Конструируем систему охлаждения компьютера.

15.08.2019

Прочитав название статьи, читатель может прийти в недоумение. Преобладающей тематикой сайта является моддинг. А тут рассказывают что-то про парокомпрессионные системы… Но, толкование самого термина — моддинг восходит к такому понятию как — модификация. Традиционно модификации касаются в основном внешнего вида компьютера. Но могут относиться и к конструкции. Одним из направлений модификаций является увеличения производительности компьютера. Этот вид моддинга неотделим от такого понятия как оверклокинг.

Оверклокинг(разгон) - повышение производительности компьютера путем повышения частоты работы процессора, видеокарты, памяти…

Не скрою, очень заманчиво купить младший в линейке процессор и разогнать его до, а может быть и выше уровня топового. Неплохая выходит экономия. Разница в цене почти в 800 вечнозеленых. А есть еще и видеокарта…

Но не так это все легко и красиво как кажется на первый взгляд. При работе процессора на повышенной частоте он выделяет большое количество тепла, которое необходимо отводить. А для устойчивой работы процессора на повышенных частотах, частенько приходится значительно увеличивать напряжение питания процессора. Что приводит к еще большему тепловыделению.

Конечно, имеются традиционные, воздушные системы охлаждения. Но с тепловыделением прилично разогнанного процессора они не всегда справляются. Есть жидкостные системы охлаждения. Их эффективность повыше воздушных. Но с экстремально разогнанным процессором не в силах справиться и они.

Как быть? Как с этим теплом бороться? Может быть изготовить холодильник для процессора? На первый взгляд безумная идея. Но нет. Несколько лет назад появились такие системы охлаждения, основанные на принципе фазового перехода(Direct Die).

На сегодняшний день это самые эффективные системы охлаждения, способные работать в режиме 247 и охлаждать до -60 градусов Цельсия. Существуют еще ряд способов заморозить процессор. Сухой лед, жидкий азот… Такие способы имеют серьезные недостатки, препятствующие широкому их применению. Основной недостаток — невозможность работать в режиме 247. Поэтому в рамках этой статьи они рассмотрены не будут. Опять же Direct Die системы самые экономичные.

Выпускается ряд серийных решений — Direct Die систем. Но они труднодоступны и цена на них в большинстве случаев просто фантастическая.

Поэтому многие энтузиасты предпочитают изготавливать подобные системы самостоятельно. Выходит ощутимо дешевле, и частенько случается что эффективнее.

Вот мы и подошли к теме статьи - изготовлению системы криогенного охлаждения для компьютера в домашних условиях. Целью написания статьи является освещение собственно процесса изготовления системы охлаждения на примерах устройств сделанных автором. Аспекты разгона с помощью этих систем рассматриваться не будут. Это слишком обширная тема и она выходит за рамки данной статьи.

Перед тем как идти дальше нужно сказать пару обязательных фраз. Несмотря на то, что статья содержит подробную информацию по самостоятельному изготовлению системы охлаждения основанную на принципе фазового перехода, она не является руководством к действию. Автор не несет ответственности за поврежденное вами оборудование и возможный вред, причиненный вашему здоровью. Все решения вы принимаете самостоятельно и действуете на свой страх и риск.

Статья разбита на части. Название каждой части это вопрос, который может возникнуть, если вы все-таки решитесь пойти по этому пути. А ниже я постараюсь дать подробнейший ответ на поставленный вопрос. Поехали?

1. Для чего это надо?

Ответ прост. Вы получаете возможность купить младшую модель процессора и разогнать ее до уровня топовой. А возможно и выше. Разница в цене младшего и старшего процессора такова, что ваша система довольно быстро себя оправдает.

Но все это звучит как-то приземленно и меркантильно. А что если поставить вопрос немного иначе. Сколько ваших друзей могут похвастаться криогенной системой охлаждения компьютера?

Достоинства системы:

1.Разгон сверх традиционных методов. На данном этапе это дополнительные 500Мгц сверх максимального разгона "на воздухе"

2.Уровень шума издаваемого системой не выше уровня шума высокопроизводительного воздушного кулера. А случается и ниже.

Недостатки системы:

1.Цена фреоновой системы охлаждения на много выше чем воздушных или жыдкостных куллеров.

2.Сложность изготовления.

3.Необходимость приобретения спец инструмента.

Какие температуры реально получить, используя однокаскадную систему фреонового охлаждения?

Температуры, которые можно получить это от -35 °Сдо -60 °С, в зависимости от мощности компрессора и точности регулировки системы. При температурах

60°С и ниже начинает замерзать масло в капилляре. Механизм компрессора расположен в закрытом герметичном корпусе наполненным на определенный уровень маслом. Компрессор работает, разбрызгивает при этом масло и этим маслом сам себя смазывает и охлаждает. Лишнее масло стекает в низ корпуса. И выдает компрессор масляно-фреоновую смесь. Фреон вместе с маслом циркулирует по всей системе. Температура замерзания масла как раз находится в пределах -60градусов. Это масло и начинает замерзать в капилляре. Установка начинает работать циклически. Минус 60, замерзание масла, капилляр забивается, система перестает работать, температура повышается, капилляр оттаивает, и система начинает работать снова.

2. Как это работает?

Система фазового перехода состоит из замкнутого контура с набором стандартных элементов. Компрессор, конденсор(конденсатор), фильтр, капилляр, испаритель. Компрессор нагнетает газообразный фреон в конденсатор. Там он охлаждается и переходит в жидкую фазу. При этом выделяется тепло, которое рассеивает конденсатор. Далее стоит фильтр для предотвращения попадания в капилляр влаги и случайного мусора, который может закупорить его.

После фильтра фреон поступает в капилляр (дросселирующий элемент). Капилляр разделяет контур системы на две зоны. Высокого давления (движется жидкий фреон) и низкого давления (движется газообразный фреон). Пройдя через капилляр, жидкий фреон попадает в область низкого давления (испаритель) и начать кипеть. При этом, поглощается большое количество тепла. Подача фреона через капиллярную трубку должна быть точно дозированна. Фреона должно поступать строго определенное количество, необходимое для охлаждения. При излишней подаче, фреон не будет выкипать полностью в испарителе и может по всасывающей трубке попасть в компрессор, что может привести к выходу его из строя. При недостаточной подаче - недостаточная холодильная мощность.

3.Из чего все это собрать и сколько это стоит? Какие потребуются инструменты и расходные материалы?

Первый вопрос, который обычно возникает у среднестатистического читателя - сколько стоит фреонка? Вопрос на первый взгляд простой и обоснованный. Но сродни вопросу - а сколько стоит автомобиль? Тут же возникает масса встречных вопросов. А какой автомобиль? Грузовой или легковой? Отечественный или иномарка? Бизнес класс или представительский?

Так и с парокомпрессионной системой. На вопрос — сколько стоит, нельзя сразу дать однозначный ответ. А нужно сначала определиться с целью, для которой будет делаться система. Подобрать комплектующие и инструмент. Сложить их цену "столбиком". Только тогда мы сможем получить ответ на этот животрепещущий вопрос. Идем дальше.

Комплектующие. Материалы

1. Компрессор. Сердце системы. Новый стоит от 35$. Высокопроизводительный, известной марки 170-300$.

Перед тем как выбирать компрессор, определимся сначала с количеством испарителей. Фреоновую систему можно собрать с одним и двумя испарителями. Один испаритель на центральный процессор, а другой на графический процессор видеокарты. Вариант с двумя испарителями имеет серьезные недостатки. В такой системе фреон идущий из конденсора делится на два потока и по двум капиллярам идет к двум испарителям. Допустим, вы смогли сделать так, что фреон равномерно распределяется между двумя испарителями.

Если тепловая нагрузка на обоих испарителях одинакова или близка, то ничего страшного не произойдет. Предположим, произойдет так, что нагрузка на центральный процессор велика, а на графический нет. Большее количество тепла, отдаваемое центральным процессором заставит более активно кипеть фреон в испарителе. А в испарителе графического процессора это будет происходить в меньшей степени. Давление в первом испарителе будет больше. А во втором меньше. В результате фреон будет поступать в испаритель с меньшим давлением. То есть в менее нагруженный. И выходит, что в менее нагруженный испаритель поступает большее количество фреона. А в более нагруженный меньше. Ситуация начинает все более и более усугубляться. Получается, что ненагруженный испаритель будет намного холоднее нагруженного! И эта разница может достигать значительной величины. В результате процессор перегревается.

Вывод система с двумя испарителями хорошо подходит только для систем с одинаковой тепловой нагрузкой. Например, для двух видеокарт работающих в режиме SLI. И опасна при работе на процессор и видеокарту.

Остановимся пока на системе с одним испарителем.

Выбираем тип фреона.

А теперь нужно определиться с фреоном, который будем использовать в системе. Оптимальным со всех сторон является фреон R-22. Это самый дешевый и доступный из всех видов фреонов. R-22 кипит при атмосферном давлении при температуре -41. Этот фреон еще хорош тем, что он совместим по маслу с компрессорами, работающими на фреонах R-12 и R-404.

Другими словами этим фреоном можно заправлять компрессоры, рассчитанные на эксплуатацию с R-12 и R-404 фреонами. Компрессоры на R-12 можно добыть из старого ненужного холодильника. Но они заведомо имеют небольшую мощность 70-170 Вт при -15. И систему приемлимой производительности изготовить из такого компрессора не удастся.

Вообще один из самых часто задаваемых вопросов - почему бы просто не поместить компьютер в морозилку? Ответ прост. Это не даст такого прироста производительности. Этим способом не удастся получить достаточно низкую температуру на процессоре. И главное - морозильники не рассчитаны на такой уровень хладопроизводительности. И поэтому просто выйдут из строя через небольшой промежуток времени.

Можно купить компрессор, рассчитанный на работу с R-404 фреоном. Эти компрессоры работают с более высоким давлением, чем те, что рассчитаны на работу с 22-ым. Такой компрессор заправлен синтетическим маслом, совместимым практически со всеми газами и смесями, теоретически в нем применены более качественные комплектующие. Но и стоит он дороже компрессора R-22.

Конечно используя компрессор рассчитанный на 404-ый фреон, да еще и заправив систему 404-м можно получить более низкие температуры, чем используя 22-ой. Но 404-ый стоит в несколько раз дороже 22-го.

Для построения системы необходим поршневой, герметичный компрессор. Компрессоры выпускаются двух видов. Для монтажа методом пайки и развальцовки. Удобнее компрессоры, рассчитанные под пайку.

Выбираем мощность и марку компрессора.

А теперь определимся с мощностью компрессора. Но для этого сначала прикинем тепловыделение процессора. Современные процессоры при работе выделяют 70-110 Вт тепла. При серьезном разгоне с повышением напряжения питания эта цифра возрастает до 200 - 250 Вт.

Для информации приведу характеристики некоторых серийных систем:

VapoChill Extreme Edition XE II имеет следующие характеристики - при нагрузке 180Вт температура испарителя -18 , без нагрузки -44

VapoChill LightSpeed ™ — при нагрузке 200Вт температура испарителя -33 , без нагрузки -50

Последняя является одной из самых мощных выпускаемых на данный момент систем. Итак, выбирать вам. Помощнее и подороже. Будет немного более шумно но и разгон повыше. Или подешевле и попроще.

Наилучшими для изготовления Direct Die системы, считаются компрессоры Danfoss. Все серийные решения выпускаются именно на компрессорах этой фирмы. На втором месте идут компрессоры Aspera. Они же считаются самыми бесшумными. Эти две марки являются самыми популярными среди фанатов фреонового охлаждения всего мира.

Еще немного о мощности. С одной стороны лучше выбрать более мощный компрессор, у него более высокая хладопроизводительность, с его помощью можно получить более низкую температуру под более мощной нагрузкой. Он меньше греется. Но с другой стороны - чем мощнее компрессор, тем сильнее он шумит. Необходимо выбрать для себя оптимальное соотношение между шумом и производительностью. Нужно сразу определиться, что вы хотите. Более мощную, но шумную систему. Или разумно достаточную, но более тихую.

Основной характеристикой компрессора является хладопроизводительность. Она указывается в Ваттах при температуре -25. Следует учитывать, что при температуре -40 эта цифра уменьшится почти вдвое.

Выбирать будем из учета 150-250Вт на испаритель. А при -25или -40 нужно решать самому.

Приведу марки популярных компрессоров, мощностью близкой к выбранной, работающих на R-22. Есть и аналогичные на R 404.

215Вт при -25

Aspera E 2134Е,

300 Вт при -25

450Вт при -25

550Вт при -25

325Вт при -25

415Вт при-25

Danfoss SC15CМ, 510Вт при -25

Danfoss SC18CМ,

585Вт при -25

Скажу только, что компрессоры «младших» марок в списке практически не шумят. А «старшие» шумят ощутимо.

Естественно Aspera и Danfoss не единственные в мире, и свет клином на них не сошелся. Есть еще и Electrolux, Tecumseh, Turk Elektrik, Panasonic и еще Холодмаш. Это тоже очень неплохие агрегаты, хотя «холодмаш» довольно шумные. И, в конце концов, можно поступить так, придти в магазин и попросить продавца порекомендовать тихий компрессор хладопроизводительностью 200-500Вт при температуре -25

Для более получения более подробной информации можно посетить сайты производителей компрессоров. Или посмотреть ссылки приведенные в конце статьи.

Определяем где у компрессора нагнетающяя трубка, а где всасывающя.

Мы выбрали компрессор. Теперь рассмотрим его поближе. Обтекаемый черный корпус на основании, из которого выходят три трубки. Обычно это три трубки. Бывает у компрессоров большой мощности пять. Две дополнительные - масляное охлаждение. Но мы рассматривать этот случай не будем, ввиду его большой редкости.

Две трубки большего диаметра - всасывающие. Одна диаметром поменьше - нагнетающая. На одну из всасывающих трубок (на какую удобнее) припаивается клапан Шредера, для заправки системы. К другой припаивается всасывающая трубка идущая от испарителя. К более тонкой (нагнетающей), припаивается трубка идущая к конденсору. К ней же, через тройник обычно припаивают клапан Шредера, для контроля давления на линии нагнетания.

Как подключить компрессор к электрической сети. Электрические схемы включения компрессоров

Если вы купили новый компрессор, то проблем с подключением его к электросети у вас не будет. Снимаете крышку пускозащитного реле и смотрите на ее обратную сторону. На ней нарисована схема подключения. Для подключения компрессора подойдет любой провод сечением не менее 0,75 квадратных миллиметров.

Но если вы где-то раздобыли бывший в употреблении компрессор, у вас могут возникнуть сложности с подключением. Приведу несколько типовых схем включения компрессоров. Реле и конденсаторы можно приобрести в магазинах торгующих холодильной техникой.

Как проверить имеющийся в наличии БУ компрессор

Предположим у вас есть бывший в употреблении компрессор. Но вы не знаете, исправен он или нет. Это можно легко проверить. Для этого понадобиться прибор — мультиметр.

Сначала снимаем крышку пускозащитного реле и само реле. Потом замеряем сопротивление между выходящими из компрессора контактами. Оно должно быть примерно таким: между правым и левым контактом — 30 Ом; между правым и верхним — 15 Ом; между левым и верхним — 20 Ом.

Если полученные цифры сильно отличаются от указанных, то можно предположить, что компрессор неисправен. Точнее определить неисправность, можно только замерив потребляемый компрессором ток. Если на какой-нибудь паре контактов прибор покажет обрыв, то компрессор неисправен

Затем замеряем сопротивление между контактами и кожухом компрессора. Для этого подсоединяем один щуп прибора к каждому из контактов, а другой щуп к медной части одного из штуцеров мотора.

Прибор должен показывать обрыв. Если прибор покажет какое-нибудь сопротивление — компрессор неисправен.

Если неисправностей электрической части компрессора обнаружено не было, проверяем его на давление. Для этого подключаем к штуцеру нагнетания имитатор (шланг с отводом из капиллярной трубки), подключаем к имитатору манометр, запускаем компрессор и замеряем давление по манометру.

Если манометр показал давление больше 6 атмосфер, и давление продолжает повышаться, немедленно отключите компрессор. Иначе можете повредить манометр. Это значит, что компрессор находиться в очень хорошем состоянии.

Если сопротивление обмоток не отличается от нормы, а компрессор не запускается, и есть подозрение на неисправность пускозащитного реле, можно попробовать запустить мотор "напрямую", т.е. минуя реле.

ВНИМАНИЕ! Напряжение 220В опасно для жизни. Если Вы не имеете опыта работы с электрическими цепями, то эту проверку лучше доверить специалисту.

