Количество исз по годам начиная с. Сколько спутников находятся сейчас (2017 год) на геостационарной орбите

22.05.2019

Вы когда нибудь интересовались сколько спутников вращается вокруг Земли?

Первый искусственный спутник был выведен на орбиту земли 4 октября 1957 года. За годы освоения космоса в околоземном пространстве скопилось несколько тысяч летательных объектов

Над нашей головой пролетает 16 800 искусственных объектов, среди них 6000 спутников, остальные считаются космическим мусором - это разгонные блоки и обломки. Активно функционирующих аппаратов меньше - около 850 .

Долгожителем среди спутников считается AMSAT OSCAR-7, запущенный на орбиту 15 ноября 1974 года. Этот маленький аппарат (его вес -28,8 килограмма) предназначен для любительской радиосвязи. Самый крупный объект на орбите - Международная космическая станция (МКС). Ее масса - около 450 тонн.

Спутники, обеспечивающие связь сотовых операторов («Билайн», МТС и «Мегафон»), размещают на орбитах двух типов: низкой и геостационарной.

На низкой высоте, 780 километров от Земли, находится используемая мобильными операторами глобальная система связи «Иридиум». Идею ее создания предложила в 1980-х годах компания Motorola. Названием система обязана химическому элементу иридию: в ее составе должно было быть 77 аппаратов, что равно атомному номеру иридия. Сейчас в «Иридиуме» 66 спутников.

Геостационарная орбита расположена на высоте 35 786 километров над экватором. Размещать на ней спутники связи выгоднее, так как не нужно постоянно наводить антенну - аппараты вращаются вместе с Землей и всегда находятся над одной точкой. На геостационаре 178 спутников. Самая большая группа в России принадлежит ФГУП «Космическая связь»: 9 спутников серии «Экспресс» обеспечивают телерадиовещание, мобильную, а также правительственную и президентскую связь, Интернет. Также на геостационарной орбите размещаются метеорологические и спутники наблюдения. Метеорологические спутники фиксируют изменения в атмосфере, «наблюдатели» определяют степень созревания зерновых, степень засухи и прочее.

> Сколько спутников в космосе?

Узнайте, сколько искусственных спутников находится в космосе : история космических исследований, запуск первого спутника, количество на околоземной орбите.

4 октября 1957 года стартовала космическая эра с запуском первого спутника «Спутник-1». Ему было суждено провести на орбите 3 месяца и сгореть в атмосфере. С того момента в космос отправляли множество аппаратов: земная орбита, Луна, вокруг Солнца, других планет и даже за пределы Солнечной системы. Сколько спутников в космосе? Только на Земной орбите вращается 1071 операционных спутников, 50% из которых представлено разработками США.

Половина спутников расположена на низкой околоземной орбите (несколько сотен км). Среди них Международная космическая станция, космический телескоп Хаббл и спутники наблюдения. Определенная часть находится на средней околоземной орбите (20000 км) – спутники, используемые для навигации. Небольшая группа выходит на эллиптическую орбиту. Остальные вращаются по геостационарной орбите (36000 км).

Если бы могли видеть их невооруженным глазом, то они показались бы статичными. Наличие их на определенной географической области обеспечивает коммуникационную стабильность, беспрерывность трансляций и осуществление метеорологических наблюдений.

Но это не весь список. Вокруг планеты вращается множество искусственных объектов. Среди этого космического мусора заметны ускорители, неактивные спутники и даже детали кораблей и костюмов. Было подсчитано, что на орбите находится примерно 21000 объектов, больше 10 см (малая часть – операционные спутники). 500000 обломков достигают размера 1-10 см.

Орбита Земли настолько сильно переполнена мусором, что Международной космической станции приходится перемещаться, чтобы избежать опасных столкновений. Ученые переживают, что в недалеком будущем эти осколки станут серьезной угрозой для космических запусков. Получится так, что мы просто закроем себя от всего пространства слоем металлических деталей.

Вокруг Луны также расположено несколько спутников. Кроме того, один корабль находится возле Меркурия, один на Венере, 3 на Марсе и один возле Сатурна. Солнце также не одиноко, хотя они расположены там на расстоянии, которое не допускает разрушения. В 2013 году Вояджер покинул солнечную гелиосферу и вышел в межзвездную среду.

