Какой атом у интел новейший. Когда Atom быстрее чем Core? CPU для мобильных интернет-устройств

05.04.2019

Intel Atom — это процессоры для недорогих и небольших ноутбуков, нетбуков, неттопов и планшетов/смартфонов. Их архитектура позволила сделать их энергоэффективными и совсем не дорогими.

Изначально серия Atom включает в себя два семейства: серию Z (кодовое имя Silverthorne) для планшетов и некоторых неттопов и серию N (кодовое имя Diamondville) для более традиционных нетбуков и неттопов. Оба семейства производятся по 45-нм техпроцессу и включают в себя поддержку MMX, SSE, SSE2, SSE3, SSSE3, Intel 64, XD-Bit и IVT. Производительные модели также поддерживают Hyper-Threading.

Производительность самых быстрых процессоров Intel Atom лучше, чем у Celeron. Например, Atom 1,6 ГГц вполне сравнима с Pentium M 1,2 ГГц.

Ближе к концу 2009 года Intel представила второе поколение процессоров Atom — Pineview. Они комплектовались графикой GMA 3150 и контроллером памяти DDR2. Atom N450 и N470, произведенные по 45-нм техпроцессу, в свое время были весьма популярными, так же, как и N280 до этого. Самые последние модели линейки включают поддержку памяти DDR3 (например, N455) и варианты с двумя ядрами.

Платформа Oak Trail (32-нм техпроцесс) была представлена в 2011 году, и она напрямую произошла от Silverthorne. Она предназначена для планшетов и нетбуков, ее индекс — Z600. Ядро очень похоже на серию Pineview, однако система-на-чипе теперь включает в себя графику GMA 600 от PowerVR.

Современные процессоры Intel Atom

Saltwell (32 нм), 2012-2013 год

Penwell (32 нм), 2013-2014 год

Cloverview (32 нм), 2013 год

Cloverview (32 нм), 2013 год

Cedarview (32 нм), 2011-1012 год

Являются частью платформы Cedar Trail. Встроенная графика обеспечивает воспроизведение видео 1080р, разрешение экрана — до 2560х1600 пикселей.

Cedarview-M (32 нм), 2011 год

Поддерживается до 2 Гб оперативной памяти DDR3-800.

Merrifield (22 нм), 2014 год

Энергопотребление в 4,7 раза меньше, чем у Saltwell. Два ядра Silvermont, графическое ядро — PowerVR G6400. Контроллер памяти LPDDR3 -533 до 4 Гб.

Bay Trail-T (22 нм), 2014 год

Прирост производительности по сравнению с Clover Trail — 50-60%. Имеют низкое энергопотребление. Графика (Gen 7) в чипах без индекса D поддерживает разрешение 2560х1600 пикселей, с индексом D — 1920х1200. Контроллер памяти — LPDDR3-1066 до 4 Гб. Все процессоры — четырехъядерные. Нет поддержки Hyper-Threading.

Модель Кэш Тактовая частота — Turbo, ГГц Ядра/потоки
Intel Atom Z3795 2 Мб 1,59-2,39 4/4
Intel Atom Z3785 2 Мб 1,49-2,41 4/4
Intel Atom Z3775 2 Мб 1,46-2,39 4/4
Intel Atom Z3775D 2 Мб 1,49-2,41 4/4
Intel Atom Z3770 2 Мб 1,46-2,4 4/4
Intel Atom Z3770D 2 Мб 1,5-2,41 4/4
Intel Atom Z3736F 2 Мб 1,33-2,16 4/4
Intel Atom Z3736G 2 Мб 1,33-2,16 4/4
Intel Atom Z3745 2 Мб 1,33-1,86 4/4
Intel Atom Z3745D 2 Мб 1,33-1,83 4/4
Intel Atom Z3740 2 Мб 1,33-1,86 4/4
Intel Atom Z3740D 2 Мб 1,33-1,83 4/4
Intel Atom Z3735D 2 Мб 1,33-1,83 4/4
Intel Atom Z3735E 2 Мб 1,33-1,83 4/4
Intel Atom Z3735F 2 Мб 1,33-1,83 4/4
Intel Atom Z3735G 2 Мб 1,33-1,83 4/4
Intel Atom Z3680 1 Мб 1,33-2,0 2/2
Intel Atom Z3680D 1 Мб 1,33-2,0 2/2

Очередной мой переводной материал. На этот раз героем является процессор Intel Atom C3958, тестирование которого провел интернет-ресурс servethehome. Но не спешите закрывать страницу, т. к. речь пойдет не о хилом, немощном нечто, мало пригодном для обычного использования, а о сравнительно недавно анонсированной 3000-й серии этих процессоров (а, по сути, SoC), ориентированных на применение в хранилищах данных, встраиваемых решениях, серверах. Итак, Intel Atom C3958 – обзор и результаты тестирования топового процессора в этом семействе.

Описание и характеристики

В 3-е поколение семейства процессоров Atom, имеющих кодовое имя «Denverton», входит довольно большое количество моделей. Самый младший процессор имеет всего 2 ядра, ну а старшенький (о котором сейчас и идет речь), может похвастаться аж 16-ю ядрами.