Изготавливаем шнур для подключения мотора и подключаем через него компрессор, как показано на схеме:

Выключатель можно не ставить, но тогда после запуска мотора необходимо отсоединить провод от пусковой обмотки. На компрессорах горизонтального типа левый контакт — общий, правый верхний — рабочая обмотка, правый нижний — пусковая обмотка.

2. Конденсатор — радиатор с вентилятором. Один конденсатор, без вентилятора от 35$. Можно купить в сборе с вентилятором. Можно и без вентилятора и придумать что-то самому.

Какой использовать конденсатор?

Конденсор рациональнее купить готовый. Но можно сделать и самостоятельно. Простейший конденсор это 7-15 метров медной трубки свитой в спираль с шагом не менее 4мм. Диаметр спирали подбирается по габаритам платформы, на которой будет производиться монтаж системы. Но такой конденсатор не отличается высокой эффективностью из-за небольшой площади поверхности. Повысить эффективность работы такого конденсатора можно, припаяв к нему дополнительные ребра. Использовать радиаторы от автомобильных печек опасно. Давление в системе будет в пределах 10-14 атмосфер. И далеко не каждая автопечка может справиться с такой нагрузкой.

Главной характеристикой конденсатора является мощность. С конденсатором дело обстоит так же как с компрессором, чем мощность выше, тем лучше. Но есть одно правило, она не должна быть меньше мощности компрессора. Лучше если она будет превышать мощность компрессора раза в полтора-два. Конденсатор должен обязательно охлаждаться вентилятором. Можно купить конденсатор в сборе с вентилятором. А можно приспособить для охлаждения конденсатора корпусные вентиляторы от компьютера. Но тогда для них нужен дополнительный блок питания на 12 вольт мощностью, не менее суммарной мощности вентиляторов, примененных для обдува конденсатора.

3. Фильтр-осушитель. Самый простой стоит от 3,5 $. Есть и дороже. Покупать фильтр дороже 15$, на мой взгляд, ни к чему.

Какой использовать фильтр?

Фильтр служит для фильтрации фреона от нежелательных примесей. Случайно попавшего мусора - стружки, окалины. Иначе все это может забить капилляр, и система будет неработоспособной. Фильтр также поглощает влагу, случайно попавшую в систему. Необходим для надежной работы системы.

Конструктивно он выполнен в виде медного баллона с отверстиями на концах. Внутри фильтра с одного конца установлена решётка, с другого тончайшая сетка. Пространство между ними заполняется веществом, интенсивно поглощающим воду. Обычно это гранулированный цеолит или силикагель. Конец фильтра с решёткой является входом, конец с сеткой — выходом. Выход фильтра обычно имеет отверстие под капиллярную трубку, если оба отверстия фильтра одинаковы, загляните внутрь него, часть с сеткой будет выходом.

При монтаже нужно быть внимательным и не перепутать направление установки фильтра. Фильтр обычно выбирают объемом от 15 кубических сантиметров.

4. Капилляр. Самый ходовой типоразмер, это капилляр с внутренним диаметром 0,8мм. Цена 1метра - около 1$

Точную длину капилляра для самодельной системы рассчитать невозможно. Ее нужно подбирать экспериментальным путем, что является частью настройки системы. Исходя из таблицы, берем капилляр с запасом по длине, для последующей регулировки. Рекомендуемый запас 0,5-1 метр.

Потом в процессе регулировки отрезают капилляр небольшими кусочками. И перепаивают. После заправляют систему по новой. И смотрят, насколько возросла хладопроизводительность. Потом процедуру повторяют.

Но если вам не хочется возиться с настройкой такого уровня, можно взять длину капилляра точно по таблице. И настроить систему только количеством заправляемого фреона.

Газ (фреон)

Мощность испарителя (Ватт)

0.65мм

0.7мм

0.8мм

0.26 дюйма

0.28 дюйма

0.31 дюйма

R404A/R507

R22/R290

Таблица составлена Гари Ллойдом (Gary Lloyd)

5. Трубки.

Для соединения между собой комплектующих системы необходима медные трубки с внешним диаметром 6мм, 8мм, 10мм. Цена 1 метра трубки от 1,5$

Какие использовать трубки для монтажа системы?

Для монтажа системы используют медные трубки диаметром равным диаметру патрубков компрессора. Но на нагнетание можно поставить и меньший диаметр. Обычно монтаж делают трубкой диаметром 6мм. Десятимиллиметровую можно использовать в качестве всасывающей. Из 8мм делают переходы с 6мм на 10мм.

По принципу действия напоминают клапан в газовой зажигалке. Потребуется две штуки. Необходимы для заправки и контроля давления в системе. Впаиваются в контура низкого и высокого давления. Примерно 1,5$ штука. Нужны для заправки системы и контроля давления в системе.

7. Уголки, тройники медные, под диаметр трубок.

Пригодятся для пайки клапанов Шредера и для выполнения резких поворотов.

8. Испаритель.

Единственная часть, которая практически не выпускается промышленностью. Испаритель - самая проблематичная часть. Придется или заказывать у знакомых на заводе, или делать самому. На заказ испаритель будет стоить от 35$.

Где взять испаритель?

Наилучшим и пожалуй единственным материалом для испарителя является медь. Испаритель, это емкость с возможно большей внутренней площадью поверхности. В нем кипит фреон, поглощая тепло, вырабатываемое процессором. Лучшие конструкции испарителей можно и нужно посмотреть на сайте www.xtremesystems.org

Есть несколько вариантов самостоятельного изготовления испарителя. Первый вариант. Приобрести обычный воздушный кулер, радиатор которого изготовлен из меди. И запаять его в коробку из листовой меди. Я сделал два подобных испарителя из кулера Volcano7+. Радиатор я распилил на две части по линии крепежной клипсы. Толщина листа меди, из которой нужно сделать коробку должна быть не менее 2-х миллиметров. Более тонкую коробку раздувает давлением в системе.

Есть еще вариант. Для его воплощения необходимо несколько брусков меди толщиной 10-14мм и размерами 50на 50 мм. С помощью электродрели, начиная от центра квадрата, начинаем насверливать отверстия. Как можно ближе друг к другу. Что бы получилась расходящаяся спираль. Отверстия должны соединяться друг с другом. Сверлить нужно на такую глубину, что бы осталось 4-6мм до нижней грани.

Если у вас брусок только один, тогда в центр спирали припаиваем капилляр. А на выходе спирали всасывающую трубку и накрываем все это дело медной крышкой и все хорошенько пропаиваем. Если найдется еще брусок. То делаем из него второй этаж. Что бы фреон пройдя по спирали первого, через отверстие попадал на второй этаж и опять по спирали попадал в центр второго бруска. И уже сюда припаиваем капилляр и всасывающею трубку. Двухэтажный испаритель будет работать более эффективно, чем одноэтажный. Более двух этажей делать не к чему. Прироста производительности почти не будет. Диаметр сверла 3-5мм.

9. Всасывающая трубка.

Можно обойтись медной трубкой диаметром 10мм. Или купить газовую подводку из гофрированной нержавеющей стали. Она стоит от 10$, в зависимости от длинны.

Какую использовать всасывающею трубку, и где ее взять?

Всасывающая трубка, это трубка идущая от испарителя к компрессору. Она должна быть по возможности гибкой. Вам же придется монтировать испаритель на процессор? И гибкая мягкая трубка намного облегчит эту задачу.

Можно в качестве всасывающей трубки использовать медную трубку диаметром 10мм. Она достаточно гибкая и может работать на скручивание. Иногда для установки испарителя на процессор его необходимо немного повернуть и медная трубка позволит это сделать. Но у нее есть и недостатки. Все-таки она недостаточно гибкая и от многократных перегибов может сломаться.

Этих недостатков лишена трубка сделанная из газовой подводки. Это гофрированная трубка из тонкой нержавеющей стали. Выдерживает давление в 16 атмосфер. Но и у нее есть недостатки. Для ее пайки необходим специальный флюс. Можно конечно припаять штуцеры к системе и прикрутить подводку через фторопластовые прокладки. Но штуцера обычно латунные, а для их пайки тоже необходим флюс. И еще один недостаток есть у такой трубки. Она не работает на скручивание.

Нельзя в качестве всасывающей трубки использовать резиновые шланги, газовые шланги. Даже если они выдержат давление в системе, то фреон утекает сквозь резину. И через какое то время придется дозаправлять систему.

10.Вакуумный насос для вакуумирования системы.

Желателен, но необязателен. Можно вместо вакуумного насоса использовать еще один компрессор. Можно сделать так, что компрессор системы будет вакуумировать сам себя. А можно обойтись совсем без вакуумирования. Как это сделать на практике будет изложено в главе о заправке системы. На фотографии компрессор, немного доработанный для использования в качестве вакуумного насоса.

11. Манометрическая станция.

Цена от 65$. Необходима для заправки и контроля давления в системе. Очень удобна при заправке и регулировке системы. Можно конечно обойтись и краном с манометром. Он стоит уже от 17$. А можно просто впаять в систему манометры. Они по отдельности еще дешевле. А можно обойтись вообще без манометров. Но в этом случае заправка будет происходить «на глазок», что естественно не является сильной стороной метода.

12.Фреон для заправки.

Обычно это самый дешевый и доступный фреон марки R22. Дешевый и доступный не значит плохой. Он идеально подходит самодельщику. Баллон 13,5кг. - 54$. Для заправки системы конечно столько не надо. Обычный расход на одну заправку, в зависимости от внутреннего объема, системы от 30 до 300 грамм. Но меньшей расфасовки я не видел. Можно конечно обратиться в сервисный центр по ремонту холодильников и кондиционеров и договориться с мастерами о заправке там. Обойдется такая процедура от 10$. Но тогда о регулировке можно забыть. Да и не будет того адреналина, который буквально переполняет при первой заправке.

14. Платформа для монтажа системы.

Металлическая или любая другая площадка, способная выдержать вес компрессора и других комплектующих. Или корпус, в который вы собираетесь все это поместить.

Инструмент

Для монтажа системы необходим инструмент, как обычный, так и специальный. Перечислю необходимый инструмент и цены на него. Цены взяты из прайсов нескольких фирм и усреднены. Приведены для того, что бы можно было иметь представление о материальных затратах ожидающих человека, собравшегося двигаться по этому пути.

1. Инструмент для резки медных трубок.

Лучше труборез как на фотографии. Он режет трубки от 1/8 до 5/8 дюйма, другими словами от 3мм и до 15мм. Им можно и надрезать, а потом обломить капилляр. И стоит недорого, от 4,5$.

Можно резать и ножовкой по металлу. Но в этом случае велика вероятность попадания стружки в систему с непредсказуемыми результатами. В случае резки ножовкой нужно быть внимательным и тщательно удалять стружку из внутренних полостей трубок.

2. Горелка с газом.

Можно купить специализированную с баллоном МАРР газа. А можно приобрести и что-то подешевле. Горелка необходима для пайки трубок соединяющих детали системы. В системе высокое давление, порядка 7-14 атмосфер и другой метод пайки, например паяльником и обычным оловянно-свинцовым припоем непригоден.

Припой к горелке.

Вполне подойдет недорогой, с 5-6 процентным содержанием серебра. Цены примерно такие. Горелка - 60$. Баллон МАРР газа - 20$. Но можно найти горелку и значительно дешевле. Например, на радиорынке. Припой 5-6% серебра, один пруток 0,8$. Для сборки системы обычно требуется 3-5 прутков.

3. Необходимы так же обычные инструменты.

Такие как плоскогубцы, кусачки, нож, напильник, отвертки… Нелишним будет иметь дрель со свёрлами.

По вышеприведенным ценам можно посчитать, во что примерно обойдется система. Обычно, если не покупать очень дорогой компрессор, можно вполне уложиться в 300$. В этом случае вы получите довольно тихую, домашнюю «фреонку», не отличающеюся выдающимися характеристиками. Под нагрузкой на этой системе реально получить -25на испарителе. Если же вы планируете собрать более серьезное устройство с более низкими температурами, то придется потратиться уже на 400-500$. В основном цена вырастает за счет стоимости более мощного компрессора. Но это уже будет устройство, превосходящее по своим характеристикам лучшие серийные экземпляры.

4. Рекомендации по компоновке системы. Оформление системы. Сборка и пайка.

Монтируют систему на платформе, лучше металлической. Удобнее будет при пайке, не обгорит. Но можно и из ДСП или толстой фанеры. Но тогда под спаиваемые детали лучше подкладывать лист металла. Неплохо если платформа будет иметь коробчатый каркас. Очень удобно привернуть к ней мебельные колеса. Конструкция получится тяжелой, и данные рекомендации значительно облегчат ее перемещения. Классическая конструкция фреоновой системы, это прямоугольный блок, сверху которого выходит испаритель. На такую конструкцию можно поставить стандартный компьютерный корпус. Придется только в его дне прорезать отверстие для испарителя.

А теперь рекомендации по расположению элементов системы. Конденсор устанавливаем так, что бы вентилятор на нем втягивал через него воздух и обдувал компрессор. Это нужно для дополнительного охлаждения компрессора. В процессе работы компрессор ощутимо нагревается. Нормальная рабочая температура компрессора 55-70 градусов.

Компрессор крепится к платформе через резиновые амортизаторы. Делается это для предотвращения передачи вибраций работающего компрессора корпусу. У компрессора обычно имеется три трубки. Две большего диаметра - всасывающие. Одна диаметром поменьше - нагнетающая. На одну из всасывающих трубок(на какую удобнее) припаивается клапан Шредера, для заправки системы. К другой припаивается всасывающая трубка идущая от испарителя. К более тонкой - нагнетающей, припаивается трубка, идущая к конденсору. В разрыв этой трубки я припаял тройник, а к нему клапан Шредера, для вакуумирования и последующего контроля давления в системе.

Вход конденсора - его верхняя трубка. Выход - нижняя. Это делается для облегчения стекания сконденсировавшегося фреона.

К выходу конденсатора припаиваем фильтр. Фильтр ставиться так, что бы выход фильтра(где припаян капилляр) был ниже входа. Делается это для предотвращения попадания пузырьков несконденсировавшегося фреона в капилляр. Пузырьки снижают производительность системы.

Капиллярную трубку помещают внутри отсасывающей трубки для понижения температуры хладагента в капиллярной трубке.

Это повышает эффективность охлаждения. Так же такое расположение способствует докипанию фреона на линии всасывания. Помогает исключить попадание жидкого фреона в компрессор, что может привести к выходу его из строя. При использовании в качестве всасывающей трубки газовой подводки капилляр необходимо помещать в трубку изогнутым в виде синусоиды. Дело в том, что от давления длинна такой трубки увеличивается, и она может порвать капилляр. Капилляр не «убравшийся» во всасывающею трубку скручивается в бухточку и крепится в любом удобном месте.

Испаритель к всасывающей трубке удобнее всего прикручивать, а не припаивать. Для этого к испарителю можно припаять латунный штуцер с полудюймовой резьбой.

Такая же резьба на газовой подводке. Прикручивать испаритель нужно через фторопластовую прокладку. Можно использовать специальные переходы под развальцовку. Но тогда понадобиться покупать дополнительный инструмент.

В этом случае конструкцию испарителя надо предусмотреть такую, что бы капилляр не припаивался, а вставлялся в испаритель. Разъемное соединение удобно тем, что потом всегда можно заменить испаритель.

Перед крепежом деталей фреоновой системы лучше всего расставить их на платформе и прикинуть, как пойдут соединительные трубки. Можно смоделировать их тонкой проволокой. Согнуть ее, так как потом пойдут реальные соединения. Потом по этим заготовкам будет легче и точнее нарезать и выгнуть необходимые отрезки труб. Трубки диаметром до 10мм включительно хорошо гнуться руками. И, как правило, можно обойтись без трубогиба.

Нужно продумать последовательность пайки. Иначе может получиться, что потом, что бы запаять какое-то соединение, возникнет необходимость разрезать другое.

Как уменьшить шум фреоновой системы охлаждения?

Основным источником шума работающей Direct Die системы охлаждения является компрессор. При работе он ощутимо вибрирует, и эти вибрации передаются корпусу системы. В результате шум усиливается. Не спасают ситуацию и резиновые амортизаторы, на которых крепится компрессор. Так же вибрации компрессора через нагнетающую трубку передаются конденсатору, и он тоже начинает вибрировать.

Что бы уменьшить это явление, корпус можно сделать из толстого гасящего вибрацию материала. Например ДСП. Для уменьшения передачи вибраций от компрессора к корпусу можно закрепить компрессор на небольшое основание, которое в свою очередь закрепить через дополнительные амортизаторы к основному корпусу. Некоторые даже подвешивают компрессор на резиновых кольцах.

