Классификация ионных каналов. Биологические мембраны и ионные каналы

27.07.2019

В медицинских новостях то и дело появляется информация о том, что учёные нашли очередной способ воздействия на ионные каналы — то они пытаются их активировать, то, наоборот, спешат блокировать. Например, совсем недавно были опубликовано сообщение об исследованиях профессора Тель-Авивского университета (Tel Aviv University) Майкла Гуревитца (Michael Gurevitz), который разрабатывает новое болеутоляющее на основе компонентов яда израильского жёлтого скорпиона — одного из самых опасных скорпионов в мире. Предполагается, что этот препарат будет воздействовать на натриевые каналы, которые отвечают за восприятие боли, и станет эффективным обезболевающим нового поколения. Об ионных каналах вспоминают, и когда речь заходит об онкологических заболеваниях , сердечно-сосудистых отклонениях и даже вредных пристрастиях. Так что же это за каналы и почему их работа так важна?

Клетка в дырку

Живая клетка — это не статичное образование, в ней постоянно происходит обмен веществ, ведь взаимодействие клеток друг с другом и внешней средой — необходимое условие для поддержания жизни организма. Обмен этот происходит через мембрану (оболочку) клеток, через которую при необходимости должны проникать многие элементы: ионы, аминокислоты, нуклеотиды.

Чтобы мембрана при необходимости могла быть проницаема для этих элементов, в ней есть специальные транспортные белки, которые образуют поры, своеобразные «дыры» в мембране. Эти поры представляют собой закупоренные молекулами воды каналы диаметром менее 1 нм, и эти мембранные каналы обладают относительной избирательностью по отношению к типу молекул, которые могут через них проходить. Есть, к примеру, кальциевые, натриевые, калиевые каналы — и они не пропускают другие ионы, кроме специфических. Такая избирательность канала обусловлена его зарядом и структурой.

Для проведения потока ионов через свою пору ионные каналы используют разность потенциалов. Так как возникающий при движении ионов ток можно измерить — причём даже для одиночного канала, за поведением мембранных ионных каналов легко наблюдать. Каналы спонтанно и часто открываются и закрываются. И эти переходы из одной формы в другую можно изучать методами рентгеновской дифракции , мёссбауэровской спектроскопии и ядерно-магнитного резонанса . Благодаря этим исследованиям стало ясно, что эти каналы — высокоорганизованные струтуры, не просто трубка с водой, а лабиринт быстро двигающихся электрически нейтральных и заряженных молекулярных групп.

Существуют десятки разновидностей ионных каналов. Самую большую группу составляют калиевые каналы, в которую входит около сорока видов. И каждая разновидность уникальна по своим структурным характеристикам и выполняемым функциям. Например, калиевые каналы большой проводимости (через них проходит бóльшее количество ионов калия, чем по другим каналам) состоят из круных фрагментов белка, субъединиц, свернутых в α-спираль. Их дополняют относительно короткие фрагменты, которые кроме первичной спиральной обладают также вторичной β-структурой. Они, в свою очередь, подразделяются на β-1, β-2, β-3 или β-4, каждая из которых придаёт каналу уникальные свойства. Например, β-4 делает канал устойчивым к блокатору ибериотоксину. Если же блокада канала осуществлена удачно, ток через канал проходить не будет.

Зачем вообще нужны эти высокоорганизованные «дыры» в клетках? Ионные каналы — это основа жизни. Они обеспечивают возбудимость нервной системы, передачу нервных импульсов с нерва на мышцу, секрецию гормонов. Активирование ионных каналов запускает каскады физиологических реакций, обусловливает наше мышление, работу сердечной мышцы и дыхательной диафрагмы, даже наши привязанности (например, к алкоголю) и те современные учёные склоны объяснять особенностями работы ионных каналов.

Блокирование этих важных каналов приводит к серьёзнейшим изменениям в организме. И нет ничего удивительного в том, что ионные каналы стали основной мишенью для разработки новых ядов и химического оружия. Так, один из мощнейших нервнопаралитических ядов, известных человечеству, тетродотоксин, блокирует натриевые каналы. Благодаря большим размерам молекулы тетродотоксин буквально закупоривает пору натриевого канала, так что прохождение ионов натрия через неё становится невозможным, и нервный импульс не передаётся от клетки к клетке. Мышцы замирают — ведь они подчиняются сигналам нервной системы. Токсины сходного действия, например конотоксин, находятся в арсенале змей и морских моллюсков и помогают им парализовать жертву.