Удивительно, как много аппаратов мы смогли отправить за больше чем полвека. Все эти миссии позволили расширить знания о пространстве, и вскоре неприветливый далекий космос раскроет свои тайны. Посетите нашу страницу с 3D-моделью космического мусора, где можно узнать, сколько спутников в космосе находится сейчас, а также изучить проблему с наличием мусора на земной орбите.

Подобно тому, как места в театре позволяют по-разному взглянуть на представление, различные орбиты спутников дают перспективу, каждая из которых имеет свое назначение. Одни кажутся висящими над точкой поверхности, они обеспечивают постоянный обзор одной стороны Земли, в то время как другие кружат вокруг нашей планеты, за день проносясь над множеством мест.

Типы орбит

На какой высоте летают спутники? Различают 3 типа околоземных орбит: высокие, средние и низкие. На высокой, наиболее удаленной от поверхности, как правило, находятся многие погодные и некоторые спутники связи. Сателлиты, вращающиеся на средней околоземной орбите, включают навигационные и специальные, предназначенные для мониторинга конкретного региона. Большинство научных космических аппаратов, в том числе флот системы наблюдения за поверхностью Земли НАСА, находится на низкой орбите.

От того, на какой высоте летают спутники, зависит скорость их движения. По мере приближения к Земле гравитация становится все сильнее, и движение ускоряется. Например, спутнику НАСА Aqua требуется около 99 минут, чтобы облететь вокруг нашей планеты на высоте около 705 км, а метеорологическому аппарату, удаленному на 35 786 км от поверхности, для этого потребуется 23 часа, 56 минут и 4 секунды. На расстоянии 384 403 км от центра Земли Луна завершает один оборот за 28 дней.

Аэродинамический парадокс

Изменение высоты спутника также изменяет его скорость движения по орбите. Здесь наблюдается парадокс. Если оператор спутника хочет повысить его скорость, он не может просто запустить двигатели для ускорения. Это увеличит орбиту (и высоту), что приведет к уменьшению скорости. Вместо этого следует запустить двигатели в направлении, противоположном направлению движения спутника, т. е. совершить действие, которое на Земле бы замедлило движущееся транспортное средство. Такое действие переместит его ниже, что позволит увеличить скорость.

Характеристики орбит

В дополнение к высоте, путь движения спутника характеризуется эксцентриситетом и наклонением. Первый относится к форме орбиты. Спутник с низким эксцентриситетом движется по траектории, близкой к круговой. Эксцентричная орбита имеет форму эллипса. Расстояние от космического аппарата до Земли зависит от его положения.

Наклонение - это угол орбиты по отношению к экватору. Спутник, который вращается непосредственно над экватором, имеет нулевой наклон. Если космический аппарат проходит над северным и южным полюсами (географическими, а не магнитными), его наклон составляет 90°.

Все вместе - высота, эксцентриситет и наклонение - определяют движение сателлита и то, как с его точки зрения будет выглядеть Земля.

Высокая околоземная

Когда спутник достигает ровно 42164 км от центра Земли (около 36 тыс. км от поверхности), он входит в зону, где его орбита соответствует вращению нашей планеты. Поскольку аппарат движется с той же скоростью, что и Земля, т. е. его период обращения равен 24 ч, кажется, что он остается на месте над единственной долготой, хотя и может дрейфовать с севера на юг. Эта специальная высокая орбита называется геосинхронной.

Спутник движется по круговой орбите прямо над экватором (эксцентриситет и наклонение равны нулю) и относительно Земли стоит на месте. Он всегда расположен над одной и той же точкой на ее поверхности.

Орбита «Молния» (наклонение 63,4°) используется для наблюдения в высоких широтах. Геостационарные спутники привязаны к экватору, поэтому они не подходят для дальних северных или южных регионов. Эта орбита весьма эксцентрична: космический аппарат движется по вытянутому эллипсу с Землей, расположенной близко к одному краю. Так как спутник ускоряется под действием силы тяжести, он движется очень быстро, когда находится близко к нашей планете. При удалении его скорость замедляется, поэтому он больше времени проводит на вершине орбиты в самом дальнем от Земли краю, расстояние до которого может достигать 40 тыс. км. Период обращения составляет 12 ч, но около двух третей этого времени спутник проводит над одним полушарием. Подобно полусинхронной орбите сателлит проходит по одному и тому же пути через каждые 24 ч. Используется для связи на крайнем севере или юге.