Для снижения вибраций передаваемых компрессором конденсатору нагнетающую трубку можно свить в спираль.

А боковые стенки конденсатора оклеить вибропоглощающим материалом. Конденсатор так же можно прикрепить к основанию через прокладки. Будет не лишним и внутренние части корпуса оклеить таким материалом.

В качестве вибропоглощающего материала можно применить автомобильную шумоизоляцию. Или пенофол. Пенофол пористый полимерный материал, применяется для утепления и шумоизоляции систем вентиляции. Приклеивают его 88-ым клеем или на двусторонний скотч.

Внутри корпуса можно предусмотреть шумопоглощающие экраны. Они должны быть оклеены очень рыхлым материалом. Например, толстым синтепоном.

Для уменьшения передачи вибраций от вентиляторов к конденсатору, диффузор, к которому прикреплены вентиляторы тоже неплохо закрепить через вибропоглощяющие прокладки.

Шумоизоляция производится после сборки и пайки системы. Иначе горелкой ее легко повредить.

Как паять? Сборка системы.

Для пайки хорошо подходит горелка с МААР газом. Но горелка и баллоны с газом к ней, довольно дороги. Можно приобрести инструмент и попроще. Большой ассортимент таких устройств можно увидеть на радиорынке. Приобрести горелку там выйдет намного дешевле.

Горелкой нагреваем спаиваемые детали, они почти сразу приобретают ярко желтый цвет. Продолжаем нагрев до темно красного свечения. Потом вводим в факел горелки пруток припоя и проводим им по месту пайки. Припой расплавляется и растекается по спаиваемым деталям. Если припой прилипает и остается комком, значит спаиваемые детали недостаточно разогреты.

Для увеличения прочности спаиваемых соединений детали должны немного входить друг в друга. Например, для спаивания трубок одинакового диаметра, одну из трубок лучше развальцевать.

Или применить переход из трубки большего диаметра. Если трубки сильно отличаются по диаметру, то большую трубку нужно обжать пассатижами.

МАРР газ имеет более высокую температуру горения, чем пропан. Поэтому им быстрее и легче паять. Припой плавиться при температуре 700С-800 градусов в зависимости от состава. Температура плавления меди близка к 1080 градусам. Следует быть аккуратным и не перегреть место пайки. Тонкие трубки легко могут расплавиться. Особенно нужно быть внимательным при пайке капилляра. При такой пайке нужно в основном нагревать сам фильтр. На глаз точкой плавления меди является яркое, желто-белое свечение.

Соединения медь-медь паяются без флюса. Если же вам необходимо припаять латунный штуцер или всасывающую трубку из нержавеющей стали, то придется приобрести специальный флюс. Я паяю такие соединения флюсом Ultra flux. Но можно приобрести в специализированном магазине и другой, подобный.

При такой пайке флюс наносится на соединение, а затем пайка производится так, как описано выше.

Спаиваемые детали необходимо предварительно зафиксировать. Пайка производиться двумя руками и придержать сползающею в процессе пайки деталь будет нечем. Разве что… Ну нет это уже чересчур. Лучше зафиксировать проволокой, тисками, струбциной. Что найдется.

Один небольшой совет. Раньше я паял клапаны шредера, не разбирая их. Но когда клапан паяется долго, или патрубок у него короткий, из него лучше выкрутить нутро. В нем есть полимерная прокладка, которая может подгореть от пайки и клапан, потом будет травить. Выкручивается клапан колпачком. У него есть для этого штырек с прорезью.

А теперь пара слов о пайке испарителя. Испаритель обычно имеет довольно большую массу. И поэтому прогреть его одной горелкой проблематично. Да и расход газа будет велик. Поэтому лучше всего паять испаритель на включенной газовой конфорке. Ставим на нее испаритель, поджигаем газ и ждем минут 10. Испаритель прогреется и можно приступать к пайке обычным способом.

Шов пайки должен быть ровным, гладким без каверн и раковин. Это потенциальное место протечки.

Испарители после пайки для полной уверенности лучше всего опрессовать. Сделать это можно при помощи старого компрессора. Компрессор для этого придется немного модернизировать. После модернизации такой компрессор можно использовать и для опрессовки и как вакуумный насос. Доработка сводится к тому, что надо припаять по клапану Шредера на линии нагнетания и всасывания. Вторую трубку на всасывание нужно заглушить. Шредер на нагнетание и используется для опрессовки испарителей. На фотографии показано еще одно приспособление это клапан и переход. Сделав такое приспособление можно легко подсоединить любой испаритель к компрессору.

Еще интересный момент. Если вы сами спаяли испаритель. Установили его на фреонку. Опрессовали фреоном из баллона и он держит давление, то это еще ничего не значит. Высокое давление при такой опрессовке не получить.

Далее вы заправляете фреонку, но в испарителе опять же высокого давления не будет. Испаритель находится в контуре низкого давления и при работе системы давление в нем находится в пределах 0,5-1 атмосферы. И испаритель может прекрасно держать такое давление.

После заправки и регулировки системы вы выключаете систему. После выключения давление в контуре низкого и высокого давления начинает выравниваться. Давление в испарителе начинает расти. И поднимается примерно до 7-10 атмосфер. При некачественной пайке испаритель может дать течь. Причем через некоторое время.

Для избежания такого конфуза лучше перед установкой в систему опрессовать испаритель. Для этого к трубке испарителя либо припаивается клапан Шредера, либо присоединяется методом развальцовки. Потом через манометрическую станцию испаритель подключается к линии нагнетания модернизированного компрессора. Из клапана Шредера на линии всасывания выкручивается механизм. Делается это для того, чтобы открыть клапан. Компрессор включается. Контролируя давление по манометру высокого давления, нагнетаем в испаритель воздух до 12-15атмосфер. Выключаем компрессор и опускаем испаритель в емкость с водой. Если утечка присутствует, вы увидите пузырьки воздуха, вырывающиеся из проблемных мест.

ВНИМАНИЕ:

Нужно быть очень осторожным и не превышать указанное давление. Можно повредить манометр. Возможно, что в случае некачественной пайки может разорвать испаритель.

Несколько слов о технике безопасности. Работайте в хорошо проветриваемом помещении. Пайка должна проводится на негорючем основании. Например, листе металла. При работе с горелкой обязательно наличие ведра с водой рядом с местом работы. Лучше пару раз по запарке опрокинуть его, чем потом в случае пожара метаться в поисках, чем залить пламя. Неплохо иметь и кусок негорючей ткани. Например, брезента. Для того, что бы накрыть им случайно загоревшейся предмет.

Во время пайки детали быстро нагреваются. Но долго остывают.

При пайке нужно внимательно следить за направлением пламени горелки, даже на расстоянии около метра занавеска может загореться. Работать надо обязательно в негорючих перчатках. И главное внимание, и еще раз внимание.

Установка вентиляторов.

Система собрана, спаяна. Пора устанавливать вентиляторы. Если вы приобрели конденсатор в комплекте с вентилятором, то никаких проблем возникнуть не должно. Другое дело, если вы решили использовать имеющиеся у вас корпусные вентиляторы от компьютера. Тут есть несколько моментов, которые нужно учесть.

Первое.

Для вентиляторов нужен собственный блок питания. Из-за того, что при эксплуатации фреоновой системы охлаждения сначала включается она, а через некоторое время и сам компьютер. Делается это для того, что бы она успела охладить процессор. А уже после выхода системы в режим можно включить и сам компьютер. Так что один блок питания и для компьютера и для питания вентиляторов использовать не получиться.

Второе.

Для эффективной работы вентилятора необходимо использовать диффузор. Если просто закрепить вентилятор на конденсатор. Он будет протягивать воздух только через небольшую его часть, равную площади самого вентилятора. Эффективность охлаждения фреона будет невысокой. Диффузор выровняет воздушный поток. И продуваться будет вся поверхность конденсатора.

Диффузор должен плотно прилегать к конденсатору. Щели снижают эффективность охлаждения.

5. Заправка системы. Вакуумирование

Итак, система собрана, спаяна. Пора приступать к заправке. Но сначала нужно удалить воздух из системы. Если этого не сделать то влага, содержащаяся в воздухе, при работе системы замерзнет и забьет капилляр. Система окажется неработоспособной. Так же воздух в системе значительно снижает ее хладопроизводительность. Происходит это из-за того, что система заправляется небольшим количеством фреона, а воздух занимает определенный объем внутри системы, но не участвует в процессе.

Удалить воздух из системы можно несколькими способами. Основным и самым эффективным методом является вакуумирование. Для вакуумирования нужно специальное устройство - вакуумный насос. Это довольно дорогостоящая штука и приобретать ее самодельщику ни к чему. Можно заменить вакуумный насос другим компрессором. Конечно с помощью компрессора не получить вакуума такой глубины, как при помощи вакуумного насоса. Но существует метод, позволяющий приблизиться к его результату. А можно обойтись вообще без вакуумирования. Ниже я изложу все известные мне методы.

Но для начала проверим, насколько качественно удалось спаять систему. Для этого привернем желтый шланг от манометрической станции к баллону с фреоном и приоткрыв немного баллон продуем шланги фреоном. Для этого надо приоткрыть вентили на манометрической станции. После этой процедуры закрываем все вентили и присоединяем красный шланг к клапану Шредера на линии нагнетания.

Потом открываем вентиль на баллоне, и с помощью вентиля на манометрической станции (красный, линия нагнетания) пускаем фреон в систему. Можно в это время немного приоткрыть клапан Шредера на линии всасывания нажав на штырек клапана. Этим мы вытесним воздух из системы. Конечно не весь. Но тем не менее. Выпустив воздух, и закрыв все краны, ненадолго включаем компрессор. Потом повторяем процедуру еще раз. Далее закручиваем этот клапан колпачком (всасывание). И продолжаем поднимать давление в системе. Увеличиваем давление до 3 атмосфер. Заворачиваем все краны и оставляем систему на час, два. Если по прошествии этого времени давление в системе не снизится, нам повезло. Утечек нет. Все спаяно качественно.

Если давление упало, поднимаем давление по вышеизложенному методу и начинаем искать место утечки. Делается это мыльной водой. Кисточкой наносим мыльную воду на места соединений и смотрим, не появятся ли пузыри. Места утечек пропаиваем. Естественно перед пайкой выпускаем фреон из системы. Иначе может произойти небольшой, малоприятный взрыв. Затем повторяем всю процедуру проверки.

Система проверена, утечек нет. Идем дальше. Прикручиваем синий шланг к шредеру на линии всасывания. Красный у нас уже подсоединен. Отсоединяем баллон с фреоном. И к освободившемуся желтому шлангу присоединяем вакуумный насос. Если его нет, то специально доработанный компрессор. Он будет выполнять роль вакуумного насоса. Доработка заключается в припаивании клапанов Шредера на патрубки нагнетания и всасывания этого компрессора.

Вакуумирование производим из клапана нагнетания (высокое давление). Для этого открываем красный вентиль и включаем компрессор-вакуумный насос. На манометре низкого давления(синий) стрелка должна поползти вниз. Вакуумируем пару минут. Но так глубокого вакуума не получить. Поэтому включаем еще и компрессор системы. В результате давление на всасывании (низкое давление) станет еще ниже. Компрессоры будут работать последовательно. Это будет почти результат вакуумирования хорошим вакуумным насосом. Учитывая, что после заправки хладагент сожмет оставшийся воздух еще примерно в 10 раз — воздух практически не будет снижать холодильной мощности. Система вакуумирования получается условно двухступенчатая.

Далее выключаем компрессоры. Заворачиваем краны. Отключаем вакуумирующее устройство и на его место подключаем баллон с фреоном. Включаем компрессор системы и начинаем потихоньку подавать в нее фреон из баллона. В линию всасывания. Подача осуществляется синим вентилем. Стрелка манометра обратного потока (синий) скакнет до 3-х 4-х атмосфер. Остановим подачу и подождем несколько минут.

Потом повторяем процедуру снова. Подавать газ надо небольшими порциями. Это важно. С промежутками в несколько минут. Через некоторое время испаритель начнет покрываться инеем.

Заправку фреоном производим до тех пор, пока всасывающая трубка не покроется инеем до входа в компрессор. Это и будет окончанием заправки.

И одновременно предварительной настройкой системы.

Такая регулировка позволяет исключить попадание жидкого фреона в компрессор. Под нагрузкой фреон гарантированно выкипит раньше, не дойдя до компресора. А попадание жидкого фреона чревато выходом компрессора из строя.

Подробнее о процессе регулировки системы будет написано ниже.

Можно ли обойтись без вакуумного насоса?

Без вакуумного насоса обойтись можно. Сначала изложу способ, когда компрессор системы будет вакуумировать сам себя. Для этого между фильтром Шредера и конденсором (линия высокого давления) ставится кран. Кран должен быть такой конструкции, что бы исключить потери фреона в атмосферу.

Практически все краны, так или иначе, травят фреон. Исключение составляют сильфонные краны. Но стоимость такого крана равна стоимости недорогого компрессора. Мы же для этого применим такой вот порт от кондиционера. Особенностью этого устройства является крышка с прокладкой из алюминия. После регулировки механизм крана, который пропускает фреон, будет закрыт этой крышкой и затянут. Алюминиевая прокладка мягкая и усилием закручивания будет расплющена так, что соединение будет герметично и утечки фреона не будет.

А теперь принцип работы. Перекрываем кран. Нажимаем на штырек клапана Шредера на линии нагнетания, тем самым открывая клапан. И включаем компрессор, который начинает выкачивать воздух из системы. Кончено такого глубокого вакуума как при двухступенчатом вакуумировании, изложенном выше не получить. Но и это неплохо. Перестаем давить на штырек. Клапан закрывается, и мы немедленно выключаем компрессор. Система вакуумирована. Затем открываем кран, заворачиваем крышку на кране. С адекватным усилием. И приступаем к заправке системы, как говорилось выше. Перед такой процедурой нелишним будет несколько раз продуть систему фреоном.

Продувая систему, впускаем в нее из баллона фреон до давления в две, три атмосферы, включаем компрессор. Стравливаем фреон. И снова повторяем процедуру.

В принципе можно обойтись и без крана. Просто несколько раз продувать систему по методу, изложенному выше. И лишний воздух и влага выйдут из системы вместе с фреоном. Фреон R-22 недорогой. И поэтому такой метод выходит все же дешевле покупки дополнительного компрессора.

Выше изложено три метода вакуумирования. Каждый последующий немного хуже предыдущего. Но они позволяют сэкономить. Пусть и за счет небольшой потери производительности.

Добавлю. Все эти методы неоднократно проверены. И не только мной.

Но может случиться и такой момент. При покупке компрессора, вы его получаете с заткнутыми резиновыми пробками штуцерами. Вынимать эти пробки нужно только непосредственно перед пайкой системы. Если же вы вынули эти пробки давно, или что еще хуже, включали для проверки компрессор на прокачку воздуха, масло в нем могло впитать влагу. Из этого самого воздуха. Результат известен. Периодически перестает морозить испаритель. Исправить такую ситуацию можно только длительным вакуумированием системы с прогревом фильтра до 200 градусов. Если и это не помогает. Придется менять масло.

6. Конденсат, что это такое? Как с этим бороться? Изоляция. Установка системы в компьютер.

Все люди, так, или иначе, по несколько раз на дню сталкиваются с тем, что стакан с холодным пивом (соком, ненужное вычеркнуть) снаружи быстро запотевает и покрывается каплями воды. Это и есть конденсат. Конденсация влаги из воздуха происходит на поверхностях, температура которых ниже температуры окружающей среды. Интенсивность зависит от влажности воздуха и разности температур. Скажу только, что при 50-ти процентной влажности конденсат начинает выпадать на поверхностях, температура которых на 7 градусов ниже температуры окружающей среды. Или около того. Точных цифр я к сожалению не помню.

Такая же беда, как на стакане с пивом, но в более серьезных масштабах (все-таки температуры около -40) произойдет и с испарителями и всасывающей трубкой. Да и с сокетом процессора и даже с обратной стороной материнской платы. Только влага где-то частично замерзнет, а где-то начнет собираться в лужи. А влага на компьютерных платах чревата внеочередным апгрейдом.

Защитить электронные компоненты от конденсата можно теплоизолировав их от окружающей среды, заодно изолировав их и от влажного воздуха. Я пишу влажного потому, что воздух в жилых помещениях абсолютно сухим не бывает. Для теплоизоляции нужны определенные материалы. И определенные манипуляции с этими материалами.

Для теплоизоляции пригодны только материалы с закрытыми порами. Ели применить обычный поролон, то через несколько минут работы системы он превратиться в мокрую губку. Хорошо подойдет неопрен или все тот же пенофол. Пенофол это вспененный полиэтилен. Продается как виброшумоизоляция. Можно использовать пенопласт и монтажную пену.