Ионные каналы в медицине

В медицине сегодняшнего дня целый ряд заболеваний объясняют нарушением в работе ионных каналов. Хотя они имеют совершенно разные пути лечения, общность их причин позволило выделить их в отдельную группу. Они включают как приобретенные, так и наследственные недуги.

В 2003 году Нобелевская премия по химии была присуждена американскому учёному Родерику Маккиннону (Roderick McKinnon) за открытие структуры ионного канала. В 1998 году ему удалось кристаллографическими методами получить трёхмерную молекулярную структуру калиевого канала бактерии Streptomyces lividans. Изображение белка появилось на обложке журнала «Science», редакция которого посчитала открытие Маккиннона одним из десяти самых выдающихся научных достижений года. Этот белок состоит из 4 субъединиц, имеющих α-спиральное строение. Через полость в центре и переносится катион калия. Иллюстрация: BNL/DoE, Rockefeller University/Roderick MacKinnon

Например, с нарушением функции целой группы ионных каналов, включая натриевые и калиевые, связывают развитие синдрома хронической усталости . Из наследственных заболеваний, вызванных нарушением функционирования ионных каналов, можно упомянуть эпилепсию, которая вызвана сбоями в работе калиевых каналов большой проводимости. Под руководством профессора Ричарда Алдрича (Richard Aldrich) из Техасского университета в Сан-Антонио (University of Texas at San Antonio) удалось доказать, ставя опыты на трансгенных мышах , у которых был заблокирован ген KCNMB4, что при недостаточном количестве бета4 субъединиц калиевый канал неадекватно отвечает на нервное возбуждение, что приводит к конвульсиям.

С недостаточной функцией β-1 субъединицы канала связывают развитие гипертонии. Если по какой-то причине аминокислотный состав белка β-1 субъединицы не соответствует норме, то канал с такой субъединицей не в состоянии поддерживать расширение стенкок сосудов , из-за чего возникает напряжение артерий и развивается гипертония. Об этом свидетельствуют, например, исследования Ральфа Кёлера (Ralf Köhler) из Университета Южной Дании (Syddansk Universitet).

Ещё одно широко распространённое сердечно-сосудистое заболевание — синдром удлинённого QT связывают с мутациями в генах, кодирующих калиевые каналы сердечной мышцы, которое приводит к усилению активности калиевых каналов и меняет нормальный поток калия в сердечной мышце.

Нарушения функций кальциевых каналов приводят к атаксиям — состояниям, при которых невозможна координация движений.

Наконец, муковисцидоз (или фиброзно-кистозная дегенерация) — тяжелейшее заболевание дыхательной системы и желудочно-кишечного тракта наряду с другими причинами связывают с мутациями в CFTR гене, кодирующем хлорный канал.

Так что нормальное функционирование ионных каналов любого типа исключительно важно для здоровья человека.

Взять каналы на прицел!

Сегодня фармацевты активно работают над созданием препаратов, воздействующих на них. Пожалуй, одни из самых популярных из существующих подобных препаратов, — антиаритмические средства, которые нормализуют нарушенный ритм сердечных сокращений. К ним относятся так называемые «антагонисты кальция» (например, верапамил), которые препятствуют проникновению ионов кальция из межклеточного пространства в мышечные клетки сердца и сосудов через медленные кальциевые каналы L-типа. Снижая концентрацию ионов кальция в клетках сердечной мыщцы и стенках сосудов, антагонисты кальция расширяют коронарные и периферические артерии.

Активаторы калиевых каналов (икорандил, миноксидил, диазоксид, пинацидил) тоже вызывают расширение коронарных сосудов и сосудов в периферических органах. Воздействовать на калиевые каналы пытаются и для остановки инсультов, вызванных спазмом сосудов головного мозга.

Популярные в хирургической практике местные анестетики — лидокаин и новокаин блокируют ощущение боли путём закупорки натриевых каналов. Правда, побочный эффект этих препаратов состоит в том, что они приводят к потере не только болевой, но и тактильной чувствительности.

Однако удалось установить, что на помощь в такой ситуации могут прийти другие ионные каналы — так называемые TRP (Transient receptor potential). Это семейство каналов насчитывает множество видов, которые характеризуются слабой селективностью и пропускают большинство положительно заряженных ионов, включая натрий, кальций и магний.

Особая группа TRP каналов, которая расположена в нервных клетках, реагирующих на боль, чувствительна к присутствию активного компонента перца чили — капсаицину. Если активировать TRP каналы капсаицином, то последующее введение лидокаина будет избирательно блокировать только эти TRP каналы, то есть каналы, расположеные исключительно в болевых нейронах. Таким образом, можно будет избавиться от побочного действия обезболевающего.