В определенной степени можно сказать, что имеется как минимум 2 топовые модели, это C3958 и ее близкий родственник — C3955. Приведу основные характеристик обеих моделей.

Процессор C3955 C3958
Количество ядер 16
Количество потоков 16
Базовая частота (Turbo Boost), ГГц 2.1 2.0
Макс. частота, ГГЦ 2.4 2.0
Макс. объем памяти, ГБ 256
Кол-во линия PCI-Express 8
Макс. кол-во SATA 16
Встроенная поддержка LAN 4×10/2.5/1 GbE
Поддержка Intel® QuickAssist +
TDP, Вт 32 31
Рекомендуемая цена, $ 434 449

Собственно, различия не сказать, чтобы сильно бросались в глаза. Причем C3955 имеет поддержку Turbo Boost, а вот старший Atom подобного «турбонаддува» лишен. Казалось бы, не ему быть топовой моделью, но все же главное его отличие от C3955 – это поддержка технологии Intel® QuickAssist.

Кратко о том, что такое QuickAssist, или сокращенно – QAT. Это набор программно-аппаратных средств для ускорения шифрования и сжатия данных. Очень помогает QuickAssist в случаях, когда необходимо производить сжатие данных «на лету», шифровать потоки данных, обеспечить работу криптографии и т. п. В общем, все, что связано с защитой данных, аутентификацией, обеспечением безопасности. QAT существенно ускоряет работу приложений, причем весьма существенно.

Надо заметить, что эта полезная функция входит в состав не каждой модели. Вот и C3955 ее лишен, хотя имеет свои достоинства. QuickAssist использовался и процессорами Atom серии C2xxx, но в новом поколении использование технологии вышло на более высокий уровень. Так, в отличие от Atom C2xxx, для C3xxx не требуется специальный драйвер. В тестировании функция QAT была активирована, хотя в представленных ниже тестах она не использовалась.

Собственно, наличие QAT – едва ли не единственный аргумент в пользу именно C3958, а не C3955, хотя повод весьма веский. Если же выполняемые задачи не подразумевают использование шифрования, сжатия данных, в общем того, для чего нужна эта технология, то смысла в выборе именно C3958 нет.

О том, что это именно серверный продукт, говорят характеристики процессора. Здесь и поддержка большого объема памяти, и наличие 16-мегабайтного кэша L2 (по 1 МБ на каждое ядро), причем ECC, 4-х 10-гигабитных интерфейсов, 16-ти SATA устройств, технологий виртуализации VT-x, VT-d и т. п. Кстати, этот процессор не поставляется покупателям как отдельный компонент, а только в составе как минимум материнской платы.

Для тех, кому интересно, приводим результат выполнения линуксовой команды lscpu, выводящей подробную информацию о процессоре и всех его особенностях.

Тестовый стенд

Для проведения испытания была собрана следующая конфигурация:

  • Материнская плата: Gigabyte MA10-ST0 с распаянным на нем процессором Intel Atom C3958.
  • Память: 4x 16GB DDR4-2400 RDIMMs (Micron).
  • SSD: Intel DC S3710 400GB.
  • Загрузочное устройство: Intel DC S3700 200GB.

Немного подробнее про системную плату. Она весьма интересна для построения хранилищ данных. «На борту» у нее 4 слота для установки памяти, флеш-память eMMC объемом 32 ГБ производства Kingston, 2 10-гигабитных порта SFP и столько же гигабитных сетевых портов. При этом имеется разъем PCIe x8, а также 4 разъема SFF8087 для подключения 16 SATA накопителей.

Подробный обзор данной материнской платы скоро будет, но сейчас можно сказать, что максимальное потребление с двумя 10Gb SFP+ подключениями и двумя подключенными гигабитными интерфейсам составило 61 Вт.

Результаты тестов

Мы использовали наши старые, проверенные Linux-Bench скрипты. У нас есть более свежая подборка скриптов, но в данном случае она показалась не столь нужной, т. к. основное предназначение данной платформы – это встроенные приложения. При использовании подобной конфигурации в хранилищах данных или в сетевых устройствах встроенные приложения не имеют высокой нагрузки, и использование расширенных наборов команд AVX2 и AVX-512 видится излишним.

В своих прошлых проверках мы убедились, что лучшими ОС для процессоров Intel Atom серии C2000 являются Linux и FreeBSD. Windows мало распространена на таких платформах, и мы не советуем использовать данную платформу в качестве обычного компьютера. Для этого найдется масса других, более выигрышных вариантов.

Python Linux 4.4.2 Kernel Compile Benchmark

Этот тест мы используем часто. Используется стандартный конфигурационный файл, ядро Linux 4.4.2, взятое с kernel.org, и стандартно генерируемая конфигурация нагружает каждый поток в системе. Результаты показывают количество компиляций в час.

