквы перви

Процесс повторяется до тех пор, пока в каждой подгруппе останется по одной букве
Рассмотрим алфавит из восьми букв. Ясно, что при обычном (не учитывающем статистических характеристик) кодировании для представления каждой буквы требуется три символа. Наибольший эффек

Параметры эффективности оптимальных кодов
Таких параметров 2: коэффициент статистического сжатия и коэффициент относительной эффективности. Оба параметра характеризуют степень уменьшения средней длины кодового слова. При этом средняя длина

Особенности эффективных кодов
5. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Выполнение работы
Лабораторная работа №4 выполняется под управлением специально написанной управляющей программы. Эта управляющая программа написана на языке Visual Basic 6. Исполняемый файл программы носит и

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов можно выделить подмножества из k слов, обладающих свойством линейной независимост

Порядок кодирования
Кодовое слово КС получается путем умножения матрицы информационной последовательности ||X|| на образующую матрицу ||OM||: ||KC1*n|| = ||X

Порядок декодирования
В результате передачи кодового слова через канал оно может быть искажено помехой. Это приведет к тому, что принятое кодовое слово ||ПКС|| может не совпасть с исходным ||КС||.

Выполнение работы
Лабораторная работа №5, как и работа №4, выполняется под управлением управляющей программы, написанной на алгоритмическом языке Visual Basic 6. Исполняемый файл программы носит имя Помехо

Передача информации по каналу с решающей обратной связью

дипломная работа

1.2.1 Способы передачи информации по каналам связи

Передача информации с повторением (накоплением). Такой метод передачи применяют для повышения достоверности при отсутствии обратного канала, хотя нет принципиальных ограничений для его использования и при наличии обратной связи. Иногда такой метод классифицируют как прием сообщений с накоплением. Сущность метода заключается в передаче одного и того же сообщения несколько раз, запоминании принятых сообщений, сравнении их поэлементно и составлении сообщения, включая элементы, выбранные «по большинству». Предположим, что трижды передана одна и та же кодовая комбинация 1010101. Во всех трех передачах она подверглась воздействию помех и была искажена:

Приемник поразрядно сравнивает три принятых символа и проставляет те символы (под чертой), количество которых в данном разряде преобладает.

Существует и другой метод передачи информации с накоплением, при котором производится не посимвольное сравнение, а сравнение всей комбинации в целом. Этот метод проще реализуется, но обеспечивает более плохие результаты.

Таким образом, высокая помехоустойчивость метода передачи информации с повторением (накоплением) основана на том, что сигнал и помехи в канале не зависят друг от друга и изменяются по разным законам (сигнал периодичен, а помеха случайна), поэтому повторяющаяся комбинация в каждой передаче, как правило, будет искажаться по-разному. Вследствие этого на приеме накопление, то есть суммирование сигнала, возрастает пропорционально числу повторений, тогда как сумма помехи возрастает по другому закону. Если считать, что помехи и сигнал независимы, то суммируются средн-ие квадраты и средний квадрат суммы возрастает пропорционально первойстепени. Поэтому при n повторениях отношение сигнал/помеха увеличивается в n раз, причем это происходит без увеличения мощности сигнала. Однако это достигается за счет усложнения аппаратуры и возрастания времени передачи или полосы частот в случае, если сигнал передается на нескольких частотах одновременно во времени. Кроме того, при зависимых ошибках и пачках ошибок помехоустойчивость системы снижается.

Передача информации с обратной связью. Помехоустойчивость передачи без обратной связи (ПБОС) обеспечивается следующими способами: помехоустойчивым кодированием, передачей с повторением, одновременной передачей по нескольким параллельным каналам. В ПБОС применяются обычно коды с исправлением ошибок, что связано с высокой избыточностью и усложнением аппаратуры. Передача с обратной связью (ПОС) во многом устраняет указанные недостатки, так как позволяет применять менее помехоустойчивые коды, обладающие, как правило, меньшей избыточностью. В частности, можно использовать коды с обнаружением ошибок. Преимуществом обратного канала является также возможность контроля работоспособности объекта, принимающего информацию.