Низкая околоземная

Большинство научных спутников, многие метеорологические и космическая станция находятся на почти круговой низкой околоземной орбите. Их наклон зависит от того, мониторингом чего они занимаются. TRMM был запущен для мониторинга осадков в тропиках, поэтому имеет относительно низкое наклонение (35°), оставаясь вблизи экватора.

Многие из спутников системы наблюдения НАСА имеют почти полярную высоконаклонную орбиту. Космический аппарат движется вокруг Земли от полюса до полюса с периодом 99 мин. Половину времени он проходит над дневной стороной нашей планеты, а на полюсе переходит на ночную.

По мере движения спутника под ним вращается Земля. К тому времени, когда аппарат переходит на освещенный участок, он находится над областью, прилегающей к зоне прохождения своей последней орбиты. За 24-часовой период полярные спутники покрывают большую часть Земли дважды: один раз днем и один раз ночью.

Солнечно-синхронная орбита

Подобно тому как геосинхронные спутники должны находиться над экватором, что позволяет им оставаться над одной точкой, полярно-орбитальные имеют способность оставаться в одном времени. Их орбита является солнечно-синхронной - при пересечении космическим аппаратом экватора местное солнечное время всегда одно и то же. Например, спутник Terra пересекает его над Бразилией всегда в 10:30 утра. Следующее пересечение через 99 мин над Эквадором или Колумбией происходит также в 10:30 по местному времени.

Солнечно-синхронная орбита необходима для науки, так как позволяет сохранять солнечного света на поверхность Земли, хотя он будет меняться в зависимости от сезона. Такое постоянство означает, что ученые могут сравнивать изображения нашей планеты одного времени года в течение нескольких лет, не беспокоясь о слишком больших скачках в освещении, которые могут создать иллюзию изменений. Без солнечно-синхронной орбиты было бы сложно отслеживать их с течением времени и собирать информацию, необходимую для изучения изменений климата.

Путь спутника здесь очень ограничен. Если он находится на высоте 100 км, орбита должна иметь наклон 96°. Любое отклонение будет недопустимым. Поскольку сопротивление атмосферы и сила притяжения Солнца и Луны изменяют орбиту аппарата, ее необходимо регулярно корректировать.

Выведение на орбиту: запуск

Запуск спутника требует энергии, количество которой зависит от расположения места старта, высоты и наклона будущей траектории его движения. Чтобы добраться до удаленной орбиты, требуется затратить больше энергии. Спутники со значительным наклоном (например, полярные) более энергозатратны, чем те, которые кружат над экватором. Выведению на орбиту с низким наклоном помогает вращение Земли. движется под углом 51,6397°. Это необходимо для того, чтобы космическим челнокам и российским ракетам было легче добраться до нее. Высота МКС - 337-430 км. Полярные спутники, с другой стороны, от импульса Земли помощи не получают, поэтому им требуется больше энергии, чтобы подняться на такое же расстояние.

Корректировка

После запуска спутника необходимо приложить усилия, чтобы удержать его на определенной орбите. Поскольку Земля не является идеальной сферой, ее гравитация в некоторых местах сильнее. Эта неравномерность, наряду с притяжением Солнца, Луны и Юпитера (самой массивной планеты Солнечной системы), изменяет наклон орбиты. На протяжении всего своего срока службы положение спутников GOES корректировалось три или четыре раза. Низкоорбитальные аппараты НАСА должны регулировать свой наклон ежегодно.

Кроме того, на околоземные спутники оказывает воздействие атмосфера. Самые верхние слои, хотя и достаточно разрежены, оказывают достаточно сильное сопротивление, чтобы притягивать их ближе к Земле. Действие силы тяжести приводит к ускорению спутников. Со временем они сгорают, по спирали опускаясь все ниже и быстрее в атмосферу, или падают на Землю.

Атмосферное сопротивление сильнее, когда Солнце активно. Так же, как воздух в воздушном шаре расширяется и поднимается при нагревании, атмосфера поднимается и расширяется, когда Солнце дает ей дополнительную энергию. Разреженные слои атмосферы поднимаются, а их место занимают более плотные. Поэтому спутники на орбите Земли должны изменять свое положение примерно четыре раза в год, чтобы компенсировать сопротивление атмосферы. Когда солнечная активность максимальна, положение аппарата приходится корректировать каждые 2-3 недели.