Полученные результаты показали очень неплохую производительность, которая соизмерима с результатами 8-ядерного процессора Xeon D. Модель C3955 показала немного лучшие результаты. Это неудивительно, все же различия в микроархитектуре должны проявляться в работе процессоров.

c-ray 1.1

Еще один постоянно используемый нами тест трассировки лучей, весьма популярный и показывающий разницу работы в многопоточных системах.

Показанная производительность и тут хороша. Ожидаемо более «шустрый», да еще турбированный C3955 показал более высокие результаты. Что интересно, Intel Xeon E3 продемонстрировал схожую производительность, но у него нет многих функций, которые есть у Atom, да еще и потребляемая мощность у него выше.

7-zip Compression

Очень популярное и часто используемое кроссплатформенное приложение для архивации/разархивации данных.

Полученные результаты очень неплохи. Конечно, 16 ядер Atom это не 16 ядер Xeon D, и тягаться с последним не получится. В данном случае не используется QAT, а это могло бы заметно изменить результаты, и в этом мы скоро убедимся. Если же говорить о производительности, то по скорости сжатия Intel Atom C3958 можно расположить где-то между 6-ю и 8-ядерными Xeon D. Скорость разархивации находится на где-то между 8-ю и 12-ядерными Xeon D.

Sysbench CPU test

Очередной популярный тест на платформе Linux. Мы использовали именно тест CPU, а не OLTP, который применяется при проверке накопителей.

Пришлось убрать результаты процессоров C2358 и D525 из-за низких значений, что сделало бы график сложночитаемым. Тест хорошо масштабируется и отлично нагружает все имеющиеся ядра процессора. Неудивительно, что 16 ядер пришлись очень «ко двору».

OpenSSL

Криптографический пакет, используемый для шифрования обмена между серверами. Мы получили следующий результат.

При повторной проверке получилось следующее (мы отсортировали результаты в том же порядке, что и в первом прогоне тестов, чтобы было удобнее).

Как мы видим, Intel Atom C3958 соперничает со сходным по цене Xeon Silver 4108, который предназначен для более мощных серверов. Но более интересным в данном случае является сравнение с предыдущим 2000-м поколением процессоров Atom. Топовый C2758 с включенным QAT оказался в 4 раза медленнее C3958, в котором не использовалась данная функция. Это важно, т. к. OpenSSL часто используется именно в сетевых устройствах и системах хранения данных.

UnixBench Dhrystone 2 и Whetstone Benchmarks

Тесты старые, но пока мы продолжаем использовать их по многочисленным просьбам. Результаты UnixBench Dhrystone 2.

Результаты Whetstone Benchmarks.

В данном случае видим явную пользу от многоядерности, т. к. в данном случае это компенсирует те компромиссы в микроархитектуре, на которые пришлось пойти для снижения энергопотребления. В данном случае вариант, когда «числом, а не уменьем».

Заключение

Это совсем не тот «Атом», который сразу приходит на ум при упоминании этого семейства процессоров. Базовая частота Atom C3958 не так велика по нашим временам, нет поддержки технологии «Turbo Boost», нет кэш-памяти третьего уровня, нет поддержки набора команд AVX2/ AVX-512, но 16 ядер, по 1 МБ кэша L2 на каждое ядро, существенные улучшения в IPC (Inter Process Communications) позволяют ему соперничать в производительности с Xeon D и Xeon Bronze/Silver.

Естественно, последние более подходят для виртуализации и обычного применения, но в сетевых устройствах и устройствах хранения данных «атомные» процессоры весьма хороши.

Сейчас много говорят об AMD EPYC, но у AMD нет своих решений, способных конкурировать в данном сегменте по совокупности характеристик. Так, EPYC 7251 имеет TDP в 120 Вт (сравните с Atom), имея 8 ядер, 16 потоков, правда, поддерживая увеличение частоты до 2.9 ГГц. Правда, и целей занять свою нишу именно в этом сегменте у AMD нет, по крайней мере, с EPYC.

Активность проявляла компания ARM, но сочетание производительности и использование технологий ускорения функций криптографии и компрессии данных, которое есть в 3000-й серии процессоров Atom, позволяют Intel уверенно чувствовать себя в ближайшем будущем.

Если рассматривать топовые решения с поддержкой QAT, то можно увидеть существенный прогресс, по сравнению с предыдущим поколением (Atom C2758). Единственное, что снизилось — это тактовая частота (примерно на 17 %). В остальном – сплошные улучшения. Судите сами, количество ядер удвоилось (с 8 до 16), объем кэша и максимального объема памяти увеличился вчетверо (до 16 МБ и 256 ГБ соответственно), PCIe обновила поколение, появилась поддержка 10-гигабитной сети. Вот только за существенно возросшую производительность пришлось заплатить возросшим TDP.

К сожалению, увеличились, и существенно, цены. Правда, широкая линейка моделей позволяет подобрать вариант (например, Atom C3758), который дешевле, и может с успехом заменить предыдущий топовый процессор в соответствующих областях применения.

Благостную картину существенно возросшей производительности только портит цена, т. к. при стоимости в 449 $ Atom C3958 конкурирует с Intel Xeon Silver 4108 и Xeon D lines, а это, как ни крути, птицы несколько другого полета.