При ПОС вводят понятие прямого канала, т.е. канала от передатчика к приемнику, например передается сигнал команды с пункта управления (ПУ) на контролируемый пункт (КП). Обратным каналом при этом явится передача сообщения с КП на ПУ о принятии сигнала команды, причем по обратному каналу могут передаваться как сообщение только о том, что сигнал принят на входе КП (в этом случае контролируется лишь прохождение сигнала по каналу связи), так и сведения о полном выполнении команды. Возможна и обратная связь, дающая сведения о поэтапном прохождении сигнала команды по тракту приема.

Рассмотрим отдельные виды передачи с обратной связью.

Передача с информационной обратной связью (ИОС). Если сообщение передается в виде непомехозащищенного кода, то в кодирующем устройстве данный код может быть преобразован в помехозащищенный. Однако, поскольку в этом обычно нет необходимости, кодирующее устройство представляет собой регистр для превращения простого параллельного кода в последовательный. Одновременно c передачей по прямому каналу сообщение запоминается в накопителе на передатчике (рис.1.1а). На контролируемом пункте принятое сообщение декодируется и также запоминается в накопителе. Однако получателю сообщение передается не сразу: сначала оно поступает через обратный канал на пункт управления. В схеме сравнения ПУ происходит сравнение принятого сообщения с переданным. Если сообщения совпадают, то формируется сигнал «Подтверждение» и происходит передача последующих сообщений (иногда перед посылкой последующего сообщения на КП сначала посылается сигнал «Подтверждение» о том, что предыдущее сообщение было принято верно и с накопителя можно передать информацию получателю). При несовпадении сообщений, что свидетельствует об ошибке, формируется сигнал «Стирание». Этот сигнал запирает ключ для прекращения передачи очередного сообщения и посылается на КП для уничтожения записанного в накопителе сообщения. После этого с ПУ производится повторная передача сообщения, записанного в накопителе.

Рис.1.1а. Способ передачи информации с ИОС.

В системах с ИОС ведущая роль принадлежит передающей части, так как она определяет наличие ошибки, приемник только информирует передатчик о том, какое сообщение им получено. Имеются различные варианты передачи с ИОС. Так, существуют системы с ИОС, в которых передача сигналов происходит непрерывно и прекращается лишь при обнаружении ошибки: передатчик посылает сигнал «Стирание» и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная на КП, называются системами с ретрансляционной обратной связью. В некоторых системах с ИОС передается не вся информация, а только некоторые характерные сведения о ней (квитанции). Например, по прямому каналу передаются информационные, а по обратному каналу -- контрольные символы, которые будут сравниваться на передатчике с предварительно записанными контрольными символами. Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его (дублирование сообщения), либо послать дополнительную информацию, необходимую для исправления (корректирующая информация). Число повторений может быть ограниченным или неограниченным.

Обратный канал используют для того, чтобы определить, необходима ли повторная передача информации. В системах с ИОС повышение достоверности передачи достигается путем повторения информации только при наличии ошибки, тогда как в системах без обратной связи (при передаче с накоплением) повторение осуществляется независимо от искажения сообщения. Поэтому в системах с ИОС избыточность информации значительно меньше, чем в системах с ПБОС: она минимальна при отсутствии искажений и увеличивается при ошибках. В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Передача с решающей обратной связью (РОС). Переданное с передатчика по прямому каналу сообщение принимается на приемнике (рис.1.1б), где оно запоминается и проверяется в декодирующем устройстве (декодере). Если ошибок нет, то из накопителя сообщение поступает к получателю информации, а через обратный канал на передатчик подается сигнал о продолжении дальнейшей передачи (сигнал продолжения). Если ошибка обнаружена, то декодер выдает сигнал, стирающий информацию в накопителе. Получателю сообщение не поступает, а через обратный канал на передатчик подается сигнал о переспросе или повторении передачи (сигнал повторения или переспроса). На передатчике сигнал повторения (иногда называемый решающим сигналом) выделяется приемником решающих сигналов, а переключающее устройство отключает вход кодера от источника информации и подключает его к накопителю, что позволяет повторить переданное сообщение. Повторение сообщения может происходить несколько раз до его правильного приема.

Рис.1.1б. Способ передачи информации с РОС.