Относительная простота тестирования работы ионных каналов и многообещающие результаты делают их привлекательной мишенью для фармацевтической индустрии. К тому же, многие ныне существующие препараты со временем теряют свою эффективность: организм привыкает к ним и реагирует не так, как задумывали создатели. Учёным приходится постоянно искать пути устранения различных сбоев, а ионные каналы — это, можно сказать, основа жизни. И сегодня манипуляции ими, с одной стороны, привлекают многомиллиардные инвестиции, а с другой — дают определённую надежду страдающим самыми разными недугами.

Новости партнёров

— трансмембранные белки, образующие поры через цитоплазматическую и другие биологические мембраны, которые помогают устанавливать и управлять электрическим напряжением через мембраны всех живых клеток (так называемым мембранным потенциалом), позволяя движение определенных ионов вниз по электрохимическим градиентом.

Основные черты

Ионные каналы регулируют поток ионов через мембрану во всех клетках. Они представляют собой белковую молекулу или комплекс нескольких молекул, которые пронизывают липидный слой клеточной мембраны насквозь. Внутри белка находится сквозное отверстие, или пора, по которой могут двигаться ионы. Пора открывается и закрывается с помощью движений белковой молекулы самого канала или вспомогательных белков — так называемый «Воротные механизм». При открывании времени через канал движутся ионы, которых заставляет перемещаться электрохимический градиент по обе стороны клеточной мембраны. Таким образом, каналы являются проводниками пассивного транспорта.

Движение ионов через канал приводит к изменению мембранного потенциала клетки или вхождения новых ионов в клетку (в первую очередь ионов кальция и хлора). Это в дальнейшем приводит к изменению функции клетки. Трансмембранный градиент поддерживается для немногих малых ионов: катионов (Na +, Ca 2+, K +, H +) и анионов (Cl -, OH -). Тем не менее, существует несколько сотен генов, кодирующих различные ионные каналы живых организмов. Это многообразие связано в частности с многообразием воротных механизмов. Белковая молекула канала воспринимает определенный вид энергии и в ответ меняет свою конформацию так, чтобы время канала открылась или закрылась. Распространены потенциалзависимые каналы, то есть те, которые открываются в ответ на определенную разность потенциалов на мембране, и хемозалежни каналы, то есть те, которые изменяют конформацию после связывания со специфической молекулой. Есть также каналы, которые меняют свою способность пропускать ионный ток в ответ на изменение температуры, pH, давление на мембрану, свет и т.

Молекулярное строение

Эти комплексы обычно имеют вид цилиндрической структуры, составленной из одной или нескольких идентичных, гомологичных или различных белковых молекул, плотно упакованных вокруг заполненной водой поры, проходит через липидный бислой мембраны. Если эти белковые молекулы или субъединицы канала являются продуктами одного гена, то канал является гомомером, если же разных — то гетерометром. По количеству субъединиц различают мономеры, димеры, триммеры, тетрамеры, пентамер, октамер т. Например, калиевые каналы часто является гомотетрамерамы — то есть образованные четырьмя одинаковыми субъединицами. По обычной номенклатурой, субъединицы, формирующие время, называются α-субъединицами, тогда как вспомогательные субъединицы — β, γ и так далее. Каждая α-субъединица состоит из нескольких (2-7) трансмембранных сегментов (что чаще всего является α-спиралями), Р-петли, которая выстилает время, цитоплазматических концов и внеклеточного петель.

Свойства ионных каналов

  • Селективность — это способность канала избирательно пропускать определенный тип ионов. Избирательность является относительной: даже высокоселективные каналы при определенных условиях (ионный состав среды, липидный состав мембран, температура и т.д.) могут пропускать и другие ионы помимо основного. Но при физиологическом состоянии за селективностью каналы делятся на селективные (например, натриевые или калиевые), или неселективные (катионный канал глутаматных рецептора). Селективность обычно достигается специфическим строением поры. Пора содержит в себе селективный фильтр, который может иметь ширину около диаметра одного атома, разрешающий прохождение только определенного типа ионов, например натрия или калия, или в нем находятся места связывания, имеющих сродство только к определенным ионов (например, кальция) .
  • Проницаемость — это способность определенного иона проходить сквозь время канала. Проницаемость прямо следует из селективности. Чем выше селективность канала, тем ниже проводимости для неосновных ионов.
  • Проводимость — это величина, показывающая количество ионов, которые способны пройти через время канала в единицу времени. Единица проводимости — сименс.