Теплоизолировать необходимо испаритель, всасывающую трубку, пространство вокруг сокета и обратную сторону материнской платы в области распайки сокета. Размер пространства вокруг сокета подлежащее теплоизоляции примерно 150 на 150мм. Во время выполнения теплоизоляции нужно быть внимательным и не теплоизолировать греющиеся элементы платы. Их надо обойти теплоизоляцией. Необходимо так же предусмотреть обдув околосокетного пространства дополнительным вентилятором. Это поможет охладить силовые транзисторы цепей питания процессора. А так же поможет высыханию влаги, которая может выступить и на теплоизоляции.

Перед теплоизоляцией пространство вокруг сокета и обратную сторону материнской платы необходимо смазать токонепроводящей силиконовой смазкой. Подойдет и из серии автохимии. Это делается для исключения замыканий, которые может вызвать случайно возникший конденсат.

На сам сокет нужно нанести более густую токонепроводящюю смазку. Например, вазелин. Нужно забить им отверстия сокета. Иначе в них может образоваться конденсат с непредсказуемыми результатами.

После этого по размеру сокета вырезаем теплоизоляционную прокладку с отверстиями под греющиеся элементы. Толщина теплоизоляции не менее 10мм.

На обратную сторону платы вырезаем коврик такого же размера. И изготавливаем пластину для прижима прокладки. Очень важно прижать теплоизоляцию к плате для избежания проникновения в щели воздуха и образования в них конденсата.

Испаритель должен прижиматься к процессору и материнской плате длинными винтами. Крепление к рамке сокета не подходит. Слишком хрупка и ненадежна рамка. Подробно описывать крепеж не имеет смысла ввиду большого разнообразия сокетов. Скажу только, что между теплоизоляцией испарителя и изолирующей прокладкой платы не должно быть щелей. После первого крепления испарителя его необходимо снять и по отпечатку термопасты проконтролировать прижим испарителя к процессору. Щели в теплоизоляции обнаруживаются визуально.

Необходимо качественно теплоизолировать и сам испаритель. И всасывающую трубку. С трубкой легче всех. Для изоляции трубок выпускается специальная теплоизоляция. Она продается как в специализированных холодильных, так и в сантехнических магазинах. Название одного из видов такой теплоизоляции рубафлекс. Теплоизолировать трубку нужно после пайки системы. Для этого ее необходимо разрезать ее вдоль и склеить, после того как теплоизоляция одета на трубку. Для надежности можно обмотать обычной изолентой. Туго обматывать не следует. Изоляция от этого со временем плющиться, и теряет свои свойства.

Изолировать испаритель немного сложнее. Можно нарезать листовую изоляцию и приклеить к испарителю. А можно поместить испаритель в коробку и залить монтажной пеной. После высыхания лишнее обрезается. Толщина теплоизоляции должна приближаться к двум сантиметрам. Сантиметровый слой теплоизоляции при -40 покрывается конденсатом.

Рекомендуется после теплоизоляции и установки системы охлаждения в компьютер включить систему, без включения компьютера. И после 15 минут работы выключить и разобрать систему для проверки. Не образовался ли где конденсат.

Система теплоизолированная и установлена. Теперь самое время ее немного подрегулировать.

7. Регулировка системы.

Регулировка системы под конкретное железо осуществляется двумя путями. Хладопроизводительность регулируют количеством фреона, заправленным в систему. А также регулировкой длинны капилляра. Укорачивая капилляр, мы увеличиваем подачу фреона в испаритель. Но значительно увеличивать подачу фреона нельзя. Недоиспарившийся фреон (жидкий) может попасть в компрессор и вывести его из строя. Фреон должен полностью выкипать в испарителе и всасывающей трубке. Нужно найти оптимальную середину.

На первое время можно просто взять длину капилляра по таблице и регулировать производительность количеством фреона. Включаем систему, после выхода ее в режим, включаем компьютер. И при минимальной загрузке разогнанного процессора добавляем в систему фреон. Пока всасывающая трубка не промерзнет до входа в компрессор. Это гарантирует, что при полной загрузке фреон выкипит полностью и не попадет в компрессор. Этим способом можно пользоваться даже при отсутствии манометров.

Компрессор сжимает газообразный фреон и подает его в конденсор. Температура нагнетающей трубки (а значит и температура газа) должна находиться в пределах 55-85 градусов. Конденсатор охлаждает фреон и он конденсируется. На выходе из конденсора температура хладагента должна быть 30-45 градусов.

Если компрессор очень горячий, а конденсатор холодный. То система перезаправлена. Нужно при помощи клапана стравить лишний фреон.

Если испаритель не морозит, то или в системе недостаточно фреона или забился капилляр. Проверить забился капилляр или нет можно по звуку внутри испарителя. Во время работы испаритель шипит.

Так же не должна обмерзать область компрессора вокруг всасывающего штуцера. Это означает, что капилляр короток. Чем короче капилляр, тем меньше давление на линии нагнетания, а значит выше температура испарителя. Чем длиннее, тем ниже температура, но ниже хладопроизводительность. Давление на линии всасывания не должно превышать 1,5атмосфер.

Иногда для предотвращения попадания жидкого фреона в компрессор применяют докипатель. Это небольшая емкость перед компрессором. Ее обычно располагают между вентилятором и компрессором, и служит она для полного докипания фреона. Но докипатель существенно снижает хладопроизводительность системы за счет потерь.

8. На что следует обратить внимание во время эксплуатации фреоновой системы охлаждения?

В системах с воздушным охлаждением кулер охлаждающий процессор включается одновременно с компьютером. Ему не надо «входить в режим», он начинает отводить тепло от процессора сразу, что нельзя сказать о системах охлаждения основанных на принципе фазового перехода. Этой системе для выхода в штатный режим необходимо некоторое время. И поэтому сначала надо включить систему охлаждения, а когда она охладит процессор до определенной температуры, включить уже сам компьютер.

Можно конечно это делать вручную, но нет никакой гарантии, что в один прекрасный день вы ничего не перепутаете и не включите компьютер или вообще без фреонки, или одновременно, что может повлечь перегрев разогнанного процессора и невосполнимые потери в области комплектующих системного блока.

Для безопасной эксплуатации компьютера с криогенной системой охлаждения необходим блок автоматики, который будет «разрешать» включать компьютер только после того, как система охладит процессор до заданной температуры. С возможностью выставить эту температуру вручную.

Фабричные системы оснащаются подобными устройствами, а что делать самодельщикам? Существует два пути решения проблемы. Сконструировать и изготовить подобное устройство самому. Но это под силу далеко не каждому. Для этого необходимы не только теоретические знания в области электроники, но и практические навыки в изготовлении подобных устройств. Не говоря уже о затратах времени.

Но можно для этих целей приспособить готовые устройства, имеющиеся в свободной продаже. Расскажу как это сделать на примере электронного контроллера Dixell XR20C. Это устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле. У реле есть несколько контактов. Два контакта - контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора - аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается - аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсатора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он должен быть больше суммы токов потребляющих вентиляторами.

Ну вот вроде все и собрано, спаяно, отрегулировано. Включаем-смотрим. Наслаждаемся.

А теперь еще один важный момент. После нескольких дней эксплуатации необходимо проверить надежность крепления процессора. Дело в том, что пористая изоляция, если она сжата, со временем уменьшается в объеме. Поры слипаются, и она как бы садиться. Поэтому крепеж процессор — испаритель не должен сильно давить на изоляцию иначе через некоторое время — неделя, две. Изоляция настолько сплющится, что перестанет выполнять свои функции и возможно возникновение конденсата. Поэтому лучше периодически проверять качество изоляции. И степень прижима испарителя к процессору.

В качестве профилактики рекомендуется раз в месяц-два контролировать давление в системе. Возможно, в системе существует микроутечка и через нее фреон постепенно улетучивается. Найти такую утечку сложно. И поэтому можно просто периодически дозаправлять систему. Или лишний раз убедиться, что все в порядке.

Скрин результатов разгона процессора

Несколько фотографий систем изготовленных автором.

Вот как бы и все что планировалось рассказать. Если вышеизложенное заинтересует посетителей сайта http://www.megamod.ru/ , то продолжение обязательно будет.

10. Дополнительная информация по фреоновым системам охлаждения. Ссылки.

Наилучшие сайты по фреоновым системам охлаждения.

  • www.xtremesystems.org
  • www.phase-change.com
  • www.overclockers.ru

Дополнительная информация по компрессорам

Экстремальное охлаждение... Низкие и сверхнизкие температуры... Умопомрачительный разгон процессора или видеокарты.. Мировые рекорды..
Кто из оверклокеров не мечтал об этих вещах, которые когда-то были удовольствием неординарным и дорогим. Сегодня же ситуация меняется - в интернете много информации на тему самодельных систем фазового перехода, и, при наличии желания и умения создать свою, личную, пусть даже по типичной схеме, пусть не самую производительную, но намного более дешевую "фреонку" может каждый, кто действительно этого захочет. Сегодняшний материал - яркий тому пример, достойный внимания и уважения!

Структура статьи такова:

1. Введение
2. Компоненты системы
3. Сборка системы
4. Вакуумирование и заправка
5. Практическая проверка самодельной системы фазового перехода
6. Тестирование системы, анализ результатов
7. Заключение

Введение

Фреонка! Как много в этом слове (особенно для знающих людей;))!
Уже несколько лет системы фазового перехода будоражат умы оверклокеров. Это - заветная мечта любого, ведь она позволяет открыть новые, доселе неведомые горизонты разгона. Сейчас ни один новый мировой рекорд по разгону компьютерных комплектующих не обходится как минимум без применения фреонки.
Несмотря на свою долгую историю, системы охлаждения на основе фазового перехода так и не стали массовыми. Причин тому есть великое множество. Так, если говорить о самодельных вариантах, то кого-то отталкивает сложность сборки, кого-то пугает конденсат и другие сложности в процессе эксплуатации. Немаловажным сдерживающим фактором является высокая цена, ведь стоимость серийных фреонок находится у отметки «1000 у.е», что для рядового оверклокера из постсоветского пространства - немыслимые деньги за охлаждение. Самоделки же, хоть и стоят в 3-4 раза дешевле, но все равно донедавна были уделом преимущественно обеспеченных людей и истинных фанатов разгона.
В данном материале я расскажу Вам, как собрать Систему Фазового Перехода своими руками и при этом потратить сумму, эквивалентную стоимости серийной СВО.

Компоненты системы

Приступим.
Основным донором для нашей фреонки станет старый кондиционер производства Бакинского завода. Вот так он выглядит:

…а вот его технические характеристики:

В кондиционере присутствует отдельная линия для охлаждения масла:

Пробный запуск показал полную работоспособность данного девайса. За несколько минут температура на испарителе опустилась до -7С:

Компрессор

Модель БК-2000 использует самый производительный из используемых в данных кондиционерах компрессоров. Это - среднетемпературный роторный ХГрВ 2,2-У2 мощностью 1100 Вт +5С (В БК-1800 и ниже используют ХГрВ 1,75-У2). Для всех кондиционеров БК родным является газ R22. Охарактеризовать данный компрессор можно так:

1. Огромная потребляющая мощность, - при запуске в квартире иногда мигает свет. Так что включать данный девайс одновременно с утюгами/чайниками противопоказано.

2. Шум. Производителем заявлено 60 Дб. О спокойной работе в таких условиях можно и не мечтать

3. Ощутимый нагрев компрессора во время длительной работы. Из-за этого в нём организована отдельная ветка для охлаждения масла. Напомню, что для роторных и поршневых компрессором немного различаются температурный порог для безболезненной работы, так для поршневых компрессоров - он находится в пределах 60-70 , а для роторного - 150-160 С.

Конденсатор

Конденсатор оставляем родной, чтоб не возиться с переделыванием линии охлаждения масла. Испаритель же отрезаем, промываем и сушим (он нам еще пригодится для будущих проектов;)).

Фильтр-осушитель и клапаны Шредера

Покупаем самый большой фильтр, так как компрессор старый, и наверняка внутри него собралось много различного мусора. Так как мы берём по минимуму, то вполне можно обойтись одним клапаном Шредера для заправки и вакуумирования:

Испаритель

Он был изготовлен на заводе, из медного цилиндра диаметром 50 мм и высотой 60 мм. Имеет 4 этажа c лабиринтами, по центру просверлено отверстие диаметром 2,5 мм - для капилляра. К сожалению, меди не осталось, и штуцер пришлось изготовить из латуни:

Вот он в разобранном состоянии:

Труборез

Можно обойтись и без него, используя ножовку, но, увы, она оставляет много стружки и заусениц, которые могут забить капилляр. Да и с труборезом намного легче управляться, разрез аккуратнее и его можно использовать в труднодоступных местах. Поэтому я и купил самый дешевый труборез:

Сделаю акцент на одной его особенности: он имеет пластмассовую рукоятку, которая от постоянной нагрузки очень быстро лопается. У меня она долго не выдержала, и, как достойная альтернатива, была использована ручка от маминого агрегата для консервации

Поэтому если не хотите лишних хлопот – будьте бдительны, и покупайте труборезы только с металлическими ручками.

Капилляр

Самым распространённым и используемым является капилляр диаметром 0,7-0,8 мм, но, увы, купить его в моём городе оказалось непосильной задачей. Обойдя все магазины, торгующие холодильной техникой, я смог найти только 0,9 мм. Задача расчета длины капилляра всегда индивидуальна, обычно для этого используют таблицу Гарри Ллойда, но, увы, в ней присутствуют только капилляры с диаметром 0,7 и 0,8 мм. Обратившись со своей проблемой в ветку «Немного экстрима или фреонка своими руками - 2» на форуме overclockers.ru, я получил в своё распоряжение программу "hlad 0.3.1", с помощью которой можно рассчитать необходимую длину капилляра.
Так как в базе данных моего компрессора нет, то основные данные были введены вручную. За объем прокачиваемого газа было взято 2,2 м3/ч. При температуре конденсации 50, и температуре кипения -30 градусов длина капилляра составила 4,1 м.

Отсасывающая трубка

Рассмотрим все возможные её вариации:

1. Медная трубка. Самый дешевый и надёжный вариант. Но есть один существенный минус - из-за плохой гибкости с ней трудно обеспечить хороший прижим испарителя к процессору.

2. Металлический заправочный шланг REFCO , идеальный вариант. Hесмотря на дороговизну, его преимущества налицо. Очень гибкий, длинный, удобный. Но найти его в продаже даже в Москве - задача весьма серьезная.

3. Желтый газовый шланг . Очень схож по свойствам с заправочным REFCO, это делает его выбором номер 2. Но имеет один существенный недостаток, - при минусовых температурах длина увеличивается на 20-30%.

4. Медная гофрированная трубка , используется при установке кондиционеров, ею заменяют медные трубки в местах крутых изгибов, где медь попросту ломается.

Самым доступным по цене является последний вариант. Найти эту трубку можно в магазинах, которые торгуют газовым либо холодильным оборудованием.

Горелка

Это, пожалуй, самый дорогой и важный инструмент, участвующий в нашей сборке. От неё зависит качество пайки и состояние нервной системы того, кто самостоятельно делает систему фазового перехода. Исходя из финансовой стороны Вашего проекта, можно из нижеприведенного списка выбрать агрегат себе по карману.

1. МАПП газ и горелка под него. Имеет температуру горения 1300 градусов цельсия, обладает достаточной мощностью для пайки трубок. Спаять испаритель им тоже возможно, но для этого объект пайки потребуется дополнительно разогревать на плите.
Цена:
горелка – в среднем 35 у.е, баллон – 12 у.е

2. Турбо-пропан. Состоит из специальной горелки и пропанового баллона. Неплохой вариант, имеет достаточную температуру горения для прогрева испарителя, но если испаритель достаточно массивный, опять же придется прибегнуть к помощи плиты. Цена горелки порядка 40 у.е.

3. Пропан-кислород.
Вот этой действительно «выбор джедая». С помощью этой горелки вы сможете паять всё - от ювелирной пайки маленьких деталей и швов до тяжелых и габаритных испарителей, конденсаторов и т.д.