При передаче с РОС ошибка определяется приемником. Для этого передаваемое сообщение должно кодироваться обязательно помехозащищенным кодом, что позволяет приемнику выделить разрешенную комбинацию (сообщение) из неразрешенных. Это означает, что передача с РОС осуществляется с избыточностью. Достоверность передачи в системах РОС определяется выбором кода и защитой решающих сигналов повторения и продолжения. Последнее не представляет особых трудностей, так как эти сигналы несут одну двоичную единицу информации и могут передаваться достаточно помехоустойчивым кодом.

Системы с РОС, или системы с переспросом, подразделяют на системы с ожиданием решающего сигнала и системы с непрерывной передачей информации.

В системах с ожиданием передача новой кодовой комбинации или повторение переданной происходит только после поступления на передатчик сигнала запроса.

В системах с непрерывной передачей происходит непрерывная передача информации без ожидания сигнала запроса. Скорость передачи при этом выше, чем в системах с ожиданием. Однако после обнаружения ошибки по обратному каналу посылается сигнал переспроса и за время прихода на передатчик с последнего уже будет передано какое-то новое сообщение. Поэтому системы с непрерывной передачей необходимо усложнять соответствующей блокировкой приемника, чтобы он не принимал информацию после обнаружения ошибки.

Для сравнения эффективности системы без обратной связи, в которой применяется код Хэмминга с исправлением одной ошибки, и системы с РОС, использующей простой код, вводят понятие коэффициента эффективности. Этот коэффициент учитывает уменьшение вероятности ошибочного приема и затраты на его достижение, выигрыш в защите от ошибок (в случае применения указанных кодов), относительное снижение скорости передачи и схемную избыточность, связанные с использованием разных кодов. Итоговое сравнение показало, что в отличие от системы без обратной связи, использующей сложный код, система с РОС дает выигрыш в 5,1 раза. Высокая эффективность систем с РОС обеспечила их широкое распространение.

Сравнительный анализ достоверности передачи систем с ИОС и РОС, показал, что:

1) системы с ИОС и РОС обеспечивают одинаковую достоверность передачи при одинаковых суммарных затратах энергии сигналов в прямом и обратном каналах при условии, что эти каналы симметричны и имеют одинаковый уровень помех;

2) системы с ИОС обеспечивают более высокую достоверность передачи, чем Системы с РОС при относительно слабых помехах в обратном канале в отличие от прямого. При отсутствии помех в обратном канале системы с ИОС обеспечивают безошибочную передачу сообщений по основному каналу;

3) при сильных помехах в обратном канале более высокую достоверность обеспечивают системы с РОС;

4) при пачках ошибок в прямом и обратном каналах более высокую достоверность обеспечивают системы с ИОС.

1.1 Акустическая информация К защищаемой речевой (акустической) информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями...

Защита акустической (речевой) информации от утечки по техническим каналам

Защита акустической (речевой) информации от утечки по техническим каналам

Генераторы пространственного зашумления Генератор шума ГРОМ-ЗИ-4 предназначен для защиты помещений от утечки информации и предотвращения съема информации с персональных компьютеров и локальных вычислительных сетей на базе ПК...

Методы защиты информации

Методы защиты информации в телекоммуникационных сетях

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на информацию, либо с последствиями (результатами) такого воздействия. Однако такого рода термины могут иметь много трактовок...

Методы сбора и обработки цифровых сигналов

Передача данных -- физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило...

Моделирование объекта защиты

3.1 Утечка информации через строительные конструкции и инженерно-технические системы Для обеспечения защиты помещения от данной угрозы можно применить как метод пассивной защиты (звукопоглощающие материалы)...

Определение состава системы передачи информации

Сигнал на выходе аппаратуры ПТИ представляет собой, как правило, сигнал кодоимпульсной формы, спектр частот которого в общем случае бесконечный...

Организация работ по строительству волоконно-оптической линии связи (ВОЛС)

Возможность передачи информации по волоконно-оптическим линиям появилась благодаря переложению квантовой теории света на его распространение в прозрачных однородных средах...

3.1 Анализ возможности передачи конфиденциальной информации по квантовым каналам связи При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов...