Биологическая роль

Открытие и закрытие ионных каналов лежат в основе передачи нервных импульсов, а проводимость каналов является основой работы электрических синапсов. Поэтому ионные каналы крайне важными компонентами нервной системы. Действительно, большинство наступательных и защитных токсинов, которые организмы развили для прекращения работы нервные системы хищников и добычи (например, яды, выделяемые пауками, скорпионами, змеями, рыбами, пчелами, морскими моллюсками и другими организмами) работают из-за блокирования ионных Калалы. Ионные каналы вовлечены в поддержание напряжения в митохондриях эукариот и на плазматических мембранах прокариот, которая используется для получения энергии в виде АТФ — основного «топлива» клеток. Кроме того, многочисленные ионные каналы отвечают за широкий спектр биологических процессов, которые привлекают быстрые изменения состояния клетки, например сердечной деятельности, сокращения скелетных и гладких мышц, транспорт питательных веществ через эпителий, работе T-лимфоцитов, секреции гормонов. При разработке новых лекарств ионные каналы — очень частые мишени.

Многообразие ионных каналов

Единой классификации ионных каналов на сегодняшний день не существует. Каналы систематизируют по селективностью к ионам (анионные, катионные, натриевые, калиевые, хлорные и т.д.), по механизму активации (потенциалзависимые, лигандкеровани, депокеровани, механорецепторы, температурозалежни и т.п.), по чувствительности к химическим веществам (например, АТФ-зависимые, TTX- нечувствительны), по генетической гомологией. В украинской научной литературе предложена следующая классификация:

  • Лигандкеровани ионные каналы
    • Cys-петельные — гомо- или гетеропентамерни
      • Неселективные катионные: никотиновый ацетилхолиновых рецепторов, серотониновый рецептор
      • Селективные хлорные: глицинового рецептор, ГАМК А рецептор, ГАМК С рецептор
    • Глутаматных рецепторов — гомо- или гетеротетрамеры
      • AMPA-рецепторы, каинатни рецепторы, NMDA-рецепторы
    • Пуриновые рецепторы — гомо- или гетеротетрамеры
      • P2X рецепторы
  • Потенциалзависимые ионные каналы
    • Натриевые каналы
      • тетродоксин-чувствительные
      • тетродоксин-нечувствительны
    • Кальциевые каналы
      • L-типа
      • N-типа
      • P / Q-типа
      • R-типа
      • T-типа — низькопорогови кальциевые каналы
  • Калиевые каналы
    • Потенциалзависимые
      • Shaker- Shab- Shal- Shaw-родственные
      • KvLQT1-родственные
      • eag-родственные
      • erg-родственные
      • elc-родственные
    • кальций-активированные
      • большой проводимости BK
      • малой проводимости SK
      • Na-, Cl-активированные
      • OH-активированные
    • Входного выпрямления
      • G-белок регулируемые GIRK
      • АТФ-зависимые калиевые каналы K-ATP
    • фоновые
      • двопородоменни (2P)
  • Каналы, управляемые циклическими нуклеотидами
  • Депокеровани и арахидонатрегульовани каналы
  • Каналы "транзиентной рецепторного потенциала" (ТРТ)
      • TRPC, "классические"
      • TRPV, "ванилоидни" TRPV1
      • TRPM, "меластатинови" TRPM8
      • TRPA, "анкирином"
      • TRPP, "полицистинови"
      • TRPML, "муколипины"
  • Натриевые потенциалзависимые дегенеринподибни
    • эпителиальные ENaC
    • протончутливи ASIC
  • Анионные ионные каналы
    • Хлорные каналы ClC

Заболевания, связанные с ионными каналами

Нарушение работы ионных каналов часто приводят к заболеваниям — каналопатиям. Основная причина таких нарушений — наследственные мутации, влияющие на структуру канала, но и возможны и другие повреждения (метаболические, радиационные и т.п.). Примеры каналопатиям:

  • муковисцидоз
  • сердечные аритмии
  • синдром Бругада
  • синдром Тимоти
  • генерализованная эпилепсия

Как изучают ионные каналы

Мембранная теория

Долгое время цитологи спорили, как устроена клетка. Между собой конкурировали две теории: мембранная и фазовая. Мембранная теория предполагала наличие полупроницаемого барьера, который бы отделял цитоплазму от межклеточного пространства, создавая градиенты веществ. Фазовая теория исключала наличие такого барьера, а гомеостаз в клетке поддерживают белки-акцепторы различных веществ — акцепторы калия, натрия, кислорода, глюкозы и др. Открытие электронной микроскопии показало победу мембранной теории. Поэтому следующим шагом стало изучение свойств мембраны. Ходжкин и Бернард Кац обнаружили способность гигантского аксона кальмара пропускать различные ионы при различных мембранных потенциалах. Так появилась гипотеза о наличии селективных ионных каналов. В дальнейшем она блестяще подтвердилась.