Космический мусор

Третья причина, вынуждающая менять орбиту - космический мусор. Один из коммуникационных спутников Iridium столкнулся с нефункционирующим российским космическим аппаратом. Они разбились, образовав облако мусора, состоящее из более чем 2500 частей. Каждый элемент был добавлен ​​в базу данных, которая сегодня насчитывает свыше 18000 объектов техногенного происхождения.

НАСА тщательно отслеживает все, что может оказаться на пути спутников, т. к. из-за космического мусора уже несколько раз приходилось менять орбиты.

Инженеры отслеживают положение космического мусора и сателлитов, которые могут помешать движению и по мере необходимости тщательно планируют маневры уклонения. Эта же команда планирует и выполняет маневры по регулировке наклона и высоты спутника.

Над нашей головой пролетает 16 800 искусственных объектов, среди них 6000 спутников, остальные считаются космическим мусором — это разгонные блоки и обломки. Активно функционирующих аппаратов меньше — около 850.

Долгожителем среди спутников считается AMSAT OSCAR-7, запущенный на орбиту 15 ноября 1974 года. Этот маленький аппарат (его вес —28,8 килограмма) предназначен для любительской радиосвязи. Самый крупный объект на орбите — Международная космическая станция (МКС). Ее масса — около 450 тонн.

Спутники, обеспечивающие связь сотовых операторов («Билайн», МТС и «Мегафон»), размещают на орбитах двух типов: низкой и геостационарной.

На низкой высоте, 780 километров от Земли, находится используемая мобильными операторами глобальная система связи «Иридиум». Идею ее создания предложила в 1980-х годах компания Motorola. Названием система обязана химическому элементу иридию: в ее составе должно было быть 77 аппаратов, что равно атомному номеру иридия. Сейчас в «Иридиуме» 66 спутников.

Геостационарная орбита расположена на высоте 35 786 километров над экватором. Размещать на ней спутники связи выгоднее, так как не нужно постоянно наводить антенну — аппараты вращаются вместе с Землей и всегда находятся над одной точкой. На геостационаре 178 спутников. Самая большая группа в России принадлежит ФГУП «Космическая связь»: 9 спутников серии «Экспресс» обеспечивают телерадиовещание, мобильную, а также правительственную и президентскую связь, Интернет. Также на геостационарной орбите размещаются метеорологические и спутники наблюдения. Метеорологические спутники фиксируют изменения в атмосфере, «наблюдатели» определяют степень созревания зерновых, степень засухи и прочее.

Первый искусственный спутник Земли был запущен в космос 4 октября 1957 года. С того времени было совершено более 4600 запусков, в результате которых у Земли появилось около 6000 спутников, при этом подавляющее большинство из них было выведено на геостационарные (GEO - Geostationary Earth Orbit) и низкостационарные (LEO - Low Earth Orbit) околоземные орбиты. Несмотря на такое большое количество запущенных спутников, реально сегодня их эксплуатируется не больше тысячи. Но где же находятся остальные?

Космический мусор в масштабном количестве впервые появился 29 июня 1961 года, через 77 минут после выхода на орбиту ступени американской космической ракеты-носителя весом около 750 кг. Более 200 её фрагментов разлетелись по орбитам высотой от 300 до 2200 км. А сегодня на околоземных орбитах отслеживаются уже тонны фрагментов разнообразных разрушений в огромных количествах: размером от 10-15 сантиметров и больше - около 15 тысяч, сантиметровых, недоступных для постоянного контроля - несколько сот тысяч, а частичек миллиметрового размера - миллионы. Причины разрушения спутников самые разные - самоуничтожение по окончании срока эксплуатации, аварии, столкновения. Бывает, что и отработанные ступени ракет-носителей, которые по идее сразу должны падать на Землю в расчетное место после того, как выполнят свою задачу, годами летают вокруг Земли.

Примерно вот так выглядит космический мусор на околоземных орбитах. Художник специально для Европейского Космического Агентства (ESA) нарисовал эти рисунки. Вы можете рассмотреть их в хорошем разрешении на сайте Агентства. .