Характеристики ноутбука определяются его центральным процессором. На ноутбуках не используются мощные видеокарты, поэтому в любых программах и играх все вычисления ложатся именно на центральный процессор. Специально для ноутбуков, нетбуков, планшетов и промышленных компьютеров была разработана серия Intel Atom. Процессоры отличаются низким энергопотреблением. В среднем оно в 2-10 раз ниже, чем у CPU для стационарных компьютеров. При этом у них такая же интеловская архитектура и производительность (при равной тактовой частоте и количеству ядер). Все поддерживаемые программы такие же.

Процессоры Intel Atom ставятся только в бюджетную технику. Это одна из причин, почему они так популярны в офисной технике, низкая цена их делает очень удобными для групповой закупки различными организациями. Их недостаток (отсутствие сокета, процессор часто можно заменить только с материнской платой) с лихвой компенсируется низкой стоимостью.

Характеристики процессоров серии Atom

  • Тактовая частота - 1,2-2,1 ГГц.
  • Число ядер 1, 2 или 4.
  • Память на материнской плате DDR2 и DDR3.
  • Годы производства - с 2008 (активно выпускается в настоящее время, выходят новые модификации).
  • Технопроцесс - 45-14 Нм.
  • Энергопотребление от 0,65 Вт (пока что только для смартфонных версий, для ноутбуков 10 Вт).
  • Применение - ноутбуки, нетбуки, планшеты, смартфоны, офисные компьютеры.

Линейка Intel Atom использует все современные технологии для повышения производительности: множитель частоты, разделение вычислений на потоки, плавающая частота с возможностью разгона. Продукты компании постоянно совершенствуются и обновляются.

Технопроцесс

  • 2008-2011 - 45 нм.
  • 2011-2013 - 22 нм.
  • 2013 – настоящее время - 14 нм.

Уменьшение технологического процесса означает физическое уменьшение размеров транзисторов при их печати на кристалле. Одновременно с их уменьшением падает энергопотребление, снижается температура и увеличивается надежность. Учитывайте это при покупке ноутбука.

5 режимов энергосбережения

  1. Обычная работа на полную или частичную мощность. Включены все порты, видеоконтроллер. Оба ядра и множитель. Энергопотребление - максимальное при 100% загруженности и линейно от нее зависит.
  2. Режим обычной работы, но с пониженной частотой (в характеристиках указывается как LFM).
  3. Отключение множителей частоты, общее снижение частоты тактирования, понижение напряжения питания.
  4. Почти полное отключение тактирования, работают контроллеры портов.
  5. Отключение процессора, но с возможностью его мгновенного включения при запуске приложения или других ручных действий пользователя. Из 203 выводов процессора активны лишь 21. Энергопотребление составляет 0,03-0,1 Вт.

Эти режимы работают в минус: т.е. только уменьшая тактовую частоту и производительность от номинальной. На самых новых процессорах добавился режим «форсажа». В этом случае тактовая частота поднимается выше. Именно с этим связанно нечеткое ее указание в характеристиках ноутбука, например, 1,8-2,2 ГГц.

Число ядер

Процессоры с одним ядром нельзя рекомендовать как современные. Многие приложения на них просто не запустятся. Два ядра уже в корне меняют производительность. Здесь дело ни сколько в ее двукратном повышении, сколько в особой архитектуре. Не все программы чувствительны к тактовой частоте процессора. Для многих куда важнее специализированная архитектура.

Производители и модели ноутбуков

  1. IRBIS (Ирбис ). Выпускает наибольшее число моделей ноутбуков с Атомом. Модели NB11, NB20, 21, 24, 26, NB45, NB47 …. NB 116. Ноутбук NB116 комплектуется самым современным процессором из серии Атом: Atom x5-Z8350 на 4 ядра с автоматическим увеличением тактовой частоты до 1,9 ГГц. В остальных стоят бюджетные Intel Atom Z3735, 4 Ядра 1,3 ГГц. Начало производства этих процессоров май 2014 г.
  2. . Также использует серию Z3735. Выпускает две модели.
  3. DEXP . Выпускает модель Navis L100. Версия CPU - Intel Atom Z3735 (наиболее частая для бюджетных ноутбуков).
  4. BBmobile , Krez , 4 Good и другие менее известные фирмы. Число моделей ноутбуков с атомом у них невелико.

Intel Atom для офисных компьютеров и специальных целей

Компания Intel предлагает несколько версий процессоров, пригодных для работы в обычных системных блоках. Они устанавливаются на материнские платы с памятью DDR2 и DDR3. Под DDR4 версии пока нет, т.к. этот стандарт только вводится на игровых компьютерах и для ноутбуков совершенно неактуален. Использование Intel Atom - возможность получить системный блок без вентиляторов. Такое решение подходит для специальных компьютеров, для промышленности, платежных терминалов и другой техники. Itnel Atom для материнских плат не комплектуются сокетом и припаиваются к ним стационарно. Замена возможна только в сервисном центре с использование оборудования для микропайки.