Методы исследования

Первые исследования ионных каналов были осуществлены с помощью микроэлектродов на гигантских возбуждающих клетках. Развитие микроэлектродной техники привело к созданию метода фиксации потенциала на участке мембраны. Сначала исследования проводились только на функциональном уровне, дальше гены каналов был клонирован и их стали также изучать генетически и структурно. Также ионные каналы теперь искусственно вводят в клетки, почти не имеют собственных каналов (яйцеклетки, иммортализовани клеточные линии и т.п.), где изучают их функции. Используют ряд молекулярно-биологических и оптических методов (ПЦР, количественную ПЦР, ПЦР для одной клетки, иммунохимических методы, флуоресцентную микроскопию). Некоторые канальные белки удалось закристализуваты и провести рентгеноструктурный анализ. Другие структуры предусмотрены пока теоретически.

Вклад украинских ученых в исследования ионных каналов

В Институте физиологии имени А.А. Богомольца НАН Украины еще с 1950-х начались исследования электрических свойств клеток. У истоков этой работы стояли Даниил Воронцов, Платон Костюк, Михаил Шуба. Впервые в мире Костюк и Хрусталь доказали наличие отдельных кальциевых каналов в клеточной мембране нервных клеток. В дальнейшем под руководством Платона Костюка группой Николая Веселовского было впервые описано токи через кальциевые каналы Т-типа, а группой Олега Крышталя — через пуриновые и протончутливи каналы.

В 2005 году выходец из Украины Юрий Киричек (ученик Олега Крышталя) впервые описал токи через ионные каналы сперматозоида, в частности удалось открыть лужночутливий кальциевый канал CatSper.

Ионные каналы - особые образования в мембране клетки, представляющие собой олигомерные (состоящие из нескольких субъединиц) белки. Центральным образованием канала является молекула белка, которая пронизывает мембрану таким образом, что в ее гидрофильном центре формируется канал-пора, через которую в клетку способны проникать соединения, диаметр которых не превышает диаметра поры (обычно- это ионы).

Вокруг главной субъединицы канала располагается система из нескольких субъединиц, которые формируют участки для взаимодействия с мембранными регуляторными белками, различными медиаторами, а также фармакологически активными веществами.

Классификация ионных каналов по их функциям:

1) по количеству ионов, для которых канал проницаем, каналы делят на селективные (проницаемы только для одного вида ионов) и неселективные (проницаемы для нескольких видов ионов);

2) по характеру ионов, которые они пропускают на Na + , Ca ++ , Cl - , K + -каналы;

3) по способу регуляции делятся на потенциалзависимые и потенциалнезависимые. Потенциалзависимые каналы реагируют на изменение потенциала мембраны клетки, и при достижении потенциалом определенной величины, канал переходит в активное состояние, начиная пропускать ионы по их градиенту концентрации. Так, натриевые и быстрые кальциевые каналы являются потенциалзависимыми, их активация происходит при снижении мембранного потенциала до -50-60 мВ, при этом ток ионов Na + и Ca ++ в клетку вызывает падение потенциала покоя и генерацию ПД. Калиевые потенциалзависимые каналы активируются при развитии ПД и, обеспечивая ток ионов К + из клетки, вызывают реполяризацию мембраны.

Потенциалнезависимые каналы реагируют не на изменение мембранного потенциала, а на взаимодействие рецепторов, с которыми они взаимосвязаны, и их лигандов. Так, Cl - -каналы связаны с рецепторами g-аминомасляной кислоты и при взаимодействии этих рецепторов с ней они активируются и обеспечивают ток ионов хлора в клетку, вызывая ее гиперполяризацию и снижение возбудимости.

3. Мембранный потенциал покоя и его происхождение.

Термином «мембранный потенциал покоя» принято называть трансмембранную разность потенциалов, существующую между цитоплазмой и окружающим клетку наружным раствором. Когда клетка (волокно) находится в состоянии физиологического покоя, ее внутренний заряд отрицателен по отношению к наружному, условно принимаемому за нуль. У разных тканей мембранный потенциал характеризуется разной величиной: самый большой у мышечной ткани -80 -90 мВ, у нервной -70 мВ, у соединительной -35 -40 мВ, у эпителиальной -20мВ.