Здесь я решил не экономить и взять по максимуму. Осмотр цен на готовые пропано-кислородные системы поверг меня в шок, за переносную горелку с пропановым баллоном на 5 л и 1 л кислородным, требовали от 120 до 140 у.е. Единственный выход - собирать самому по деталям. На барахолке были куплены: баллон от сжатого воздуха (6 у.е) на 1 литр, и 5-тилитровый пропановый (8 у.е). Баллон для сжатого воздуха был доставлен на заправочную станцию, где его освидетельствовали, перекрасили и заправили. Горелку я купил новую, из-за мизерной разницы в цене между б/у (10 у.е) и этой (14 у.е). Новый кислородный редуктор затянул на 18 у.е, а пропановый на 4 у.е. Ну и в довесок ко всему этому пришлось взять по 2 метра шлангов. В итоге получилась вот такая горелочка, общей стоимостью 50 у.е.:

Трубки

Изначально я не знал, трубки какого именно диаметра мне понадобятся, поэтому про запас взял по метру 6 мм, 8 мм, 10 мм и 12 мм:

Изоляция

Трубчатая изоляция представлена в любом магазине в широком ассортименте, а вот с листовой (для изоляция материнской платы) всё намного хуже. Купить её у нас в основном можно только заранее заказав, примерно по таким расценкам: за 1 квадратный метр толщиной 10 мм просят 16 у.е., а за столько же толщиной 25 мм - 34 у.е.
Поэтому было приобретено 2 метра обычного круглого K-Flex (15 мм - внутренний, 36 мм - внешний) для изоляции трубок:

А для изоляции материнской платы я купил трубчатую, но большого диаметра (10 см), и с толщиной стенки 15 мм. Преимущество её в том, что стенки тут достаточно толстые, и при разрезе из неё получается превосходная плоская изоляция:

Фреон

Для заправки системы у холодильщиков был куплен один литровый баллон фреона Р-22.

Заправочный шланг, манометры

Так как манометрическую станцию я не могу себе позволить, придется ограничиться заправочным шлангом.

Припой

Все детали в системе паялись 5% Харрисом. 3-х прутков с лихвой хватит для спайки всего контура и испарителя.

Сборка системы

Сперва я решил спаять испаритель. Так как это - один из важнейших элементов системы, то качество его пайки должно быть на высоте. За несколько минут горелка разогрела испаритель докрасна, и я нежно прошёлся прутком по соединениям. Припой очень быстро и легко заполнял все стыки, расползаясь по сторонам и порывая весь испаритель.
Чтобы проверить качество пайки, нужно опрессовать испаритель. Для этого впаиваем в него клапан Шредера (предварительно не забудьте выкрутить ниппель), надуваем фреоном и опускаем в ведро с водой. С первого же раза всё спаялось удачно и течей обнаружено не было.

После пайки на меди образуется толстый слой окалины, и не только снаружи, но и внутри, поэтому для безотказной работы его необходимо удалить.

Сделать это можно несколькими способами:

1. Промыть испаритель в концентрированной соляной или азотной кислоте.
2. Проварить испаритель в Coca-Cola.
3. Проварить его в растворе уксусной кислоты.

Вот так выглядел мой испариетль сразу после пайки...

А вот так - уже после процедуры очистки:

Через полчаса испаритель был чист, и я приступил к пайке отсасывающей трубки. Капилляр установился достаточно плотно, и я отрегулировал его так, чтобы он не доставал до дна 5-6 мм, и начал припаивать отсасывающую трубку. Правда, штуцер был из латуни, поэтому припой не «натекал» не него, и мне пришлось опять идти к холодильщикам, на этот раз за флюсом. С ним всё пошло как по маслу:

Пайка остальных деталей прошла быстро и без эксцессов.

Учтите, что фильтр нужно располагать под углом, чтобы фреон лучше стекал. Когда всё уже спаяно, полезно проверить систему на течи. Для этого заправляем ее небольшим количеством фреона и промазываем всё стыки мыльным раствором. Для большей надёжности я оставил систему с фреоном на двое суток. Через указанное время было установлено, что фреон всё еще был внутри и выходил с одинаковой интенсивностью.

Из-за горячего нрава данного компрессора для его охлаждения я решил использовать высокооборотистые советские вентиляторы типа ВН-2 общим количеством 4 штуки:

Одна пара втягивала воздух через конденсатор, другая же наоборот продувала его:

Вакуумирование и заправка

В домашних условиях самым доступным способом вакуумирования является использование в качестве вакуумного насоса старого компрессора. Но, увы, такового у меня не оказалось, поэтому я опять обратился к холодильщикам, и они с помощью вакуумного насоса REFCO за несколько минут откачали весь воздух из системы до глубокого вакуума.
Из-за большого размера конденсатора и наличия в системе ресивера, объем закачиваемого фреона достаточно велик (порядка 1 кг). В обычных фреонках этот число колеблется в переделах 300-400 грамм.
Ну что же - включаем систему, подсоединяем заправочный шланг, приоткрывая кран на баллоне на 4-6 секунд. После каждой «порции» подачи газа ждём 3-5 минут, и снова добавляем фреона. Когда испаритель начнет обмерзать, добавляем еще немного и прекращаем заправку.
Через 10-15 минут на испарителе у меня начала появляется иней, уже к 30 минуте отсасывающая трубка промерзла на 10-15 см от испарителя, а температура опустилась до «-47».

Что ж, отличный результат! Посмотрим, что будет с изоляцией. Заизолировать отсасывающую трубку особого труда не вызвало.

Включаем… и система за 15 минут выходит на -67!

Потрясающий результат. Правда, мы должны учесть несколько факторов.

1. Для работы под нагрузкой придется добавить фреона, соответственно температура повысится.
2. Мультиметр в роли термометра далеко не лучший вариант, уже после -50 он начинает местами неплохо врать, поэтому о реальной температуре мы может только догадываться. Но сам факт достижения значения «-67» очень греет душу.

Практическая проверка самодельной системы фазового перехода

Этап подготовительный - изоляция материнской платы

К изоляции материнской платы нужно подойти со всей ответственностью, ведь даже маленькая капля конденсата может привести к нестабильности в работе, а иногда и к выходу системы из строя.
Аккуратно замеряем расположение конденсаторов и прочих элементов на плате, и вырезаем под них отверстия в изоляции (в качестве последней используем разрезанную трубчатую изоляцию, о которой говорилось выше).
Вот фото прижимной пластины из оргстекла, для плотного прилегания изоляции по всей площади контакта с материнской платой:

Для изоляции околосокетной зоны не использовалась никакая диэлектрическая смазка – это оказалось ненужным, ведь у меня и так получилась стабильно работающая система.

Конденсаторы тоже были заизолированы, ведь они находятся очень близко к процессорному разъему. Из-за установленного испарителя во время работы они довольно «неплохо» промерзали и покрывались инеем.

Крепление для испарителя было сделано из 15 мм фанеры, так как она, в отличие от оргстекла, спокойно держит температуры порядка -50 градусов Цельсия и ниже, тогда как 15 мм оргстекло в таких условиях промерзает насквозь.

Дальнейшая проверка включенной системы показала полное отсутствие конденсата.

Испытание на железе

Из-за жесткости отсасывающей трубки было потрачено два дня на доработку крепления, так как изначально не было плотного контакта испарителя и процессора. После долгих мучений у меня всё-таки получилось обеспечить нормальный прижим испарителя к процессору.

Не смотря на то, что основание испарителя отшлифовано «на коленке» с помощью пасты ГОИ и мелкой наждачной бумаги, как видите, добиться зеркального отражения довольно легко.
Для обдува околосокетной зоны и перестраховки против возникновения конденсата использовался агрессивный 120-мм вентилятор:

Сначала меня немного беспокоила вибрация, которая отчетливо передавалась во все стороны по полу на расстоянии 3-х метров от собранной системы, ну и, конечно, немного трясло испаритель. Правда, на стабильность это ни коим образом не повлияло, поэтому испытания проходили в режиме «чем богаты, тем и рады».

Ну что же нам делать с системой фазового перехода? Конечно, применять для разгона компонентов системы! Теперь стабильной для процессора стала частота 3050Мгц:

Вот так выглядела собранная система в рабочем состоянии, на фото – меряем датчиком температуру испарителя при проходе 3DMark01:

В тестах типа 3DMark01, SuperPI, SienceMark, RenderBench и так далее температура испарителя держалась в пределах -35 градусов, при более тяжелых нагрузках (типа s&m) она поднималась примерно до нуля.

Процессор попался средненький, поэтому из него получилось выжать только Russian Record (WR равен 3207Мгц). А жаль, ведь до мирового не хватило всего 29 МГц! 3178 МГц - предельная частота для моего процессора, при которой сохранялась какая-то стабильность в данных условиях:

Тестирование системы, анализ результатов

Конфигурация тестового стенда:

  • Процессор: АMD Athlon 64 3000+, 2.0 GHz, 1.40 V, 512 Kb (Venice, E6);
  • Материнская плата: DFI LP UT nForce3 250Gb;
  • Подводя итог по тестовой части, следует отметить вполне закономерный рост производительности системы в зависимости от частоты центрального процессора, который можно изобразить с помощью линейного графика.
    Может, для повседневного использования именно с этой фреонкой именно этой системы не так и много, но в бенчерских целях ничего лучше не придумаешь!

    Заключение

    Для начала - подведем итоги по стоимости самодельной системы фазового перехода в моем случае:

    • кондиционер - 30 у.е
    • фильтр - 3 у.е
    • клапан Шредера - 1 у.е
    • испаритель - 15 у.е
    • труборез - 6 у.е
    • капилляр - 8 у.е
    • трубки - 8 у.е
    • горелка - 50 у.е
    • заправочный шланг – 8 у.е
    • фреон - 6 у.е
    • изоляция - 8 у.е
    • припой - 3 у.е

    всего: 144 у.е.

    Фактически за сумму, равную стоимости хорошей покупной системы водяного охлаждения, можно получить отличный инструмент, который намного больше, нежели СВО, поможет любому оверклокеру в битве за рекорды.
    Правда, есть у медали и вторая сторона.

    Для комплексной оценки проведенной работы и полученного результата можно выделить следующие основные моменты:

    плюсы -

    • дешевизна;
    • возможность получать сверхнизкие температуры на процессоре, благодаря чему достичь новых высот при разгоне;
    • моральное удовлетворение от проделанной работы;)

    минусы -

    • огромное энергопотребление;
    • большое тепловыделение (правда, зимой этот минус превратится в неплохой плюс:));
    • вибрация всей системы в целом и испарителя в частности (присутствует в конкретном случае только из-за особенностей примененного компрессора);
    • слишком большой для нормальной работы шум системы.

    Да, эту систему фазового перехода из-за перечисленных отрицательных черт нельзя использовать при работе за компьютером на протяжении длительного времени. Тем не менее, результатом лично я остался очень доволен - масса удовольствия от процесса работы и результата и возможность поработать на экстремальных частотах этого стоят!
    Ну и не стоит забывать, что это - первый опыт в построении самодельной фреонки, который, безусловно, удался!

    Желаю всем удачи и низких температур!

    У Вас есть пожелания, критические замечания по данному материалу? Его обсуждение ведется .


Похоже, Россия становится не только "родиной слонов" и великих комбинаторов, но и местом рождения остроумных технических решений для современных высокопроизводительных вычислительных систем.

В начале двадцатого века паровозы доставляли пассажиров из Москвы в Санкт-Петербург за десять часов. При этом их КПД не превышал семи процентов. То есть использовалась только одна четырнадцатая часть энергии дров и угля, а остальные тринадцать обогревали атмосферу. Конструкторы тех лет придумывали самые изощренные способы, дабы сохранить тепло. Процессоры в современных серверных стойках тоже обогревают атмосферу, однако в данном случае конструкторы преследуют диаметрально противоположную цель - отвести от чипа как можно больше избыточного тепла.

Современные высокопроизводительные процессоры греются не хуже ламп накаливания; "топовые" модели производят до 130 Вт тепла, а порой и больше. Теперь представьте, что в одном сервере толщиной в один юнит (1,75 дюйма, около 4,4 см) может находиться два таких процессора, а юнитов в стойке - до сорока двух штук. Количеству выделяемых стойкой калорий позавидует иная тепловая пушка, обогревающая производственные помещения.

Но это не все трудности, встающие на пути инженеров-разработчиков высокопроизводительных систем. Вторая проблема - малый размер процессоров. Чтобы отвести тепло с небольшой площади радиатора, необходимо обдувать его очень большим количеством воздуха, а значит, вентиляторы должны быть высокопроизводительными и, как следствие, шумными.

Компания Cray - всемирно известная своими суперкомпьютерами, пошла по иному пути. Например, в модели ETA-10 была применена система охлаждения процессоров жидким азотом, что позволило вдвое повысить производительность. С эффективностью такой системы не поспоришь, однако ее цена заставляет задуматься даже военные ведомства. Так что применение этой технологии пока остается уделом сверхплотных и сверхпроизводительных систем стоимостью несколько сот тысяч и даже миллионов долларов.

Другой способ - закрытые кондиционированные шкафы, куда подается уже сильно охлажденный воздух. Но и здесь есть свои трудности. Во-первых, стоимость подобных шкафов и затраты на их эксплуатацию хоть и в разы меньше, чем у системы на азоте, тем не менее весьма высоки. Несмотря на кажущуюся простоту, приходится искать решения множества технологических задач, таких как равномерное распределение холодного воздуха в стойке, интенсивный отвод теплого воздуха, герметичность. Становится очень важным правильное распределение (не всегда совпадающее с желаемым) серверов внутри стойки и прочие тонкости. Да и КПД такой системы охлаждения тоже оказывается не на высоте: получается тройная передача тепловой энергии - сначала охлаждается фреон, который затем охлаждает воздух, а воздух, в свою очередь, охлаждает процессоры.

Специалисты российской компании Kraftway, изучив проблему, подумали: а зачем вообще нужен воздух в этой системе "теплых взаимоотношений"? И решили охлаждать процессоры сразу фреоном кондиционера.

Однако не все так просто. Подумайте, легко ли конфигурировать систему, насквозь пронизанную трубками с фреоном?! Поэтому было решено охлаждать не сами процессоры, которые располагаются в разных серверах по-разному, а сначала отводить тепло от раскаленных невероятной вычислительной мощностью ядер тепловыми трубками. То есть один ее конец располагается на самом процессоре, отбирая тепло, а другой - выводится на заднюю стенку сервера. Тем самым упрощается не только конструкция охладителя, но и процесс замены серверов: достаточно отвинтить тепловую трубку и вынуть корпус из стойки, не останавливая и не разбирая всю систему охлаждения.

Устройство тепловой трубки тоже заслуживает упоминания. Как известно, в них применяются самые разные теплоносители (вода, эфир, фреон). Однако большинство из них не обладают достаточной производительностью. Даже вода, несмотря на свою впечатляющую теплоемкость, не может справиться с той скоростью отвода тепла, которая требуется для современных процессоров. [Главная проблема - скорость циркуляции. Есть, однако, примеры и удачного применения воды. Компания Icebear System построила систему водяного охлаждения для стоек. Мне, правда, не приходилось встречать сообщений о ее реальных применениях. К тому же прототип этой системы был предназначен только для машин на базе процессоров Opteron]. Есть и другой момент: представьте, что трубка вдруг начнет протекать... это явно не обрадует электрические схемы материнской платы.

Применение фреона позволяет добиться необходимой производительности и безопасности. В случае протечки он тут же улетучивается, а теплоемкость его испарения сравнима с водой. Устроена трубка следующим образом. Жидкий фреон по капиллярной губке направляется к процессору, там, испаряясь, поднимается к "утюжкам" (рис. 2), прикрепленным к постоянно охлаждаемой металлической колонне (о ней будет рассказано ниже), в которых он охлаждается и, конденсируясь, стекает вниз в горизонтальную часть трубки, где благодаря капиллярному эффекту попадает обратно к ядру процессора. Далее - по кругу. Надежность такой замкнутой и герметичной системы очень высока.

Однако выведя процессорное тепло наружу, мы решили только половину задачи. Ведь его все равно нужно каким-то образом передать дальше, "на улицу". Тут и выступает на сцену вышеупомянутая колонна, к которой прикреплены горячие "утюжки" тепловых трубок. Несмотря на свой заурядный вид, она вовсе не является копией морозилки бытового холодильника.