  • Процессоры одной серии имеют версии для компьютеров, ноутбуков, автомобильных консолей, и мобильных устройств (таких примеров среди других фирм нет).
  • Intel Atom ставится только на бюджетные ноутбуки.
  • Кристалл имеет 5 режимов энергосбережения + режим форсажа.
  • В материнских платах под данные процессоры северный и южный мост объединены.
  • Процессоры Intel много лет считаются самыми надежными в мире.
  • Общее число моделей серии Atom - более сотни.
  • Все процессоры не имеют сокета и припаиваются к материнской плате (но их замена все равно возможна в сервисном центре).
  • Мобильные Intel Atom имеют специальные участки архитектуры чипа для воспроизведения видео и аудио. Такая архитектура экономит энергию.
  • Производство мобильных версий остановлено в 2016 по коммерческим соображениям.
  • В нынешнее время Intel разрабатывает для ноутбуков процессор из серии Atom с 16 ядрами.

Часть 1: Предыстория, Теория, Ядро, Сила

До Атома

Компания Intel давно стала обращать пристальное внимание на мобильный потребительский сектор и выпускать ориентированные на него продукты. Поначалу это были процессоры, подобранные по малому энергопотреблению при прочих равных параметрах (разве что частоты пониже, да корпус поменьше). Затем стали выпускать ЦП, специально доработанные для подобных применений. Историю можно начать с чипа i80386SL, у которого впервые появился SMM (System Management Mode - режим управления системой), динамическое ядро было заменено на статическое (т. е. для сохранения энергии частота может падать до нуля), и добавлены контроллеры кэша, памяти и шин ISA и PI (Peripheral Interface). Все эти изменения увеличили число транзисторов аж втрое (с 275 000 у обычного 386SX/DX до 855 000), но инженеры посчитали, что такой бюджет оправдан. Помимо этого также были версии i386CX и i386EX без встроенной периферии с тремя режимами энергосбережения.

Много воды утекло, каждый следующий ЦП (кроме серверных) выпускался как в обычном, так и в мобильном (иногда ещё и во встроенном) варианте, но все манипуляции в основном заключались в добавлении к ядру энергосберегающих режимов и отборе чипов, способных работать на пониженном напряжении при пониженных частотах. Между тем, конкуренция со стороны архитектур, разработанных специально для мобильных устройств, усилилась: 1990-е принесли появление PDA (начиная с Apple Newton MessagePad), а 2000-е дали коммуникаторы, интернет-планшеты (полузабытая аббревиатура MID) и ультрамобильные ПК (UMPC). В довесок ко всему оказалось, что основные задачи для пользователя таких устройств имеют небольшие вычислительные потребности, так что почти любой ЦП, выпущенный после 2000 г., уже обладал нужной мощностью для мобильного применения, кроме, разве что, современных игр (для которых как раз тогда появились мобильные консоли с 3D-графикой).

Назрела необходимость сделать специальную архитектуру для компактного мобильного устройства, где главное - не скорость, а энергоэффективность. В Intel такую задачу взяло на себя израильское отделение компании, создавшее до этого весьма удачное семейство мобильных процессоров Pentium M (ядра Banias и Dothan). В этих ЦП энергосберегающие принципы были поставлены во главу угла с самого начала разработки, так что динамическое отключение блоков в зависимости от их загрузки и плавное изменение напряжения и частоты стало залогом экономности серии. Особенно ярко Pentium M смотрелись на фоне выпускаемых тогда же Pentium 4, которые в сравнении с ними казались раскалёнными сковородками. Причём, работая на одной частоте, Pentium M выигрывали у «четвёрок» по производительности, что вообще впервые случилось в практике процессоростроения - обычно мобильный компьютер расплачивается за свою компактность всеми остальными характеристиками. Впрочем, и сами-то Pentium 4 были, скажем так, не очень хороши в роли универсального ЦП…

Успех платформы показал, что такая высокая скорость нужна не всем, а вот сэкономить ещё энергии было бы неплохо. На тот момент (середина 2007 г.) Intel выпустила «папу» наших сегодняшних героев - процессоры A100 и A110 (ядро Stealey). Это 1-ядерные 90-нанометровые Pentium M с четвертью кэша L2 (всего 512 КБ), сильно заниженными частотами (600 и 800 МГц) и потреблением 0,4–3 Вт. Для сравнения - стандартные Dothan при частотах 1400–2266 МГц имеют энергорасход 7,5–21 Вт, низковольтные (подсерия LV) - 1400–1600 МГц и 7,5–10 Вт, а впервые введённые ультранизковольтные (ULV) - 1000–1300 МГц и 3–5 Вт. Резонно полагая, что современный компьютер большую часть времени проводит в ожидании очередного нажатия клавиши или сдвига мыши ещё на один пиксель, главным отличием A100/A110 от подсерии ULV Intel сделала умение очень глубоко засыпать, когда считать не надо совсем, благодаря чему потребление при простое падает на порядок. А сильно сокращённый кэш (большой L2 на таких частотах не очень-то и нужен) помог уменьшить размер кристалла, что сделало его дешевле. Размер корпуса процессора уменьшился впятеро, а суммарная площадь ЦП и чипсета - втрое. Как мы увидим далее, такие приёмы были использованы и в серии Atom.