Образование МПП зависит от концентрации ионов К + , Nа + , Са 2+ , Сl - , и от особенностей строение мембраны клетки. В частности, ионные каналы, имеющиеся в мембране, обладают свойствами:


1. Селективностью (избирательной проницаемостью)

2. Электровозбудимостью.

В состоянии покоя натриевые каналы все закрыты, а большинство калиевых – открыты. Каналы могут открываться и закрываться. В мембране существуют каналы утечки (неспецифические), которые проницаемы для всех элементов, но более проницаемы для калия. Калиевые каналы всегда открыты, и ионы движутся через эти каналы по концентрационному и электрохимическому градиенту.

Согласно мембранно-ионной теории наличие МПП обусловлено:

Ø непрерывным движением ионов по ионным каналам мембраны,

Ø постоянно существующей разностью концентраций катионов по обе стороны мембраны,

Ø непрерывной работой натрий-калиевого насоса.

Ø различной проницаемостью каналов для этих ионов.

Ионов К + много в клетке, снаружи его мало, Nа + - наоборот, много вне клетки и мало в клетке. Ионов Сl - чуть больше снаружи клетки, чем внутри. Внутри клетки много органических анионов, которые в основном и обеспечивают отрицательный заряд внутренней поверхности мембраны.

В состоянии покоя мембрана клетки проницаема только для ионов К + . Ионы калия в состоянии покоя постоянно выходят в окружающую среду, где высокая концентрация Nа + . Поэтому, в состоянии покоя, наружная поверхность мембраны заряжена положительно. Высокомолекулярные органические анионы (белки) концентрируются у внутренней поверхности мембраны и определяют ее отрицательный заряд. Они же электростатически удерживают ионы К + с другой стороны мембраны. Основную роль в образовании МПП принадлежит ионам К + .

Несмотря на потоки ионов через каналы утечки разность концентрации ионов не выравнивается, т.е. сохраняется всегда постоянной. Этого не происходит потому, что в мембранах существуют Nа + - К + - насосы. Они непрерывно откачивают Nа + из клетки и против градиента концентрации вводят в цитоплазму К + . На 3 иона Nа + , которые выводятся из клетки, внутрь вводится 2 иона К + . Перенос ионов против градиента концентрации осуществляется активным транспортом (с затратой энергии). В случае отсутствия энергии АТФ клетка погибает.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Когда внутренний заряд мембраны становится менее отрицательным наступает деполяризация мембраны и начинает развиваться потенциал действия.

4.Потенциал действия и механизм его происхождения.

Соотношение фаз возбудимости с фазами потенциала действия.

Потенциалом действия называют быстрое колебание мембранного потенциала, возникающее при возбуждении нервных, мышечных и секреторных клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения.

Порог раздражения – эта минимальная сила, при которой возникает минимальная ответная реакция. Для характеристики порога раздражения используется понятие реобаза (рео – ток, база – основной).

Кроме пороговых различают подпороговые раздражители, которые не могут вызвать ответной реакции, но вызывают сдвиг обмена веществ в клетке. Также существуют надрпороговые раздражители.

Возникнув, ПД распространяется вдоль мембраны, не изменяя своей амплитуды. В нем различают фазы:

1) Деполяризации:

а) медленная деполяризация;

б) быстрая деполяризация.

2) Реполяризация:

а) быстрая реполяризация;

б) медленная реполяризация (отрицательный следовой потенциал)

3) Гиперполяризация (положительный следовой потенциал)

Иомнные канамлы -- порообразующие белки (одиночные либо целые комплексы), поддерживающие разность потенциалов, которая существует между внешней и внутренней сторонами клеточной мембраны всех живых клеток. Относятся к транспортным белкам. С их помощью ионы перемещаются согласно их электрохимическим градиентам сквозь мембрану.

ИК состоят из белков сложной структуры. Белки ИК имеют определённую конформацию, образующую трансмембранную пору, и "вшиты" в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах по-отдельности и затем собираться в виде целостного канала. Домены - это отдельные компактно оформленные части канального белка или субъединиц. Сегменты - это части белкка-каналоформера, свёрнутые спирально и прошивающие мембрану. Практически все ИК имеют в составе своих субъединиц регуляторные домены , способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал-активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. ИК в своём составе могут иметь также вспомогательные субъединицы , выполняющие модуляторные, структурные или стабилизирующие функции. Один класс таких субъединиц - внутриклеточные, расположенные полностью в цитоплазме, а второй - мембранные, т.к. они имеют трансмембранные домены, прошивающие мембрану.