Внутри этой прямоугольной тепловой колонны расположена медная трубка с массой мельчайших отверстий [Как утверждают разработчики, для их изготовления пришлось применить лазерное сверление, ведь диаметр отверстий не превышает нескольких десятков микрон], в которую специальная помпа подает хладагент [Используется опять же фреон, однако любителям природы не стоит волноваться, - применяется безопасная для озонового слоя марка хладона (HFC R142b)]. Протекая по трубке, фреон через отверстия разбрызгивается на внутреннюю поверхность колонны. Испаряясь на ней, он отбирает тепло у "утюжков" и уходит по трубке к основному компрессору [Вообще, "теплый конец" - это стандартный внешний блок сплит-системы кондиционирования воздуха], который может быть расположен далеко за пределами стойки (например, на улице вместе с радиатором охлаждения хладагента). Дополнительная помпа (рис. 1) понадобилась для того, чтобы регулировать нагрузку: стойка с серверами может быть заполнена только частично, и охлаждать колонну целиком - пустая трата энергии. С другой стороны, основной компрессор кондиционера работает на постоянных оборотах, и снижать их недопустимо, так как он может просто-напросто сгореть (можно вспомнить частые случаи перегорания компрессоров холодильников в сельской местности из-за пониженного напряжения). Поэтому оказалось рациональнее (хоть это немного и усложнило конструкцию) поставить дополнительную помпу непосредственно в стойке и управлять уже ее оборотами. Таким образом, инженеры продолжают бороться за общее повышение КПД системы.

Итак, получается двойная, а не тройная система охлаждения. Сначала нагревается непосредственно фреон, минуя воздушную стадию (нагревом корпуса трубок можно пренебречь), и уже он отдает тепло окружающему воздуху, причем далеко за пределами серверной стойки.

Если мы избавились от воздушного охлаждения процессоров, то нет необходимости в большом количестве вентиляторов внутри каждого сервера. По утверждению разработчика, для охлаждения всех оставшихся схем, включая жесткий диск и блок питания, достаточно лишь одного вентилятора на корпус. Это радикально снижает шум, что позволяет размещать такие стойки внутри рабочих комнат, не вынося их в специальные помещения.

Представители компании Kraftway очень неохотно отвечали на вопрос о возможной стоимости подобной системы. Ссылаясь на то, что пока существует только прототип и многие решения еще не вышли на стадию массового производства, говорить о конкретных расчетах слишком трудно. Однако мне удалось в приватной беседе выяснить, что ориентировочная стоимость в расчете на один процессор не должна превышать пятидесяти долларов (не забывайте, что речь идет о многопроцессорных системах с количеством чипов около сотни). Это, согласитесь, уже близко к цене обычных медных радиаторов и, разумеется, гораздо меньше стоимости систем на жидком азоте.

Похоже, Россия становится не только "родиной слонов" и великих комбинаторов, но и местом рождения остроумных технических решений для современных высокопроизводительных вычислительных систем. Возможно, недалек тот день, когда первые строчки знаменитого Top 500 будут занимать компьютеры, построенные именно у нас.

Из журнала "Компьютерра"

Часто для построения большого радиатора используют тепловые трубки (англ.: heat pipe ) — герметично запаянные и специальным образом устроенные металлические трубки (обычно медные). Они очень эффективно переносят тепло от одного своего конца к другому: таким образом, даже самые дальние рёбра большого радиатора эффективно работают в охлаждении. Так, например, устроен популярный кулер

Для охлаждения современных производительных графических процессоров применяют те же методы: большие радиаторы, медные сердечники систем охлаждения или полностью медные радиаторы, тепловые трубки для переноса тепла к дополнительным радиаторам:

Рекомендации по выбору здесь такие же: использовать медленные и крупноразмерные вентиляторы, максимально большие радиаторы. Так, например, выглядят популярные системы охлаждения видеокарт и Zalman VF900 :

Обычно вентиляторы систем охлаждения видеокарт лишь перемешивали воздух внутри системного блока, что не очень эффективно, с точки зрения охлаждения всего компьютера. Лишь совсем недавно для охлаждения видеокарт стали применять системы охлаждения, которые выносят горячий воздух за пределы корпуса: первыми стали и, схожая конструкция, от бренда :

Подобные системы охлаждения устанавливаются на самые мощные современные видеокарты (nVidia GeForce 8800, ATI x1800XT и старше). Такая конструкция зачастую более оправдана, с точки зрения правильной организации воздушных потоков внутри корпуса компьютера, чем традиционные схемы. Организация воздушных потоков

Современные стандарты по конструированию корпусов компьютеров среди прочего регламентируют и способ построения системы охлаждения. Начиная ещё с , выпуск которых был начат в 1997 году, внедряется технология охлаждения компьютера сквозным воздушным потоком, направленным от передней стенки корпуса к задней (дополнительно воздух для охлаждения всасывается через левую стенку):

Интересующихся подробностями отсылаю к последним версиям стандарта ATX.

Как минимум один вентилятор установлен в блоке питания компьютера (многие современные модели имеют два вентилятора, что позволяет существенно снизить скорость вращения каждого из них, а, значит, и шум при работе). В любом месте внутри корпуса компьютера можно устанавливать дополнительные вентиляторы для усиления потоков воздуха. Обязательно нужно следовать правилу: на передней и левой боковой стенке воздух нагнетается внутрь корпуса, на задней стенке горячий воздух выбрасывается наружу . Также нужно проконтролировать, чтобы поток горячего воздуха от задней стенки компьютера не попадал напрямик в воздухозабор на левой стенке компьютера (такое случается при определённых положениях системного блока относительно стен комнаты и мебели). Какие вентиляторы устанавливать, зависит в первую очередь от наличия соответствующих креплений в стенках корпуса. Шум вентилятора главным образом определяется скоростью его вращения (см. раздел ), поэтому рекомендуется использовать медленные (тихие) модели вентиляторов. При равных установочных размерах и скорости вращения, вентиляторы на задней стенке корпуса субъективно шумят несколько меньше передних: во-первых, они находятся дальше от пользователя, во-вторых, сзади корпуса расположены почти прозрачные решётки, в то время как спереди - различные декоративные элементы. Часто шум создаётся вследствие огибания элементов передней панели воздушным потоком: если переносимый объём воздушного потока превышает некий предел, на передней панели корпуса компьютера образуются вихревые турбулентные потоки, которые создают характерный шум (он напоминает шипение пылесоса, но гораздо тише).

Выбор компьютерного корпуса

Практически подавляющее большинство корпусов для компьютеров, представленных сегодня на рынке, соответствуют одной из версий стандарта ATX, в том числе и по части охлаждения. Самые дешёвые корпуса не комплектуются ни блоком питания, ни дополнительными приспособлениями. Более дорогие корпуса оснащаются вентиляторами для охлаждения корпуса, реже - переходниками для подключения вентиляторов различными способами; иногда даже специальным контроллером, оснащённым термодатчиками, который позволяет плавно регулировать скорость вращения одного или нескольких вентиляторов в зависимости от температуры основных узлов (см. напр. ). Блок питания включается в комплект не всегда: многие покупатели предпочитают выбирать БП самостоятельно. Из прочих вариантов дополнительного оснащения стоит отметить специальные крепления боковых стенок, жёстких дисков, оптических приводов, карт расширения, которые позволяют собирать компьютер без отвёртки; пылевые фильтры, препятствующие попаданию грязи внутрь компьютера через вентиляционные отверстия; различные патрубки для направления воздушных потоков внутри корпуса. Исследуем вентилятор

Для переноса воздуха в системах охлаждения используют вентиляторы (англ.: fan ).

Устройство вентилятора

Вентилятор состоит из корпуса (обычно в виде рамки), электродвигателя и крыльчатки, закреплённой при помощи подшипников на одной оси с двигателем:

От типа установленных подшипников зависит надёжность вентилятора. Производители заявляют такое типичное время наработки на отказ (количество лет получено из расчёта круглосуточной работы):

С учётом морального старения компьютерной техники (для домашнего и офисного применения это 2-3 года), вентиляторы с шарикоподшипниками можно считать «вечными»: срок их работы не меньше типового срока работы компьютера. Для более серьёзных применений, где компьютер должен работать круглосуточно много лет, стоит подобрать более надёжные вентиляторы.

Многие сталкивались со старыми вентиляторами, в которых подшипники скольжения выработали свой ресурс: вал крыльчатки дребезжит и вибрирует при работе, издавая характерный рычащий звук. В принципе, такой подшипник можно отремонтировать, смазав его твёрдой смазкой, - но многие ли согласятся ремонтировать вентилятор, цена которому всего пара долларов?

Характеристики вентиляторов

Вентиляторы различаются по своему размеру и толщине: обычно в компьютерах встречаются типоразмеры 40×40×10 мм, для охлаждения видеокарт и карманов для жёстких дисков, а также 80×80×25, 92×92×25, 120×120×25 мм для охлаждения корпуса. Также вентиляторы различаются типом и конструкцией устанавливаемых электродвигателей: они потребляют различный ток и обеспечивают разную скорость вращения крыльчатки. От размеров вентилятора и скорости вращения лопастей крыльчатки зависит производительность: создаваемое статическое давление и максимальный объём переносимого воздуха.

Объём переносимого вентилятором воздуха (расход) измеряется в кубометрах в минуту или кубических футах в минуту (CFM, cubic feet per minute). Производительность вентилятора, указанная в характеристиках, измеряется при нулевом давлении: вентилятор работает в открытом пространстве. Внутри корпуса компьютера вентилятор дует в системный блок определенного размера, потому он создаёт в обслуживаемом объёме избыточное давление. Естественно, что объёмная производительность будет приблизительно обратно пропорциональна создаваемому давлению. Конкретный вид расходной характеристики зависит от формы использованной крыльчатки и других параметров конкретной модели. Например, соответствующий график для вентилятора :

Из этого следует простой вывод: чем интенсивнее работают вентиляторы в задней части корпуса компьютера, тем больше воздуха можно будет прокачать через всю систему, и тем эффективнее будет охлаждение.

Уровень шума вентиляторов

Уровень шума, создаваемый вентилятором при работе, зависит от различных его характеристик (подробнее о причинах его возникновения можно прочесть в статье ). Несложно установить зависимость между производительностью и шумом вентилятора. На сайте крупного производителя популярных систем охлаждения , в мы видим: многие вентиляторы одного и того же размера комплектуются разными электродвигателями, которые рассчитаны на различную скорость вращения. Поскольку крыльчатка используется одна и та же, получаем интересующие нас данные: характеристики одного и того же вентилятора при разных скоростях вращения. Составляем таблицу для трёх самых распространённых типоразмеров: толщина 25 мм, и .

Жирным шрифтом выделены самые популярные типы вентиляторов.

Посчитав коэффициент пропорциональности потока воздуха и уровня шума к оборотам, видим почти полное совпадение. Для очистки совести считаем отклонения от среднего: меньше 5%. Таким образом, мы получили три линейные зависимости, по 5 точек каждая. Не Бог весть, какая статистика, но для линейной зависимости этого достаточно: гипотезу считаем подтверждённой.

Объёмная производительность вентилятора пропорциональна количеству оборотов крыльчатки, то же самое справедливо и для уровня шума .

Используя полученную гипотезу, мы можем экстраполировать полученные результаты методом наименьших квадратов (МНК): в таблице эти значения выделены наклонным шрифтом. Нужно, однако, помнить: область применения этой модели ограничена. Исследованная зависимость линейна в некотором диапазоне скоростей вращения; логично предположить, что линейный характер зависимости сохранится и в некоторой окрестности этого диапазона; но при очень больших и очень малых оборотах картина может существенно измениться.

Теперь рассмотрим линейку вентиляторов другого производителя: , и . Составим аналогичную табличку:

Наклонным шрифтом выделены расчётные данные.
Как было сказано выше, при значениях скорости вращения вентилятора, существенно отличающихся от исследованных, линейная модель может быть неверна. Полученные экстраполяцией значения следует понимать как приблизительную оценку.

Обратим внимание на два обстоятельства. Во-первых, вентиляторы GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan: см. графу прирост . А уровень шума при одинаковых оборотах примерно равен : пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов — их можно только сравнивать между собой для разных моделей вентиляторов.

Ценовые категории вентиляторов

Рассмотрим фактор стоимости. Для примера возьмём в одном и том же интернет-магазине и : результаты вписаны в приведённых выше таблицах (рассматривались вентиляторы с двумя шарикоподшипниками). Как видно, вентиляторы этих двух производителей принадлежат к двум разным классам: GlacialTech работают на более низких оборотах, потому меньше шумят; при одинаковых оборотах они эффективнее Titan - но они всегда дороже на доллар-другой. Если нужно собрать наименее шумную систему охлаждения (например, для домашнего компьютера), придётся раскошелиться на более дорогие вентиляторы со сложной формой лопастей. При отсутствии таких строгих требований или при ограниченном бюджете (например, для офисного компьютера), вполне подойдут и более простые вентиляторы. Различный тип подвеса крыльчатки, используемый в вентиляторах (подробнее см. раздел ), также влияет на стоимость: вентилятор тем дороже, чем более сложные подшипники используются.

Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных - «земля», общий контакт (чёрный провод); +5 В - красный, +12 В - жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный («земля») и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5-7 В обеспечивает примерно половинную скорость вращения. Предпочтительно использовать более высокое напряжение, так как не каждый электромотор в состоянии надёжно запускаться при чересчур низком напряжении питания.

Как показывает опыт, скорость вращения вентилятора при подключении к +5 В, +6 В и +7 В примерно одинакова (с точностью до 10%, что сравнимо с точностью измерений: скорость вращения постоянно изменяется и зависит от множества факторов, вроде температуры воздуха, малейшего сквозняка в комнате и т. п.)

Напоминаю, что производитель гарантирует стабильную работу своих устройств только при использовании стандартного напряжения питания . Но, как показывает практика, подавляющее большинство вентиляторов отлично запускаются и при пониженном напряжении.

Контакты зафиксированы в пластмассовой части разъёма при помощи пары отгибающихся металлических «усиков». Не составляет труда извлечь контакт, придавив выступающие части тонким шилом или маленькой отвёрткой. После этого «усики» нужно опять разогнуть в стороны, и вставить контакт в соответствующее гнездо пластмассовой части разъёма:

Иногда кулеры и вентиляторы оборудуются двумя разъёмами: подключёнными параллельно молекс- и трёх- (или четырёх-) контактным. В таком случае подключать питание нужно только через один из них :

В некоторых случаях используется не один молекс-разъём, а пара «мама-папа»: так можно подключить вентилятор к тому же проводу от блока питания, который запитывает жёсткий диск или оптический привод. Если вы переставляете контакты в разъёме, чтобы получить на вентиляторе нестандартное напряжение, обратите особое внимание на то, чтобы переставить контакты во втором разъёме в точности таком же порядке . Невыполнение этого требования чревато подачей неверного напряжения питания на жёсткий диск или оптический привод, что наверняка приведёт к их мгновенному выходу из строя.

В трёхконтактных разъёмах ключом для установки служит пара выступающих направляющих с одной стороны:

Ответная часть находится на контактной площадке, при подключении она входит между направляющими, также выполняя роль фиксатора. Соответствующие разъёмы для питания вентиляторов находятся на материнской плате (как правило, несколько штук в разных местах платы) или на плате специального контроллера, управляющего вентиляторами:

Помимо «земли» (чёрный провод) и +12 В (обычно красный, реже: жёлтый), есть ещё тахометрический контакт: он используется для контроля скорости вращения вентилятора (белый, синий, жёлтый или зелёный провод). Если вам не нужна возможность контроля над оборотами вентилятора, то этот контакт можно не подключать. Если питание вентилятора подведено отдельно (например, через молекс-разъём), допустимо при помощи трёхконтактного разъёма подключить только контакт контроля за оборотами и общий провод - такая схема часто используется для мониторинга скорости вращения вентилятора блока питания, который запитывается и управляется внутренними схемами БП.

Четырёхконтактные разъёмы появились сравнительно недавно на материнских платах с процессорными разъёмами LGA 775 и socket AM2. Отличаются они наличием дополнительного четвёртого контакта, при этом полностью механически и электрически совместимы с трёхконтактными разъёмами:

Два одинаковых вентилятора с трёхконтактными разъёмами можно подключить последовательно к одному разъёму питания. Таким образом, на каждый из электромоторов будет приходится по 6 В питающего напряжения, оба вентилятора будут вращаться с половинной скоростью. Для такого соединения удобно использовать разъёмы питания вентиляторов: контакты легко извлечь из пластмассового корпуса, придавив фиксирующий «язычок» отвёрткой. Схема подключения приведена на рисунке далее. Один из разъёмов подключается к материнской плате, как обычно: он будет обеспечивать питанием оба вентилятора. Во втором разъёме при помощи кусочка проволоки нужно закоротить два контакта, после чего заизолировать его скотчем или изолентой:

Настоятельно не рекомендуется соединять таким способом два разных электромотора : из-за неравенства электрических характеристик в различных режимах работы (запуск, разгон, стабильное вращение) один из вентиляторов может не запускаться вовсе (что чревато выходом электромотора из строя) или требовать для запуска чрезмерно большой ток (чревато выходом из строя управляющих цепей).