Несмотря на в принципе верное целеполагание, A100/A110 остались мало востребованы рынком. То ли 600–800 МГц оказалось всё же маловато даже для простенького интернет-планшета, то ли всего два чипа (что даже модельным рядом назвать трудно) с самого начала были экспериментальным продуктом для обкатки технологии, то ли процессор просто не раскрутили маркетологи, зная, что ему на смену идёт кое-что куда более продвинутое… Менее чем через полгода после выпуска A100/A110 26 октября 2007 г. Intel объявила о близком выпуске новых мобильных ЦП с кодовыми именами Silverthorne и Diamondville и ядром Bonnell - будущих Атомов. Кстати, название Bonnell произошло от имени холмика высотой 240 м в окрестностях г. Остин (штат Техас), где в местном центре разработки Intel располагалась малочисленная группа разработчиков Атома. «Как вы яхту назовёте, так она и поплывёт.» ©Капитан Врунгель

В 2004 г. эта группа, после отмены ведомого ею проекта Tejas (наследника Pentium 4), получила прямо противоположное задание - проект Snocone по разработке крайне малопотребляющего x86-ядра, десятки которых объединит в себе суперпроизводительный чип с потреблением 100–150 Вт (будущий Larrabee, недавно переведённый в статус «демонстрационного прототипа»). В группе оказалось несколько микроэлектронных архитекторов из других компаний, включая и «заклятого друга» AMD, а её глава Belli Kuttanna работал в Sun и Motorola. Инженеры быстро обнаружили, что различные варианты имеющихся архитектур не подходят их нуждам, а пока думали дальше, в конце года CEO Intel Пол Отеллини сообщил им, что этот же ЦП также будет и 1-2-ядерным для мобильных устройств. Тогда было тяжело предположить, как именно и с какими требованиями такой процессор будет применяться через отведённые на разработку 3 года - руководство с большой долей риска указало на наладонники и 0,5 Вт мощности. История показала, что почти всё было предсказано верно.

Устройство CE4100

Интересно, что уже вслед за Атомом летом 2008 г. был выпущен EP80579 (Tolapai) для встраиваемых применений с ядром Pentium М, 256 КБ L2, 64-битным каналом памяти, полным набором контроллеров периферии, частотами 600–1200 МГц и потреблением 11–21 Вт. А почти сразу после него - модель Media Processor CE3100 (Canmore) для цифрового дома и развлечений: архитектура Pentium М, частота 800 МГц, 256 КБ L2, три 32-битных канала контроллера памяти, 250 МГц RISC-видеосопроцессор и два 340 МГц ядра DSP (цифровой сигнальный процессор) для аудио. Как покупались эти штуки - не ясно, т. к. после анонса о них не было слышно ничего в т. ч. и от Intel. Видимо, не очень… Уже после расцвета Атома, в сентябре 2009-го, Intel повторила попытку и выпустила CE4100, CE4130 и CE4150 (Sodaville) уже на «атомном» ядре частотой 1200 МГц, двумя 32-битными каналами DDR3, обновлённой периферией и технормой 45 нм. И вновь с тех пор об этих высокоинтегрированных системах-на-чипе (SOC) мало слышно. Может быть, рынок не готов встретить героя?
Слева CE4100, справа - CE3100

Теория Атома

Для начала рассмотрим основные характеристики процессора с точки зрения потребителя. Их три: скорость, энергоэффективность, цена. (Правда, энергоэффективность - не очень-то «потребительская» характеристика, но, тем не менее, именно по ней проще всего судить о некоторых важных параметрах конечного устройства.) Далее вспомним, что у идеальной КМОП-микросхемы (по этой технологии изготавливаются все современные цифровые чипы) потребление энергии пропорционально частоте и квадрату напряжения питания, а пиковая частота линейно зависит от напряжения. В результате, уполовинив частоту, мы можем уполовинить напряжение, что в теории уменьшит потребление энергии в 8 раз (на практике - в 4–5 раз). Таким образом, мобильный процессор должен быть низкочастотным и низковольтным. Как же тогда он окажется быстрым? Для этого надо, чтобы за каждый такт он выполнял как можно больше команд, что чаще всего означает увеличение числа конвейеров (степени суперскалярности) и/или числа ядер. Но это ведёт к резкому росту транзисторного бюджета, что увеличивает площадь чипа, а значит и его стоимость.