Передача информации по квантовым каналам связи

Примером протокола исправления ошибок является способ коррекции ошибок, состоящий в том, что блок данных, который должен быть согласован между пользователями, рассматривается как информационный блок некоторого кода...

Проектирование и программная реализация комплексной системы стрелочных переводов

Канал связи представляет собой тракт связи, который начинается с информационного источника, проходит через все этапы кодирования и модулирования, передатчик, физический канал...

Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Развитие телекоммуникаций идет ускоренными темпами. Получили широкое развитие современные цифровые технологии передачи данных, к которым можно отнести ATM, Frame Relay, IP, ISDN, PCM, PDH, SDH и WDM. Причем такие технологии, как АТМ, ISDN, PCM, PDH...

Расчет надежности работы атмосферной оптической линии связи

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи...

Каналом передачи информации называют совокупность технических средств, обеспечивающую передачу электрических сигналов от одного пункта к другому. Входы канала подключаются к передатчику, а выходы - к приемнику. В современных цифровых системах связи основные функции передатчика и приемника выполняет модем. Одной из главных характеристик канала является скорость передачи информации. Максимально возможная скорость передачи информации (данных) по каналу связи при фиксированных ограничениях называется емкостью канала, обозначается через С и имеет размерность бит/с. В общем случае емкость канала можно определить по формуле: (8.22) где I- количество переданной за время Т информации. В качестве меры количества информации возьмем меру Р. Хартли определяемую как логарифм возможных состояний объекта Ь. (8.23) Для нахождения I воспользуемся теоремой Котельникова, которая доказывает, что сигнал, не содержащий в своем спектре частот выше Р, может представляться 2Р независимыми значениями в секунду, совокупность которых полностью определяет этот сигнал. Данная процедура, называемая аналого-цифровым преобразованием, была рассмотрена в гл. 6. Она состоит из двух этапов - дискретизации по времени, т. е. представлении сигнала в виде п отсчетов, взятых через интервал времени 1 = 1/(2Р), и квантования по уровню, т. е. представления амплитуды сигнала одним из т возможных значений. Определим количество различных сообщений, которое можно составить из п элементов, принимающих любые из т различных фиксированных состояний. Из ансамбля п элементов, каждый из которых может находиться в одном из т фиксированных состояний, можно составить т а различных комбинаций, т. е. 1= т". Тогда: (8.24) За время Тчисло отсчетов п= Г/1=2РГ. Если бы шума не существовало, то число т дискретных уровней сигнала было бы бесконечным. В случае наличия шума последний определяет степени различимости отдельных уровней амплитуды сигнала. Так как мощность является усредненной характеристикой амплитуды, число различимых уровней сигнала по мощности равно (Р е +Р ш)/Р ш), а по амплитуде соответственно: Тогда емкость канала: (8.25) Итак, емкость канала ограничивается двумя величинами: шириной полосы канала и шумом. Соотношение (8.25) известно как формула Хартли-Шеннона и считается основной в теории информации. Полоса частот и мощность сигнала входят в формулу таким образом, что для С= const при сужении полосы необходимо увеличивать мощность сигнала, и наоборот. К основным характеристикам каналов связи относятся: ■ амплитудно-частотная характеристика (АЧХ); ■ полоса пропускания; ■ затухание; * пропускная способность; ■ достоверность передачи данных; ■ помехоустойчивость. Для определения характеристик канала связи применяется анализ его реакции на некоторое эталонное воздействие. Чаще всего в качестве эталона используются синусоидальные сигналы разных частот. АЧХ показывает, как изменяется амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех частот передаваемого сигнала. Полоса пропускания - это диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заданный предел (для мощности 0.5). Эта полоса частот определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Ширина полосы пропускания влияет на максимально возможную скорость передачи информации по линии связи. Затухание - определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии связи сигнала определенной частоты. Затухание I обычно измеряется в децибелах (дБ) и вычисляется по формуле: где Р вых - мощность сигнала на выходе линии; Р вх - мощность сигнала на входе линии. Пропускная способность линии (throughput) характеризует максимально возможную скорость передачи данных по линии связи и измеряется в битах в секунду (бит/с), а так же в производных единицах Кбит/с, Мбит/с, Гбит/с. На пропускную способность линии оказывает влияние физическое и логическое кодирование. Способ представления дискретной информации в виде сигналов, передаваемых на линию связи, называется физическим линейным кодированием. От выбранного способа кодирования зависит спектр сигнала и соответственно пропускная способность линии. Таким образом, для одного или другого способа кодирования линия может иметь разную пропускную способность. Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации - биту. Если сигнал изменяется так, что можно различить более двух состояний, то любое его изменение несет несколько бит информации. Количество изменений информационного параметра несущего колебания (периодического сигнала) в секунду измеряется в бодах. Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования. Если сигнал имеет более двух различимых состояний, то пропускная способность в бит/с будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различают 4 состояния фазы (О, 90, 180 и 270) и два значения амплитуды, то информационный сигнал имеет восемь различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц), передает информацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается три бита информации. При использовании сигнала с двумя различными состояниями может наблюдаться обратная картина. Это происходит, когда для надежного распознавания приемником информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом положительной полярности, а нолевого значения бита - импульсом отрицательной полярности, сигнал дважды меняет свое состояние при передаче каждого бита. При таком способе кодирования пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии. На пропускную способность оказывает влияние логическое кодирование, которое выполняется до физического и подразумевает замену бит исходной информации новой последовательности бит, несущей ту же информацию, но обладающей при этом дополнительными свойствами (обнаруживающие коды, шифрование). При этом искаженная последовательность бит заменяется более длинной последовательностью, поэтому пропускная способность канала уменьшается. В общем случае связь между полосой пропускания линии и ее максимально возможной пропускной способностью определяется соотношением (8.25). Из этого соотношения следует, что хотя теоретического предела увеличения пропускной способности линии (с фиксированной полосой пропускания) нет, на практике такой предел существует. Повысить пропускную способность линии можно, увеличив мощность передатчика или уменьшая мощность помех. Однако увеличение мощности передатчика приводит к росту его габаритов и стоимости, а уменьшение шума требует применения специальных кабелей с хорошими защитными экранами и снижения шума в аппаратуре связи. Емкость канала представляет собой максимальную величину скорости. Чтобы достигнуть такой скорости передачи, информация должна быть закодирована наиболее эффективным образом. Утверждение, что такое кодирование возможно, является важнейшим результатом созданной Шенноном теории информации. Шеннон доказал принципиальную возможность такого эффективного кодирования, не определив, однако, конкретных путей его реализации. (Отметим, что на практике инженеры часто говорят о емкости канала, подразумевая под этим реальную, а не потенциальную скорость передачи.) Эффективность систем связи характеризуется параметром, равным скорости передачи информации Я на единицу ширины полосы Г, т. е. Я/Р. Для иллюстрации существующих возможностей по созданию эффективных систем связи на рис. 8.12 приведены графики зависимости эффективности передачи информации при различных видах М-ичной дискретной амплитудной, частотной и фазовой модуляции (кроме бинарной модуляции используется также модуляция с 4, 8, 16 и даже с 32 положениями модулируемого параметра) от отношения энергии одного бита к спектральной плотности мощности шума (Ео/Мо). Для сравнения показана также граница Шеннона. Сравнение кривых показывает, в частности, что наиболее эффективной оказывается передача с фазовой дискретной модуляцией, однако при неизменном отношении сигнал-шум наиболее популярный вид модуляции 4ФМн в три раза хуже потенциально достижимого. Достовернсть передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Показателем достоверности является вероятность ошибочного приема информационного символа - Р. 1 ОШ Рис. 8.12. Эффективность цифровых систем связи: 1 - граница Шеннона; 2 - М-ичная ФМн; 3 - М-ичная АМн; 4 - М-ичная ЧМн Величина Р ош для каналов связи без дополнительных средств защиты от ошибок составляет, как правило, 10 4 ... 10 6 . В оптоволоконных линиях связи Р ош составляет 10" 9 . Это значит, что при Р ош = 10 4 в среднем из 10 000 бит искажается значение одного бита. Искажения бит происходят как из-за наличия помех на линии, так и из-за искажений формы сигнала, ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных необходимо повышать степень помехозащищенности линий, а также использовать более широкополосные линии связи. Непременной составной частью любого канала является линия связи - физическая среда, обеспечивающая поступление сигналов от передающего устройства к приемному. В зависимости от среды передачи данных линии связи могут быть: ■ проводные (воздушные); ■ кабельные (медные и волоконно-оптические); ■ радиоканалы наземной и спутниковой связи (беспроводные каналы связи). Проводные линии связи представляют собой проложенные между опорами провода без каких-либо экранирующих или изолирующих оплеток. Помехозащищенность и скорость передачи данных в этих линиях низкая. По таким линиям связи передаются, как правило, телефонные и телеграфные сигналы. 8.3.1.