Самые низкие освоенные человеком орбиты используются аппаратами съемки поверхности Земли, метеонаблюдения и связи, пилотируемыми кораблями и станциями. Они летают на высотах от 300 до 2000 тысяч километров. Именно здесь находится примерно 70% космического мусора и его концентрация на самых «заселенных» высотах - от 900 до 1500 километров - достигла такой величины, что даже если сейчас прекратить все новые запуски спутников, то примерно с 2055 года количество вновь образующихся объектов мусора начнет превышать его убыль (так называемое «самоочищение»).

Космический мусор на LEO-орбитах. .

А вот на орбитах, расположенных в диапазонах от 2 до 6 и от 12 до 19 тысяч километров космических аппаратов практически нет, поскольку здесь расположены слои высокой радиации (радиационные пояса Земли). Находиться в аппаратах на этих орбитах теоретически можно и долгое время, но для этого их нужно защитить свинцовыми плитами - а ведь их тоже нужно как-то туда доставить, что трудно и дорого, а, значит, коммерчески необоснованно. А вот область высот между 6 и 12 тысячами километров потихоньку начинает «заселяться» - правда, спутники связи туда только-только начинают запускать.

Вид LEO-орбит при рассмотрении над Северным полюсом. .

Вид LEO-орбит при рассмотрении над экватором. .

Выше 22 тысяч км над Землей располагается «незаселенная» область космического пространства вплоть до орбит геостационарных спутников на высоте 32 000 - 40000 километров. На высоте 35800 км угловая скорость движения спутника равна угловой скорости движения находящейся под ними поверхности Земли, поэтому спутники движутся примерно над одной и той же областью на поверхности нашей планеты. Это делает GEO-орбиту идеальной орбитой для связи, так как нет необходимости сопровождать спутник, чтобы определить, куда направлять антенну. Наши спутниковые тарелки направляются на такой космический аппарат, и мы можем смотреть множество различных телепрограмм.

Моделирование взрыва на GEO-орбите. .

Что же происходит в космосе после взрыва? Геостационарный спутник имеет скорость порядка 11 км/сек. При скоростях выше этого порога (третья космическая скорость) космический мусор мог бы преодолеть земное притяжение и улететь с орбиты. Но топливный бак и персональный двигатель к каждой частичке космического мусора не прикрепить, поэтому он остается на орбите, вращается вокруг Земли и множится, множится, множится.

Моделирование взрыва на GEO-орбите. На второй день после взрыва. .

Сейчас на геостационарной орбите число работающих станций - примерно 350. Все они со временем превратятся в космический мусор, как превратились накопившиеся там бывшие в употреблении порядка тысячи старых объектов, размер которых больше 0,5 метра в поперечном сечении. Мелкого мусора, понятно, еще больше, но обнаруживать их труднее, хотя существует целая международная система слежения и за этими объектами.

Притяжение земли и центробежные силы влияют на геостационарные спутники. .

Преимущества движения спутников по GEO орбитам очевидны. Но есть и недостатки, и один из них - большое расстояние между спутником и земной поверхностью. Но достаточная мощность или достаточно большая антенна, тем не менее, позволяют преодолеть это ограничение. Более серьезное ограничение связано с тем, что имеется только одна геостационарная орбита, представляет более серьезное ограничение, значит, ограниченное количество мест, в которые геостационарные спутники могут быть помещены - это связано с тем, чтобы ограничить количество частот, предназначенных для связи, чтобы не было помех при приеме и передаче сигналов с разных спутников. Но есть некоторые силы, которые изменяют орбиты со временем. К примеру, поскольку геостационарная орбитальная плоскость не совпадает с плоскостью орбиты Земли (эклиптикой) или плоскостью орбиты Луны, гравитационное притяжение Солнца и Луны постепенно увеличивает орбитальное наклонение каждого спутника, чтобы переместить геостационарные спутники с их экваториальной орбиты.

Орбиты на высоте 19-22 тысячи километров от поверхности Земли. .

Здесь находятся спутники навигационных систем России и США (Глонасс и Навстар), и постепенно разворачиваются системы такого же рода для Европы (Галилео) и Китая (Компас). Навигаторы нового поколения по сигналам КА этих систем нам позволяют ориентироваться на местности, именно они устанавливаются в автомобилях, в такси - их может приобрести любой желающий.