Свойства ионных каналов:

Селективность - это избирательная повышенная проницаемость ИК для определённых ионов. Для других ионов проницаемость понижена. Такая избирательность определяется селективным фильтром - самым узким местом канальной поры. Фильтр, кроме узких размеров, может иметь также локальный электрический заряд. Например, катион-селективные каналы обычно имеют в области своего селективного фильтра отрицательно заряженные остатки аминокислот в составе белковой молекулы, которые притягивают положительные катионы и отталкивают отрицательные анионы, не пропуская их через пору.

Управляемая проницаемость -- это способность открываться или закрываться при определённых управляющих воздействиях на канал.

Инактивация -- это способность ионного канала через некоторое время после своего открытия автоматически понижать свою проницаемость даже в том случае, когда открывший их активирующий фактор продолжает действовать.

Блокировка -- это способность ионного канала под действием веществ-блокаторов фиксировать какое-то одно своё состояние и не реагировать на обычные управляющие воздействия. Блокировку вызывают вещества-блокаторы, которые могут называться антагонистами, блокаторами или литиками.

Пластичность -- это способность ионного канала изменять свои свойства, свои характеристики. Наиболее распространённый механизм, обеспечивающий пластичность -- этофосфорилирование аминокислот канальных белков с внутренней стороны мембраны ферментами-протеинкиназами .

Работа ионных каналов:

Лиганд-зависимые ионные каналы

Эти каналы открываются, когда медиатор, связываясь с их наружными рецепторными участками, меняет их конформацию. Открываясь, они впускают ионы, изменяя этим мембранный потенциал. Лиганд-зависимые каналы почти нечувствительны к изменению мембранного потенциала. Они генерируют электрический потенциал, сила которого зависит от количества медиатора, поступающего в синаптическую щель и времени, которое он там находится.

Потенциал-зависимые ионные каналы

Эти каналы отвечают за распространение потенциала действия, они открываются и закрываются в ответ на изменение мембранного потенциала. Например, натриевые каналы. Если мембранный потенциал поддерживается на уровне потенциала покоя, натриевые каналы закрыты и натриевый ток отсутствует. Если мембранный потенциал сдвигается в положительную сторону, то натриевые каналы откроются, и в клетку начнут входить ионы натрия по градиенту концентрации. Через 0,5 мс после установления нового значения мембранного потенциала, этот натриевый ток достигнет максимума. А еще через несколько миллисекунд падает почти до нуля. Это значит, что каналы через некоторое время закрываются вследствие инактивации, даже если клеточная мембрана остается деполяризованной. Но закрывшись, они отличаются от состояния, в котором находились до открытия, теперь они не могут открываться в ответ на деполяризацию мембраны, то есть они инактивированны. В таком состоянии они останутся до тех пор, пока мембранный потенциал не вернется к исходному значению и не пройдет восстановительный период, занимающий несколько миллисекунд.

Ионные каналы образованы белками, они весьма разнообразны по устройству и механизму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управляемого ионного канала обычно длится около 1 мс, иногда до 3 мс и значительно больше, при этом через один канал может пройти 12--20 млн ионов.

Классификация ионных каналов проводится по нескольким признакам.

По возможности управления их функцией различают управляемые и неуправляемые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

По скорости движения ионов каналы могут быть быстрыми и медленными. Например, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с быстрыми каналами для Nа+ и К+ важную роль играют медленные каналы -- кальциевые, калиевые и натриевые.

В зависимости от стимула, активирующего или инактивирующего, управляемые ионные каналы различают несколько их видов:

  • а)потенциалчувствительные,
  • б)хемочувствительные,
  • в)механочувствительные,
  • г)кальцийчувствительные,
  • д) каналы, чувствительные ко вторым посредникам.

Последние расположены во внутриклеточных мембранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить открытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д -- это биологически активное вещество или фармакологический препарат, активирующий или блокирующий рецептор. Открытие хемочувствительных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых каналов открываются и закрываются при изменении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие электрический заряд. Механочувствительные каналы активируются и инактивируются сдавливанием и растяжением. Кальцийчувствительные каналы активируются, как видно из названия, кальцием, причем Са2+ может активировать как собственные каналы, например Са-каналы саркоплазматического ретикулума, так и каналы других ионов, например каналы ионов К+. Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные каналы. Следует заметить, что кальций-чувствительные каналы -- это один из примеров хемочувствительных каналов.