Таким образом, выиграть по всем трём пунктам не получится даже теоретически (чем и объясняется присутствие на рынке такого разнообразия процессорных архитектур). Поэтому где-то придётся сдать позиции. Исторический экскурс говорит, что сдать надо в скорости, что даст возможность сделать ядро ЦП максимально простым. Именно по этому пути и пошли инженеры из Остина. Обдумав варианты, они решили вернуться к архитектуре 15-летней давности, первый и последний раз (среди процессоров Intel) использовавшейся в первых Pentium. А именно: процессор остаётся суперскалярным (т. е. 2 команды за такт у нас будет - но не 3–4, как в современниках Атома), лишается механизма перетасовки команд перед исполнением (OoO), но приобретает то, чего у Pentium не было - технологию гиперпоточности (HyperThreading, HT), позволяющую на базе одного физического ядра эмулировать для ОС и ПО наличие двух логических. Чтобы объяснить, почему был сделан именно такой выбор, читателю рекомендуется сначала вспомнить все возможные способы увеличения производительности ЦП . А теперь оценим их с позиции потребления энергии и транзисторных затрат.

Использование многопроцессорной конфигурации в карманном или наколенном устройстве недопустимо, а вот многоядерность - вполне, если не хватает скорости одного ядра. Поначалу Intel сделала это тем же способом, что и в первых 2-ядерных Pentium 4 - поставив пару одинаковых 1-ядерных чипов на общую подложку и общую шину до чипсета. Из других разделяемых ресурсов есть лишь питающее напряжение, которое выбирается из максимума двух запросов. Т. е. ядра могут отдельно изменять свои частоты, но засыпают и пробуждаются синхронно. В декабре 2009 г. Intel выпустила первые интегрированные версии Атомов, где на одном кристалле есть 1–2 ядра и северный мост. На плате остался южный мост, соединённый с ЦП шиной DMI, что чуть быстрее и экономней предыдущей комбинации. Больше двух ядер нам скоро не предложат, так что основной скоростной упор сделан на их внутренности.

Вопрос повышения частотного потолка инженеров Intel на этом этапе тоже не очень волновал, хотя отказываться от принципа конвейерности и декодирования команд х86 во внутренние микрооперации (мопы) никто не собирался - это был бы слишком радикальный шаг назад. А вот предсказатели переходов, предзагрузчики данных и прочие вспомогательные системы заполнения конвейера стали очень важны, т. к. простаивающий конвейер, не умеющий исполнять другие команды в обход застрявшей, означает выкинутые насмарку драгоценные ватты - и у Атома все необходимые «подпорки» сделаны ненамного хуже, чем у Pentium M и более современных ему Core 2, разве что размеры буферов поменьше (опять же ради экономии). В итоге, основная битва разыгрывается вокруг производительности за такт.

Год назад компания Intel объявила о выпуске новой серии процессоров - Atom. Новые ЦП предназначены исключительно для мобильных компьютеров, и их характеристики полностью соответствуют всем требованиям подобного рода устройств. Это прежде всего относится к энергопотреблению, которое не превышает 4 Вт (TDP). Столь низкие показатели достигнуты за счет новой архитектуры, которая не похожа ни на одну из предшествующих архитектур Intel, хотя и включает их отдельные черты. Ядро состоит из 47 миллионов транзисторов, а поскольку для их производства используется 45-нм техпроцесс, то становится понятным, почему Atom такой компактный и экономичный процессор. В настоящее время в ассортименте Intel есть две серии процессоров Atom. Первая называется Z (процессоры Z500-Z540), она основана на ядре Silverthorne и предназначена для мобильных систем класса MID (Mobile Internet Devices). Вторая серия на ядре Diamondville была анонсирована сравнительно недавно (в марте этого года) и включает две модели (N270 и 230). Она предназначена для настольных систем (Nettops) и бюджетных ноутбуков (Netbooks).

Ядро Частота, ГГц FSB, МГц L2, кб TDP, Вт Техпроцесс, нм Площадь ядра, мм 2 Кол-во транз. (млн)
Atom Z500 Silverthorne 0,8 400 512 0,65 45 25 47
Atom Z510 Silverthorne 1,1 400 512 2 45 25 47
Atom Z520 Silverthorne 1,33 533 512 2 45 25 47
Atom Z530 Silverthorne 1,6 533 512 2 45 25 47
Atom Z540 Silverthorne 1,86 533 512 2,4 45 25 47
Atom N270 Diamondville 1,6 533 512 2,5 45 25 47
Atom 230 Diamondville 1,6 533 512 4 45 25 47

Все процессоры Atom имеют кэш L1 объемом 56 кб, из которых 32 кб отведено под кэш инструкций, а 24 кб - под данные. Также все процессоры могут исполнять 32-битный код и поддерживают дополнительные наборы инструкций MMX, SSE, SSE2, SSE3 и SSSE3. Что касается 64-битного кода (x86-64), то его поддерживает только ядро Diamondville и только в модели Atom 230. На настоящий момент все процессоры Atom являются одноядерными. Вместе с тем, они поддерживают технологию Hyper-Threading, которая позволяет исполнять два параллельных потока команд. Ближе к концу 2008 года Intel планирует выпустить первые двухъядерные процессоры Atom. В сети циркулируют слухи о модели Atom 330, которая будет работать на частоте 1,6 ГГц (частота FSB - 533 МГц), а на каждое из ядер будет приходится по 512 кб кэша L2. Процессоры Atom серии Z поддерживают технологию виртуализации, а также технологию энергосбережения C1E Speedstep. Кроме серии Z, C1E Speedstep поддерживает процессор Atom N270, построенный на ядре Diamondville. Ассортимент процессоров Atom довольно велик, и включает два ядра для разных систем. Чтобы не возникло путаницы, важно отметить, что процессоры работают с определенными чипсетами, и именно они определяют предназначение конечного продукта. Вместе с новыми процессорами компания Intel выпустила серию чипсетов - UL11L, US15L, US15W, - которые также предназначены для работы Atom серии Z (ядро Silverthorne).