Чтобы уменьшить риск столкновения, геостационарные спутники по окончании их космической миссии должны быть удалены из зоны GEO. .

Придать спутнику третью космическую скорость сегодня обходится в два раза дороже любого перемещения с одной GEO- орбиты на другую, и сегодня дополнительными двигателями оснащена примерно пятая часть космолетов. Чтобы осуществить такой подъем, нужно затратить столько топлива, сколько требуется спутнику на 3 месяца работы. Но можно «забрасывать» спутники не так далеко - подъем спутников на 300 км выше их рабочей орбиты позволяет перевести их на безопасное «кладбище», то есть орбита бы захламлялась, но сроки жизни работоспособных спутников продлевались бы и им реже требовалась бы замена, а, значит, пусть частично, но проблема мусора может решаться. Сегодня это единственная возможность сохранить уникальный ресурс GEO-орбит.

Однако, этот маневр возможен в том случае, если не только хватает топлива, но и не происходят незапланированные отказы и неисправности, вроде отказа связи или неисправностей в электропитании.

Отклонение GEO-спутника от первоначальной орбиты. .

Неидеальная, то есть некруговая форма земного экватора заставляет GEO-спутники медленно «стекать» к одной из двух точек устойчивого равновесия вдоль экватора, то есть к дрейфу назад и вперед относительно этих точек. Кроме того, долгосрочное влияние Солнца, Луны и Земли проявляется таким образом, что, если спутник израсходует топливо, постепенно орбитальная плоскость, на которой он будет вращаться вокруг Земли (хотя это происходит и не моментально) отклонится по отношению к первоначальной. По законам небесной механики плоскость орбиты прецессирует с периодом 52 года и амплитудой около 15°. А это означает угрозу другим геостационарным спутникам, поскольку дважды в день такой старый мусор будет пересекать их GEO-орбиту.

Корректировка орбиты спутника. .

Но дрейфует не только космический мусор. Работающий спутник не может перемещаться строго по расчетной орбите. По тем же причинам, что и мусор, GEO спутник постоянно уходит с идеальной орбиты, и необходимо компенсировать этот уход посредством периодического включения корректирующих двигателей, толкающих спутники в направлении «север-юг» и «восток-запад». Если бы наземные службы этого не делали, то все они в направлении «восток-запад» тоже бы «стекли» в две естественные природные «впадины» (105° западной и 75° восточной долготы). Из-за таких маневров орбита GEO- спутников не круговая, а слегка эллиптическая, и расстояние от центра Земли до спутника колеблется в течение суток. Эти колебания довольно значительные - по 10-20 и больше километров вверх-вниз от идеальной орбиты. На одной такой эллиптической орбите может находиться теоретически несколько спутников, но чтобы они не столкнулись ими нужно управлять так, чтобы они все время находились в противоположных точках этой орбиты. На практике из-за неизбежных ошибок при выполнении маневров спутников и невозможности суперточно определить относительную орбиту, спутники двигаются все-таки не по одинаковым траекториям и не совсем в фазе «один напротив другого», и сейчас это обычно не больше шести спутников в одном таком вот «окне допуска».

Варианты того, как могут выглядеть GEO-орбиты к 2112 году. .

Что будет, если космический мусор не «убирать» с GEO-орбит, уже понятно. Для LEO-высот самое страшное - это космический мусор, перетертый в пыль. Он может вращаться там тысячи лет, и, если такой пыли будет много, через неё эти тысячи лет нельзя будет пролететь. Поэтому убирать мусор на низких орбитах нужно сейчас, поскольку избавляться от крупных объектов - задача реальная, а избавиться от микропыли поможет только волшебник. По оценкам специалистов стоимость единицы такой «уборочной» техники обойдется раз в десять дороже, чем запуск одной ракеты-носителя типа «Протон». Даже если начинать их использовать сейчас, количество комического мусора к 2112 году увеличится, но, если всё пустить на самотек, и ничего не менять в космическом бизнесе, ситуация может стать неуправляемой.