Часто для ограничения скорости вращения вентилятора примеряются постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно помнить, что, во-первых, резисторы греются, рассеивая часть электрической мощности в виде тепла, - это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры резистора, достаточно знать закон Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем потребляет электродвигатель. Однако лично я не приветствую ручное управление охлаждением, так как считаю, что компьютер - вполне подходящее устройство, чтобы управлять системой охлаждения автоматически, без вмешательства пользователя.

Контроль и управление вентиляторами

Большинство современных материнских плат позволяет контролировать скорость вращения вентиляторов, подключённых к некоторым трёх- или четырёхконтактным разъёмам. Более того, некоторые из разъёмов поддерживают программное управление скоростью вращения подключённого вентилятора. Не все размещённые на плате разъёмы предоставляют такие возможности: например, на популярной плате Asus A8N-E есть пять разъёмов для питания вентиляторов, контроль над скоростью вращения поддерживают только три из них (CPU, CHIP, CHA1), а управление скоростью вентилятора - только один (CPU); материнская плата Asus P5B имеет четыре разъёма, все четыре поддерживают контроль за скоростью вращения, управление скоростью вращения имеет два канала: CPU, CASE1/2 (скорость двух корпусных вентиляторов изменяется синхронно). Количество разъёмов с возможностями контроля или управления скоростью вращения зависит не от используемого чипсета или южного моста, а от конкретной модели материнской платы: модели разных производителей могут различаться в этом отношении. Часто разработчики плат намеренно лишают более дешёвые модели возможностей управления скоростью вентиляторов. Например, материнская плата для процессоров Intel Pentiun 4 Asus P4P800 SE способна регулировать обороты кулера процессора, а её удешевлённый вариант Asus P4P800-X - нет. В таком случае можно использовать специальные устройства, которые способны управлять скоростью нескольких вентиляторов (и, обычно, предусматривают подключение целого ряда температурных датчиков) - их появляется всё больше на современном рынке.

Контролировать значения скорости вращения вентиляторов можно при помощи BIOS Setup. Как правило, если материнская плата поддерживает изменение скорости вращения вентиляторов, здесь же в BIOS Setup можно настроить параметры алгоритма регулирования скорости. Набор параметров различен для разных материнских плат; обычно алгоритм использует показания термодатчиков, встроенных в процессор и материнскую плату. Существует ряд программ для различных ОС, которые позволяют контролировать и регулировать скорость вентиляторов, а также следить за температурой различных компонентов внутри компьютера. Производители некоторых материнских плат комплектуют свои изделия фирменными программами для Windows: Asus PC Probe, MSI CoreCenter, Abit µGuru, Gigabyte EasyTune, Foxconn SuperStep и т.д. Распространено несколько универсальных программ, среди них: (shareware, $20-30), (распространяется бесплатно, не обновляется с 2004 года). Самая популярная программа этого класса - :

Эти программы позволяют следить за целым рядом температурных датчиков, которые устанавливаются в современные процессоры, материнские платы, видеокарты и жёсткие диски. Также программа отслеживает скорость вращения вентиляторов, которые подключены к разъёмам материнской платы с соответствующей поддержкой. Наконец, программа способна автоматически регулировать скорость вентиляторов в зависимости от температуры наблюдаемых объектов (если производитель системной платы реализовал аппаратную поддержку этой возможности). На приведённом выше рисунке программа настроена на управление только вентилятором процессора: при невысокой температуре ЦП (36°C) он вращается со скоростью около 1000 об/мин, - это 35% от максимальной скорости (2800 об/мин). Настройка таких программ сводится к трём шагам:

  1. определению, к каким из каналов контроллера материнской платы подключены вентиляторы, и какие из них могут управляться программно;
  2. указанию, какие из температур должны влиять на скорость различных вентиляторов;
  3. заданию температурных порогов для каждого датчика температуры и диапазона рабочих скоростей для вентиляторов.

Возможностями по мониторингу также обладают многие программы для тестирования и тонкой настройки компьютеров: , и т. д.

Многие современные видеокарты также позволяют регулировать обороты вентилятора системы охлаждения в зависимости от нагрева графического процессора. При помощи специальных программ можно даже изменять настройки механизма охлаждения, снижая уровень шума от видеокарты в отсутствие нагрузки. Так выглядят в программе оптимальные настройки для видеокарты HIS X800GTO IceQ II :

Пассивное охлаждение

Пассивными системами охлаждения принято называть такие, которые не содержат вентиляторов. Пассивным охлаждением могут довольствоваться отдельные компоненты компьютера, при условии, что их радиаторы помещены в достаточный поток воздуха, создаваемый «чужими» вентиляторами: например, микросхема чипсета часто охлаждается большим радиатором, расположенным вблизи места установки процессорного кулера. Популярны также пассивные системы охлаждения видеокарт, например, :

Очевидно, чем больше радиаторов приходится продувать одному вентилятору, тем большее сопротивление потоку ему нужно преодолеть; таким образом, при увеличении количества радиаторов часто приходится увеличивать скорость вращения крыльчатки. Эффективнее использовать много тихоходных вентиляторов большого диаметра, а пассивные системы охлаждения предпочтительнее избегать. Несмотря на то, что выпускаются пассивные радиаторы для процессоров, видеокарты с пассивным охлаждением, даже блоки питания без вентиляторов (FSP Zen), попытка собрать компьютер совсем без вентиляторов из всех этих компонент наверняка приведёт к постоянным перегревам. Потому, что современный высокопроизводительный компьютер рассеивает слишком много тепла, чтобы охлаждаться только лишь пассивными системами. Из-за низкой теплопроводности воздуха, сложно организовать эффективное пассивное охлаждение для всего компьютера, разве что превратить в радиатор весь корпус компьютера, как это сделано в :

Сравните корпус-радиатор на фото с корпусом обычного компьютера!

Возможно, полностью пассивного охлаждения будет достаточно для маломощных специализированных компьютеров (для доступа в интернет, для прослушивания музыки и просмотра видео, и т.п.) Охлаждение экономией

В старые времена, когда энергопотребление процессоров не достигло ещё критических величин - для их охлаждения хватало небольшого радиатора - вопрос «что будет делать компьютер, когда делать ничего не нужно?» решался просто: пока не надо выполнять команды пользователя или запущенные программы, ОС даёт процессору команду NOP (No OPeration, нет операции). Эта команда заставляет процессор выполнить бессмысленную безрезультатную операцию, результат которой игнорируется. На это тратится не только время, но и электроэнергия, которая, в свою очередь, преобразуется в тепло. Типичный домашний или офисный компьютер в отсутствие ресурсоёмких задач загружен, как правило, всего на 10% - любой может удостовериться в этом, запустив Диспетчер задач Windows и понаблюдав за Хронологией загрузки ЦП (Центрального Процессора). Таким образом, при старом подходе около 90% процессорного времени улетало на ветер: ЦП занимался выполнением никому не нужных команд. Более новые ОС (Windows 2000 и далее) в аналогичной ситуации поступают разумнее: при помощи команды HLT (Halt, останов) процессор полностью останавливается на короткое время - это, очевидно, позволяет снизить потребление энергии и температуру процессора при отсутствии ресурсоёмких задач.

Компьютерщики со стажем могут припомнить целый ряд программ для «программного охлаждения процессора»: будучи запущенными под управлением Windows 95/98/ME они останавливали процессор с помощью HLT, вместо повторения бессмысленных NOP, чем снижали температуру процессора в отсутствие вычислительных задач. Соответственно, использование таких программ под управлением Windows 2000 и более новых ОС лишено всякого смысла.

Современные процессоры потребляют настолько много энергии (а это значит: рассеивают её в виде тепла, то есть греются), что разработчики создали дополнительные технические по борьбе с возможным перегревом, а также средства, повышающие эффективность механизмов экономии при простое компьютера.

Тепловая защита процессора

Для защиты процессора от перегрева и выхода из строя, применяется так называемый thermal throttling (обычно не переводят: троттлинг). Суть этого механизма проста: если температура процессора превышает допустимую, процессор принудительно останавливается командой HLT, чтобы кристалл имел возможность остыть. В ранних реализациях этого механизма через BIOS Setup можно было настраивать, какую долю времени процессор будет простаивать (параметр CPU Throttling Duty Cycle: xx%); новые реализации «тормозят» процессор автоматически до тех пор, пока температура кристалла не опустится до допустимого уровня. Безусловно, пользователь заинтересован в том, чтобы процессор не прохлаждался (буквально!), а выполнял полезную работу — для этого нужно использовать достаточно эффективную систему охлаждения. Проверить, не включается ли механизм тепловой защиты процессора (троттлинга) можно при помощи специальных утилит, например :

Минимизация потребления энергии

Практически все современные процессоры поддерживают специальные технологии для снижения потребления энергии (и, соответственно, нагрева). Разные производители называют такие технологии по-разному, например: Enhanced Intel SpeedStep Technology (EIST), AMD Cool’n’Quiet (CnQ, C&Q) - но работают они, по сути, одинаково. Когда компьютер простаивает, и процессор не загружен вычислительными задачами, уменьшается тактовая частота и напряжение питания процессора. И то, и другое уменьшает потребление процессором электроэнергии, что, в свою очередь, сокращает тепловыделение. Как только загрузка процессора увеличивается, автоматически восстанавливается полная скорость процессора: работа такой схемы энергосбережения полностью прозрачна для пользователя и запускаемых программ. Для включения такой системы нужно:

  1. включить использование поддерживаемой технологии в BIOS Setup;
  2. установить в используемой ОС соответствующие драйверы (обычно это драйвер процессора);
  3. в Панели управления Windows (Control Panel), в разделе Электропитание (Power Management), на закладке Схемы управления питанием (Power Schemes) выбрать в списке схему Диспетчер энергосбережения (Minimal Power Management).

Например, для материнской платы Asus A8N-E с процессором нужно (подробные инструкции приведены в Руководстве пользователя):

  1. в BIOS Setup в разделе Advanced > CPU Configuration > AMD CPU Cool & Quiet Configuration параметр Cool N"Quiet переключить в Enabled; а в разделе Power параметр ACPI 2.0 Support переключить в Yes;
  2. установить ;
  3. см. выше.

Проверить, что частота процессора изменяется, можно при помощи любой программы, отображающей тактовую частоту процессора: от специализированных типа , вплоть до Панели управления Windows (Control Panel), раздел Система (System):


AMD Cool"n"Quiet в действии: текущая частота процессора (994 МГц) меньше номинальной (1,8 ГГц)

Часто производители материнских плат дополнительно комплектуют свои изделия наглядными программами, наглядно демонстрирующими работу механизма изменения частоты и напряжения процессора, например, Asus Cool&Quiet:

Частота процессора изменяется от максимальной (при наличии вычислительной нагрузки), до некоторой минимальной (при отсутствии загрузки ЦП).

Утилита RMClock

Во время разработки набора программ для комплексного тестирования процессоров , была создана (RightMark CPU Clock/Power Utility): она предназначена для наблюдения, настройки и управления энергосберегающими возможностями современных процессоров. Утилита поддерживает все современные процессоры и самые разные системы управления потреблением энергии (частотой, напряжением…) Программа позволяет наблюдать за возникновением троттлинга, за изменением частоты и напряжения питания процессора. Используя RMClock, можно настраивать и использовать всё, что позволяют стандартные средства: BIOS Setup, управление энергопотреблением со стороны ОС при помощи драйвера процессора. Но возможности этой утилиты гораздо шире: с её помощью можно настраивать целый ряд параметров, которые не доступны для настройки стандартным образом. Особенно это важно при использовании разогнанных систем, когда процессор работает быстрее штатной частоты.

Авторазгон видеокарты

Подобный метод используют и разработчики видеокарт: полная мощность графического процессора нужна только в 3D-режиме, а с рабочим столом в 2D-режиме современный графический чип справится и при пониженной частоте. Многие современные видеокарты настроены так, чтобы графический чип обслуживал рабочий стол (2D-режим) с пониженной частотой, энергопотреблением и тепловыделением; соответственно, вентилятор охлаждения крутится медленнее и шумит меньше. Видеокарта начинает работать на полную мощность только при запуске 3D-приложений, например, компьютерных игр. Аналогичную логику можно реализовать программно, при помощи различных утилит по тонкой настройке и разгону видеокарт. Для примера, так выглядят настройки автоматического разгона в программе для видеокарты HIS X800GTO IceQ II :

Тихий компьютер: миф или реальность?

С точки зрения пользователя, достаточно тихим будет считаться такой компьютер, шум которого не превышает окружающего шумового фона. Днём, с учётом шума улицы за окном, а также шума в офисе или на производстве, компьютеру позволительно шуметь чуть больше. Домашний компьютер, который планируется использовать круглосуточно, ночью должен вести себя потише. Как показала практика, практически любой современный мощный компьютер можно заставить работать достаточно тихо. Опишу несколько примеров из моей практики.

Пример 1: платформа Intel Pentium 4

В моём офисе используется 10 компьютеров Intel Pentium 4 3,0 ГГц со стандартными процессорными кулерами. Все машины собраны в недорогих корпусах Fortex ценой до $30, установлены блоки питания Chieftec 310-102 (310 Вт, 1 вентилятор 80?80?25 мм). В каждом из корпусов на задней стенке был установлен вентилятор 80?80?25 мм (3000 об/мин, шум 33 дБА) - они были заменены вентиляторами с такой же производительностью 120?120?25 мм (950 об/мин, шум 19 дБА). В файловом сервере локальной сети для дополнительного охлаждения жёстких дисков на передней стенке установлены 2 вентилятора 80?80?25 мм , подключённые последовательно (скорость 1500 об/мин, шум 20 дБА). В большинстве компьютеров использована материнская плата Asus P4P800 SE , которая способна регулировать обороты кулера процессора. В двух компьютерах установлены более дешёвые платы Asus P4P800-X , где обороты кулера не регулируются; чтобы снизить шум от этих машин, кулеры процессоров были заменены (1900 об/мин, шум 20 дБА).
Результат : компьютеры шумят тише, чем кондиционеры; их практически не слышно.

Пример 2: платформа Intel Core 2 Duo

Домашний компьютер на новом процессоре Intel Core 2 Duo E6400 (2,13 ГГц) со стандартным процессорным кулером был собран в недорогом корпусе aigo ценой $25, установлен блок питания Chieftec 360-102DF (360 Вт, 2 вентилятора 80×80×25 мм). В передней и задней стенках корпуса установлены 2 вентилятора 80×80×25 мм , подключённые последовательно (скорость регулируется, от 750 до 1500 об/мин, шум до 20 дБА). Использована материнская плата Asus P5B , которая способна регулировать обороты кулера процессора и вентиляторов корпуса. Установлена видеокарта с пассивной системой охлаждения.
Результат : компьютер шумит так, что днём его не слышно за обычным шумом в квартире (разговоры, шаги, улица за окном и т. п.).

Пример 3: платформа AMD Athlon 64

Мой домашний компьютер на процессоре AMD Athlon 64 3000+ (1,8 ГГц) собран в недорогом корпусе Delux ценой до $30, сначала содержал блок питания CoolerMaster RS-380 (380 Вт, 1 вентилятор 80?80?25 мм) и видеокарту GlacialTech SilentBlade GT80252BDL-1 , подключенными к +5 В (около 850 об/мин, шум меньше 17 дБА). Используется материнская плата Asus A8N-E , которая способна регулировать обороты кулера процессора (до 2800 об/мин, шум до 26 дБА, в режиме простоя кулер вращается около 1000 об/мин и шумит меньше 18 дБА). Проблема этой материнской платы: охлаждение микросхемы чипсета nVidia nForce 4, Asus устанавливает небольшой вентилятор 40?40?10 мм со скоростью вращения 5800 об/мин, который достаточно громко и неприятно свистит (кроме того, вентилятор оборудован подшипником скольжения, имеющим очень небольшой ресурс). Для охлаждения чипсета был установлен кулер для видеокарт с медным радиатором , на его фоне отчётливо слышны щелчки позиционирования головок жёсткого диска. Работающий компьютер не мешает спать в той же комнате, где он установлен.
Недавно видеокарта была заменена HIS X800GTO IceQ II , для установки которой потребовалось доработать радиатор чипсета : отогнуть рёбра таким образом, чтобы они не мешали установке видеокарты с большим вентилятором охлаждения. Пятнадцать минут работы плоскогубцами - и компьютер продолжает работать тихо даже с довольно мощной видеокартой.