Распространение информации происходит в процессе ее передачи.

При передаче информации всегда есть два объекта – источник и приемник информации. Эти роли могут меняться, например, во время диалога каждый из участников выступает то в роли источника, то в роли приемника информации.

Информация проходит от источника к приемнику через канал связи, в котором она должна быть связана с каким-то материальным носителем. Для передачи информации свойства этого носителя должны изменяться со временем. Так лампочка, которая все время горит, передает информацию только о том, что какой-то процесс идет. Если же включать и выключать лампочку, можно передавать самую разную информацию, например, с помощью азбуки Морзе.

При разговоре людей носитель информации – это звуковые волны в воздухе. В компьютерах информация передается с помощью электрических сигналов или радиоволн (в беспроводных устройствах). Информация может передаваться с помощью света, лазерного луча, системы телефонной или почтовой связи, компьютерной сети и др.

Информация поступает по каналу связи в виде сигналов, которые приемник может обнаружить с помощью своих органов чувств (или датчиков) и «понять» (раскодировать).

Сигнал – это изменение свойств носителя, которое используется для передачи информации.

Примеры сигналов – это изменение частоты и громкости звука, вспышки света, изменение напряжения на контактах и т.п.

Человек может принимать сигналы только с помощью своих органов чувств. Чтобы передавать информацию, например, с помощью радиоволн, нужны вспомогательные устройства: радиопередатчик, преобразующий звук в радиоволны, и радиоприемник, выполняющий обратное преобразование. Они позволяют расширить возможности человека.

С помощью одного сигнала невозможно передать много информации. Поэтому чаще всего используется не одиночный сигнал, а последовательность сигналов, то есть сообщение. Важно понимать, что сообщение – это только «оболочка» для передачи информации, а информация – это содержание сообщения. Приемник должен сам «извлечь» информацию из полученной последовательности сигналов. Можно принять сообщение, но не принять информацию, например, услышав речь на незнакомом языке или перехватив шифровку.

Одна и та же информация может быть передана с помощью разных сообщений, например, через устную речь, с помощью записки или с помощью флажного семафора, который используется на флоте. В то же время одно и то же сообщение может нести разную информацию для разных приемников. Так фраза «В Сантьяго идет дождь», переданная в 1973 году на военных радиочастотах, для сторонников генерала А. Пиночета послужила сигналом к началу государственного переворота в Чили.

Таким образом, информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Передача информации возможна с помощью любого языка кодирования информации, понятного как источнику, так и приёмнику.

Кодирующее устройство – устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи.

Декодирующее устройство – устройство для преобразования кодированного сообщения в исходное.

Пример. При телефонном разговоре: источник сообщения – говорящий человек; кодирующее устройство – микрофон – преобразует звуки слов (акустические волны) в электрические импульсы; канал связи – телефонная сеть (провод); декодирующее устройство – та часть трубки, которую мы подносим к уху, здесь электрические сигналы снова преобразуются в слышимые нами звуки; приёмник информации – слушающий человек.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума. Существует наука, разрабатывающая способы защиты информации – криптология, широко применяющаяся в теории связи.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи. Иными словами, чтобы содержание сообщения, искаженного помехами, можно было восстановить, оно должно быть избыточным, то есть, в нем должны быть «лишние» элементы, без которых смысл все равно восстанавливается. Например, в сообщении «Влг впдт в Кспск мр» многие угадают фразу «Волга впадает в Каспийское море», из которой убрали все гласные. Этот пример говорит о том, что естественные языки содержат много «лишнего», их избыточность оценивается в 60-80%.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.