Чтобы вновь запускаемые в космос спутники, и в том числе вот такой «уборщик» не стали сразу же новыми объектами космического мусора, уже сейчас ведется наблюдение, каталогизация летающих объектов на орбитах и моделирование ситуаций на разных высотах околоземного пространства с учетом прохождения Земли через многочисленные метеорные потоки, а также отслеживание наиболее опасных направлений прихода в околоземное пространство естественных космических объектов. Это сложная работа, требующая специальных техники и знаний. И всё же точность предсказаний таких ситуаций не может быть гарантировано высокой. Это связано с тем, что постоянно растет число пользователей космоса, появляются новые технологии, по которым для предсказаний пока просто не хватает статистики, это связано и с неопределенностью будущих взрывов и столкновений объектов на орбитах.

Процентное соотношение объектов на GEO-орбитах. .

По данным на декабрь 2004 года из 1124 известных объектов, находящихся на GEO-орбитах, 31% - это действующие спутники, 37 % - дрейфующие вокруг Земли объекты, 13% колеблются примерно около стабильно равновесных точек, 153 объекта по орбитам которых нет данных и 60 неидентифицированных (неопознанных) объектов.

12 февраля этого года на высоте 800 км над Сибирью столкнулись российский спутник, выведенный на орбиту в 1993 году, контролируемый, но не функционирующий, и американский, запущенный в 1997 году, обеспечивающий связь компании «Моторола» (система «Иридиум»). «Мы никак не ожидали столкновения. Но невозможно отследить движение всех объектов на орбите, и этот инцидент еще раз говорит о необходимости тесного сотрудничества между странами по вопросам космоса», - заявил Пентагон, признав свою ошибку в расчетах траектории и уточнив, что это первый случай столкновения на орбите неповрежденных спутников.

Между тем, напомним, что в апреле 2005 года американцами в космос был выведен корабль «Dart», который должен был встретиться с отработавшим военным спутником «Mublcom», чтобы провести проверку метода автономной стыковки. Оба агрегата, кстати, были неповрежденными объектами. В результате компьютерной ошибки навигация аппаратов была проведена с ошибками, они столкнулись, стали объектами поврежденными и, как объясняли американцы, оба должны были сгореть при входе в плотные слои атмосферы без особых сложностей. Так или иначе, обе эти ситуации незапланированные, и гарантий, что такого больше не повторится, быть не может.

Проблем в космосе хватает и без этого. На сегодня зафиксировано почти 200 взрывов космических объектов, и, вполне возможно, что часть из них связана со столкновениями с фрагментами космического мусора. Проверить и доказать это не всегда просто. Наши астрономы за последние 10 лет зафиксировали более 1000 непрогнозируемых изменений скорости дрейфа, опять же часть из них может объясняться столкновением с мелкими фрагментами.

Задача утилизации космических отходов должна решаться. .

В общем, как ни крути, тонны космического мусора - это реальная проблема. Как её решать в глобальном плане? Ученые стран, что-то делают уже сейчас, что-то придумывают на будущее. Главное, что всем ясно - это задача, дорогая, сложная, кстати, коммерчески выгодная, и всё же не та, решение которой можно отложить на послезавтра. Не стоит забывать, что несколько десятков спутников имеют на борту радиоактивные вещества. И уже сегодня известны два случая радиоактивного заражения поверхности Земли при падении таких аппаратов - в Антарктиде и Канаде.

Конечно, это не значит, что нужно закатывать глаза от страха и напряженно ждать, когда с нами произойдет что-то ужасное. Ученые нас пугают не только этим. Например, в статье «В 2012 году нас ждет Большой БУМ планеты Земля?» В. Берест поясняет суть двух теорий, появившихся не так давно и не имеющих статус официальных, но всё-таки созданным людьми весьма компетентными в своих областях - в физике и геологии - и задает вопрос: так ли беспочвенно волнение обывателей по поводу грустного прогноза календаря майя, если и серьезные специалисты считают, что во многом декабрь 2012 года может сделать проблему засорения космических орбит Земли в 2112 году несущественной по сравнению с той, что нам «светит»? Радует лишь то, что это только теории, которые никаких однозначных ответов на этот вопрос не дают, а лишь предсказывают события, которые могут произойти с определеной степенью вероятности -а это значит, что могут и не произойти. Так что не будем раньше времени переживать или опускать руки. Наоборот, закатаем рукава, и все, как один поймем, как это важно - не сорить в собственном доме, особенно, если этот дом - наша планета, такая хрупкая Земля.