Пример 4: платформа AMD Athlon 64 X2

Домашний компьютер на процессоре AMD Athlon 64 X2 3800+ (2,0 ГГц) с процессорным кулером (до 1900 об/мин, шум до 20 дБА) собран в корпусе 3R System R101 (в комплекте 2 вентилятора 120×120×25 мм, до 1500 об/мин, установлены на передней и задней стенках корпуса, подключены к штатной системе мониторинга и автоматического управления вентиляторами), установлен блок питания FSP Blue Storm 350 (350 Вт, 1 вентилятор 120×120×25 мм). Использована материнская плата (пассивное охлаждение микросхем чипсета), которая способна регулировать обороты кулера процессора. Использована видеокарта GeCube Radeon X800XT , система охлаждения заменена на Zalman VF900-Cu . Для компьютера был выбран жёсткий диск , известный низким уровнем создаваемого шума.
Результат : компьютер работает так тихо, что слышен шум электродвигателя жёстких дисков. Работающий компьютер не мешает спать в той же комнате, где он установлен (соседи за стенкой разговаривают и того громче).

Который проводит фирма Gigabyte. Требовалось написать обзор корпуса 3D Aurora. Я сначала согласился, а потом, когда прикинул что к чему, призадумался. Ведь я же не профессиональный писатель обзоров, к тому же серийными корпусами не пользуюсь уже года как три, как минимум. И если честно и пристально посмотреть правде в глаза, становится кристально ясно – писать этот обзор совершенно неинтересно и, естественно, ужасно не хочется. Я уже хотел звонить и отказываться, но все откладывал и откладывал. Прошло какое-то время, и обещание самым естественным образом забылось.

Две недели назад до меня все же дошла очередь на получение корпуса. Я так "обрадовался", что дня три не открывал коробку. Но чувство долга в конце концов победило, и я заглянул внутрь. Скажу сразу: удивительно, но кейс мне понравился. Первое, что поразило, – это размеры: высота 54.5, глубина 51.5, а ширина обычная – 20.5 см.

Корпус выпускается в двух цветовых решениях, черном и серебристом. Мне достался черный вариант. Корпус позиционируется как high-end решение и не комплектуется блоком питания.

На меня эта черная громадина сразу произвела впечатление своим стильным, запоминающимся видом. Дизайнеры поработали на славу. Корпус хотя и большой, но легкий. Изготовлен почти целиком из алюминия. Покраска качественная, ровная, с шелковистым отблеском.

Доступ к пяти 5.25" отсекам и двум 3.5" открывает массивная алюминиевая дверка. Фиксируется дверка в закрытом положении магнитом. В качестве защиты от распоясавшихся злоумышленников эту дверку можно закрыть на ключ. Рядом с 3.5" отсеками расположены кнопки Power и Reset. Нажатие легкое, с приятным на слух легким щелчком.

Ниже дверки располагается выступающая панель, усыпанная вентиляционными отверстиями. За ней расположен 120-мм вентилятор с подсветкой. Воздух внутрь корпуса он втягивает через пылезащитный фильтр. Свет от вентилятора очень красиво пробивается сквозь вентиляционные отверстия.

Справа от этой панели, на боку, расположены два USB, один IEEE 1394 и пара mini-jack"ов: микрофон и наушники. Здесь же расположены и два светодиодных индикатора работы системного блока и активности HDD.

Вот внешний вид корпуса со снятой лицевой панелью

Алюминиевые боковые стенки имеют непривычное крепление. Для того чтобы их снять, стенки нужно не сдвигать, а немного оттянуть и приподнять вверх. Левая стенка для удобства оперативного снятия имеет ручку-защелку и еще один замок с ключом. Имеется в ней также и окно, но не традиционное, из акрилового стекла, а сетчатое, скорее даже дырчатое. Для дополнительной защиты внутренностей от пыли это окно ограждено изнутри еще более мелкой сеткой. Стоит корпус на четырех ножках, которые для устойчивости корпуса можно раздвинуть.

Шасси корпуса довольно крепкое благодаря большому количеству ребер жесткости и дополнительным усиливающим элементам. Нет ни намека на шаткость конструкции. Внутри корпуса много свободного пространства, особенно понравилось большое расстояние между материнской платой и отсеком блока питания.

Корпус рассчитан на безотверточную сборку. Дисководы устанавливаются с помощью пластиковых салазок. Заглушки слотов карт расширения не выламываемые, а съемные, и крепятся все одновременно специальным рычагом-ключом.

Отсек для жестких дисков расположен поперек корпуса. Комфортную температуру винчестерам обеспечивает обдув этого отсека 120-мм вентилятором. В этом же отсеке расположен черный пластиковый бокс, содержащий два переходника питания для SATA-устройств, набор пластиковых салазок для установки 5.25" и 3.5" устройств в корпус, два пластмассовых крепежа для проводов, два комплекта ключей (разных) для передней дверцы и боковой крышки и комплект крепежных винтов.

Провода, идущие внутри корпуса от вентиляторов и лицевой панели, прикреплены к корпусу и уложены в черную трубку. Трассировка довольно удачна.

А теперь о том, что привлекло мое внимание к этому корпусу. Это, как ни странно, задняя панель.

На ней расположены два 120-мм прозрачных вентилятора с подсветкой. Ниже находятся два отверстия, защищенных резиновыми заглушками с лепестками. Сделано это для установки системы водяного охлаждения 3D Galaxy, производства все той же Gigabyte. Вот эти вентиляторы и отверстия превратили скучную процедуру написания обзора в увлекательное занятие.

Когда я увидел эти два 120-мм вентилятора на задней стенке корпуса, то мне сразу вспомнилась давняя идея встроить самодельную фреоновую систему охлаждения в стандартный корпус. Хотелось не просто встроить систему в корпус, а сделать это красиво, интересно и по возможности оригинально. Но я все никак не мог найти подходящий корпус, большой и прочный. Как-никак, компрессор, конденсор и прочие медные трубки весят прилично. К тому же компрессор при работе вибрирует. И, конечно, кроме прочностных ограничений хотелось, чтобы кейс стильно выглядел. 3D Aurora как раз и отвечал всем этим требованиям.

Все фреоновые системы, которые мне встречались, строились как блок, на котором стоит стандартный корпус. В дне корпуса приходится прорезать отверстие под испаритель. Но при такой компоновке отверстие должно быть приличных размеров. Калечить качественный корпус не хотелось, а здесь почти готовое решение.

Сразу начали вырисовываться контуры системы. Если разместить снаружи корпуса, напротив вытяжных вентиляторов, конденсор, то он будет ими отлично охлаждаться, заодно вентилируя корпус. Через готовые отверстия, предназначенные для трубок водяного охлаждения, прекрасно можно пропустить медные соединительные трубки системы. Остается только компрессор. Куда поместить его?

Недавно, экспериментируя со своей целиком самодельной фреоновой системой...

Я с удивлением обнаружил, что прекрасно слышу шум помпы, установленной в системе водяного охлаждения чипсета материнской платы. До этого я, как человек, избалованный бесшумностью своего основного компьютера ...

Считал фреонки ужасно шумными устройствами. Обычными воздушными кулерами я тоже давненько не пользовался, поэтому сравнивать было не с чем. А тут оказалось, что сквозь шум от двух не самых слабых компрессоров отчетливо слышна помпа производительностью 700 л/ч. Выходит, компрессоры шумят не так уж и сильно!

Так почему бы тогда не расположить компрессор просто на крыше корпуса? Это улучшит его охлаждение. Как выяснилось, шум от компрессора не так уж и велик. Прочности корпуса от Gigabyte для такой цели более чем достаточно. И я приступил к осуществлению задуманного.

По решению представителей фирмы Gigabyte корпус одновременно является и призом победителю конкурса. Я, естественно, пока таковым не являюсь и должен возвратить изделие неповрежденным. Поэтому задача несколько усложнялась.

Из-за этих ограничений я прикрепил компрессор L57TN не к верхней крышке корпуса, а к алюминиевой платформе, потихоньку открученной от гладильной доски. (Потом пришлось объяснять супруге, что штукенция эта, скорее всего, отвалилась сама, упала на пол в кладовке и, естественно, куда-то завалилась. Потом она, конечно, найдется... Но не буду отвлекаться.) Платформу эту с установленным компрессором через прокладку из пенофола я и поставил на крышу корпуса. Заодно это должно снизить вибрацию от работающего компрессора.

Теперь о конденсоре. Конденсор, чтобы не мешать подключению устройств к материнской плате, должен быть не шире 120-мм вентилятора, а по высоте соответствовать двум таким вентиляторам. Готовый такой не подобрать, но можно попробовать сделать самому.

Простейший конденсор можно изготовить, намотав спиралью обычную медную трубку. Но спираль имеет большие габариты. Поэтому я сделал из дерева шаблон плоской спирали и уже на него намотал медную трубку диаметром 6 мм.

По бокам спирали припаял медную проволоку с крепежными колечками, соответствующими крепежным отверстиям вытяжных вентиляторов. После я прикинул, как это будет размещаться вживую.

Крепить испаритель и всасывающую трубку к системе я решил на развальцовке. Соединительные муфты легко проходят в отверстия корпуса.

Чтобы не повредить корпус горелкой я, что смог, спаял отдельно от корпуса. Капиллярную трубку смотал в бухту, а последнюю часть пропустил через всасывающую трубку в испаритель.

Испаритель я применил самодельный. Сделан он из половинки серийного кулера Volkano7+.

Так выполняется развальцовка:

В качестве всасывающей я применил обычную медную трубку диаметром 10 мм. Не стал применять сильфон из нержавейки из-за того, что размеры корпуса позволяют помещать в него материнскую плату и без сильного отгиба испарителя. Да и не известно, кто окажется первым в конкурсе – возможно, придется вернуть корпус. Поэтому нестись в магазин за сильфоном я посчитал неразумным.

Вот что получилось.

Чтобы точнее подогнать размеры трубки, пришлось поставить в корпус материнскую плату.

Система собрана, спаяна и опрессована – пора приступать к теплоизоляции. Испаритель я изолировал полосой 3-мм пенофола, приклеив его на двусторонний скотч.

Предварительно я прикрепил к испарителю датчик от электронного термостата Dixell XR20C. На этом же устройстве будет построена и автоматика включения компьютера. Фреоновой системе для охлаждения процессора до определенной величины нужно время, иначе прилично разогнанный процессор может просто перегреться. Вышеуказанное устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле.

У реле есть несколько контактов. Два контакта – контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора – аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается – аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы.

Для данной системы я собрал самодельный блок питания, но можно было купить и готовый. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он в данном случае должен составлять не менее одного ампера.

Всю эту электрическую часть я поместил в корпус от Hardcano, заменив у того лицевую панель на обычную заглушку 5.25" отсека, выкрашенную в серебристый цвет. Все-таки в пластмассе вырезать отверстия гораздо проще, чем в алюминии.

На фотографии видно, что электромонтаж не закончен. Справа от терморегулятора расположен выключатель. С его помощью и включается компрессор, да и все остальное. После сборки устанавливаем блок в отсек и подключаем к нему все провода.

Монтируем все комплектующие в корпус. Под материнскую плату для теплоизоляции я поместил кусок листового пенофола. Толщину подобрал такую, чтобы винты, крепящие материнскую плату к шасси, немного сжали этот теплоизолятор. Между платой и пенофолом не должно быть воздушных пузырей, иначе из этого воздуха при работе системы охлаждения на плату может выпасть конденсат и замкнуть контакты платы. Для гарантированного исключения этого неприятного момента плату под прокладкой я промазал слоем технического вазелина.

По отпечатку термопасты примеряем прилегание испарителя к процессору. Испаритель к процессору я прижимаю с помощью резьбовых шпилек. Корпус, как уже говорил, сверлить нельзя, и пришлось прикрутить эти шпильки прямо к отверстиям в материнской плате. Тут приключилась пара неприятностей, о которых я расскажу в заключительной части статьи.

После этого заканчиваем теплоизоляцию. Осталось самое простое – теплоизоляция трубок. Берется трубчатый рубафлекс, разрезается вдоль ножницами, одевается на трубки и склеивается. Вот и все готово для заправки системы.

Заправляю систему фреоном марки R22. Подробнее о заправке и вакуумировании написано уже более чем достаточно, поэтому не буду отнимать время и описывать эту процедуру еще раз. Напомню только, что в системе использовался компрессор марки L57TN, длина капилляра 2.9 метра. Заправляю систему до промерзания всасывающей трубки до входа в компрессор.

Система без нагрузки выдает температуру -43.8°C.

Выключаю систему. Проверяю еще раз прилегание испарителя к процессору, оказавшееся не слишком плотным. Всасывающая трубка имеет приличную жесткость и немного пружинит. К тому же теплоизоляция на испарителе немного ниже самого испарителя. Сделано это для исключения попадания воздуха в щели теплоизоляции. Притягивать же сильно испаритель к процессору я боюсь. Шпильки-то прикручены не к шасси корпуса, а к материнской плате, и есть риск выломать их из платы.

Отпечаток термопасты получается несколько "однобоким", а верхний левый угол испарителя почти не касается процессора. Но что делать, будем пробовать как есть.

Включаю систему. По достижении температуры на испарителе –20 включается сам компьютер. Автоматика отработала успешно, операционная система загружается – все нормально.

Конфигурация установленного железа такова:

  • процессор – AMD Athlon 64 3200+;
  • материнская плата – DFI Lan Party UT nF4 SLI-D;
  • видеокарта – Leadtek PX7800GT;
  • память – Digma DDR500;
  • жесткий диск – Seagate 160 Gb;
  • блок питания – Hiper R type 480 W;
  • термопаста – КПТ-8.

Первым делом проверяю систему на разгон процессора.

Но тут началась чертовщина. Дальше процессор почему-то гнаться отказался. Я снизил частоту опять до 3100 MHz, но Windows перестал грузиться. Еще более понизил частоту – опять то же самое. И тут я попробовал рукой прижать испаритель к процессору. Система загрузилась. Тогда я еще немного подтянул крепежные гайки. Система снова загрузилась при 3100 MHz, но тест S&M не проходила. Тогда я заглянул в BIOS. Там в разделе мониторинга температура процессора прыгала как гимнаст на батуте: то –14, то +14. Все ясно, причина в плохом прижиме испарителя к процессору. Видимо, от вибрации контакт процессор–испаритель меняется, и, как следствие, скачет температура, что и сказывается на стабильности работы системы.

Дальше подтягивать гайки уже откровенно страшно. Существует большая вероятность выдрать шпильки вместе с текстолитом платы. Но прижим все равно недостаточен. Выход только один: сверлить отверстия в шасси компьютера и сжимать процессор уже не между платой и испарителем, а между металлическим шасси и испарителем, без риска повреждения материнской платы. А сверлить корпус нельзя. Очень жаль, но придется остановиться на этом.

Теперь несколько слов о личных впечатлениях о работе системы. Плохой прижим испарителя – легко устраняемый дефект. Можно прямо по месту просверлить отверстия и закрепить все как следует. И если даже при плохом контакте операционная система загружается с частотой процессора 3100 МГц, то, скорее всего, при нормальном охлаждении этот результат увеличится. Теплоизоляция прекрасно справляется со своей задачей. Никаких следов конденсата не было обнаружено.

О шуме. Компрессор работает очень тихо. Если наклониться над ним и прислушаться, то слышен небольшой шелест. Основной шум исходит из открытого корпуса. Видимо, по нагнетающей трубке и через станину компрессора вибрация передается корпусу, и он издает низкочастотный гул. Я вначале был поражен, что шум идет не от компрессора, а из корпуса. Но потом разобрался, в чем дело. Судя по всему, для комфортной эксплуатации оклеивание корпуса виброшумоизоляцией обязательно.

Неплохо было бы привернуть ручки на верхнюю крышку корпуса. Вес корпуса за счет системы охлаждения увеличился, и передвигать его стало сложно. К тому же взяться не за что.

Также из-за размещения компрессора на верхней крышке корпуса центр тяжести системного блока поднялся. Поэтому теперь даже с разложенными ножками корпус немного неустойчив. Неплохо бы утяжелить нижнюю часть корпуса каким-нибудь балластом. Это поможет и снизить вибрацию корпуса.

Желательно укрепить верхнюю крышку корпуса – виброшумоизолировать и прикрепить компрессор непосредственно к ней. Также необходимо увеличить толщину резиновых прокладок, через которые конденсатор крепится к корпусу, и попробовать сделать амортизаторы между витками конденсора. Все это должно дополнительно снизить шумность системы. Хотя и в таком виде самым шумным компонентом системы является вентилятор видеокарты.

Если суммировать все вышесказанное, то мы получили удобный, качественный корпус с прекрасной вентиляцией и с возможностью встраивания не только водяной, но и фреоновой системы охлаждения. Можно сказать, мечта оверклокера. Когда смотришь на этот корпус, не оставляет чувство, что перед тобой солидная, добротная и вместе с тем красивая и стильная вещь.