В зависимости от селективности различают ионоселективные каналы, пропускающие только один ион, и каналы, не обладающие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть каналы, пропускающие несколько ионов, например Nа+, К+ и Са2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нервно-мышечном синапсе активируются ионные каналы, через которые проходят одновременно ионы Nа+, К+ и Са2+. Механочувствительные каналы являются вообще неселективными для одновалентных ионов и Са2+.

Один и тот же ион может иметь несколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К+:

  • а) неуправляемые каналы покоя (каналы утечки) через которые К+ постоянно выходит из клетки, что является главным фактором в формировании мембранного потенциала(потенциала покоя);
  • б) потенциалчувствительные управляемые К-каналы;
  • в) К-каналы, активируемые Са2+;
  • г) каналы, активируемые и другими ионами и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца.

Каналы для Nа+ -- управляемые быстрые и медленные и неуправляемые (каналы утечки ионов):

  • а) потенциалчувствительные быстрые Na-каналы -- быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа+ в клетку во время ее возбуждения;
  • б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мышечном синапсе, глутаматом -- в синапсах нейронов ЦНС;
  • в) медленные неуправляемые Nа-каналы--каналы утечки, через которые Nа+ постоянно диффундирует в клетку и пере носит с собой другие молекулы, например глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа+ в формировании мембранного потенциала.

Каналы для Са2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и быстрые:

  • а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембраны, обусловливают медленный вход Са2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС;
  • б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са2+ в гиалоплазму и электромеханическое сопряжение.

Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в небольшом количестве в нейронах и сконцентрированы в синапсах. Потенциалуправляемые С1-каналы имеются в кардиомиоцитах, рецепторуправляемые в синапсах ЦНС и активируются тормозными медиаторами ГАМК и глицином.

Структура ионных каналов и их функционирование. Каналы имеют устье и селективный фильтр, а управляемые каналы -- и воротный механизм; каналы заполнены жидкостью, их размеры 0,3--0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Эти частицы имеют заряд, противоположный заряду иона, который они притягивают, что обеспечивает проход иона через данный канал (одноименные заряды, как известно, отталкиваются). Через ионные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диаметр иона Nа+, например, с гидратной оболочкой равен 0,3 нм, а без гидратной оболочки -- 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеивания» не в состоянии объяснить, например, почему К+ не проходит через открытые Nа-каналы в начале цикла возбуждения клетки, но тем не менее она дает удовлетворительное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (селективной) проницаемости клеточных мембран для разных частиц и ионов.

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых каналов способствует активации рядом расположенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Частичная деполяризация клеточной мембраны за счет активации механочувствительных каналов может привести к активации потенциалчувствительных каналов Nа+, К+ (или Cl-) и Са2+.

Ионные каналы блокируются специфическими веществами и фармакологическими препаратами, что широко используется с лечебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхолином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые -- двухвалентными ионами, например ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успешное изучение ионных каналов дает возможность глубже понять механизм действия фармакологических препаратов, а значит, более успешно применять их в клинической практике. Новокаин, например, как местный анестетик снимает болевые ощущения потому, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волокнам.

Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществляется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает переход других, о чем свидетельствуют многие факты.

В процессе работы Nа/К-насоса энергия расходуется на перенос Na+ из клетки в окружающую ее среду, тогда как перенос К+ в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К+ к активному ее участку.

Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и распространение возбуждения.

Процесс перехода воды из одной области в другую, согласно закону осмоса, обеспечивает транспорт всех частиц, растворенных в ней и способных пройти через биологические фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на перенос частиц, растворенных в воде, которые следуют вместе с водой.

Натрийзависимый транспорт (транспорт неэлектролитов) требует затрат энергии на перенос Nа+ из клетки, но при этом часто диффузия Nа+ в клетку обеспечивает перемещение мембранных переносчиков, соединенных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа+ (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-переносчиков, которые в свою очередь транспортируют ионы Са2+, Н+ из клетки (противотранспорт, антипорт) согласно концентрационному градиенту переносчиков.

Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энергии.

Диффузия газов в легких между воздухом и кровью, а также в тканях между кровью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организма и легких. Диффузия веществ из кишечника, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту концентрации, на создание которого клетки организма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц -- в кишечнике) являются исключением, когда транспорт в организме осуществляется вообще без затраты энергии. Однако энергия расходуется на доставку этих веществ в организм -- дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе.

Энергия, затрачиваемая сердцем на движение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование.

Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа+, обеспечивает перенос подавляющего большинства веществ в организме.

Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирование мембранных потенциалов клеток мышечной и нервной тканей, одной из функций последней является регуляция различных систем организма.