Чипсеты имеют схожие характеристики, и каждый состоит из одной микросхемы, которая реализует функциональность, и "северного" и "южного моста". Новые чипсеты поддерживают процессоры Intel Atom с частотой системной шины 100 или 133 МГц (400/533 МГц QPB), имеют встроенный одноканальный контроллер 400- или 533-МГц памяти DDR2 (максимальный объем памяти составляет 1 Гб). Также чипсеты новой серии имеют встроенное графическое ядро Intel GMA500, которое помимо трехмерной графики обеспечивает аппаратное декодирование видеоформатов H.264, MPEG2, VC1 и WMV9. При этом поддерживаются выходы D-SUB и DVI-I, а также TV-Out. Кроме того, предусмотрен контроллер шины PCI Express spec 1.0. Пара слов о возможностях расширения чипсетов UL и US - они поддерживают один IDE-канал, восемь портов USB 2.0, а также звуковую HD-подсистему. Чипсеты UL11L, US15L, US15W являются составной частью платформы Centrino Atom 2, в которую также входят процессоры Atom и модули беспроводной связи Wi-Fi, WiMAX и 3G. Следует отметить, что тепловыделение чипсета UL11L составляет 1,6 Вт, а чипсетов серии US - не более 2,3 Вт. В результате, общее тепловыделение связки чипсета UL11L и процессора Atom равно 2,25 Вт! Это именно то, что нужно мобильным устройствам, поскольку беспрецедентно низкий уровень потребления энергии обеспечивает длительную продолжительность работы. Что касается процессоров Atom N270 и Atom 230 на ядре Diamondville, то они предназначены для дешевых, экономичных и малогабаритных систем (Nettops и Netbooks) с чипсетом 945GC. Именно такую систему, а точнее, материнскую плату мы сегодня и протестируем:

Обратите внимание, что массивный радиатор с вентилятором предназначен для охлаждения чипсета, а сам процессор довольствуется скромным низкопрофильным радиатором (на дальнем плане). Внешне процессор выглядит следующим образом:

Можно заметить, что Atom 230 непосредственно впаян на плату, так что модернизировать систему не получится. А если "сжечь" процессор при разгоне (об этом чуть позже), то менять придется всю материнскую плату. Утилита CPU-Z предоставляет следующую информацию:

Эта версия утилиты неправильно определяет процессорное ядро (Silverthorne вместо правильного Diamondville). Ниже приведены спецификации системной платы Gigabyte GC230D:

Процессор

Intel Atom 230 (Diamondville)

Чипсет

Северный мост Intel 945GC
- Южный мост Intel ICH7

Системная память

Один 240-контактный слот для DDR-II SDRAM DIMM
- Максимальный объем памяти 2 Гб
- Поддерживается память типа DDR2 400/533
- Индикатор питания на плате

Графика

Встроенное графическое ядро GMA950

Возможности расширения

Один 32-битный PCI Bus Master-слот
- Восемь портов USB 2.0 (4 встроенных + 4 дополнительных)
- Встроенный звук High Definition Audio
- Сетевой контроллер 10/100 Ethernet

Возможности для разгона

Изменение частоты HTT от 100 до 700 МГц
- Изменение напряжения на памяти и FSB
- Поддержка утилиты EasyTune

Дисковая подсистема

Один канал UltraDMA133/100/66/33 Bus Master IDE (с поддержкой до двух ATAPI-устройств & RAID 0, 1)
- Поддержка протокола SerialATA II (2 канала - ICH7)
- Поддержка LS-120 / ZIP / ATAPI CD-ROM

BIOS

4 MBit Flash ROM
- Award Phoenix BIOS с поддержкой Enhanced ACPI, DMI, Green, PnP Features и Trend Chip Away Virus
- Поддержка @BIOS, Q-Flash

Разное

Один порт для FDD, один последовательный и один параллельный порт, порты для PS/2 мыши и клавиатуры
- IrDA
- STR (Suspend to RAM)

Управление питанием

Пробуждение от модема, мыши, клавиатуры, сети, таймера и USB
- 20-контактный разъем питания ATX (ATX-PW)
- Дополнительный 4-контактный разъем питания

Мониторинг

Отслеживание температуры процессора, мониторинг напряжений, определение скорости вращения двух вентиляторов
- Технология SmartFan

Размер

ATX форм-фактор, 170x170 мм (6,68" x 6,68")