Квантовый экран. Будущее ясно, будущее – это… телевизоры с дисплеями на квантовых точках

06.07.2019

2.
3. SUHD-телевизоры Samsung 2016: технология Quantum Dot
4.

Квантовые точки - это полупроводниковые кристаллы размером от 5 до 10 нанометров (чуть больше размеров молекулы ДНК). В зависимости от размера и материала, из которого изготовлены нанокристаллы, под воздействием электрического тока или света они излучают различные цвета. А 10-битная матрица новых телевизоров Samsung позволяет отображать до 1 млрд цветовых оттенков, что делает цветопередачу невероятно точной и насыщенной.

Чем технология Quantum Dot отличается от других?

Какие же преимущества обеспечивает технология Quantum Dot? Первые ЖК-телевизоры уступали современным как в яркости, так и в цветопередаче. ЖК-телевизоры с LED-подсветкой последних поколений сделали существенный шаг вперед в плане увеличения яркости, но не обеспечивали идеальную цветопередачу.

Технология OLED – это компромиссное решение, реализующее качественную цветопередачу, но при небольшой яркости. Использование же квантовых точек позволяет достичь максимального результата как в отношении цветопередачи, так и в отношении яркости, без каких-либо компромиссов. Дисплеи на квантовых точках воспроизводят наиболее яркую и одновременно реалистичную картинку.

В телевизорах Samsung SUHD источником света являются квантовые точки. Они излучают свет, который передает естественные цвета и создает реалистичное изображение.

Технология квантовых точек была разработана чтобы преодолеть недостатки OLED. Так, в экранах Quantum Dot используются материалы неорганического происхождения, которые имеют существенно больший срок работы. А для телевизоров, которые эксплуатируются по 7-10 лет, это немаловажно. Кроме того, у телевизоров на базе технологии Quantum Dot полностью отсутствует проблема выгорания, которая имеет место быть при использовании OLED.

Реализована технология квантовых точек в следующих линейках телевизоров SUHD TV Samsung, доступных на российском рынке: топовые KS9000 (изогнутые) и KS8000 (плоские) с диагоналями от 49 до 78 дюймов, а также серии KS7500 (изогнутые) с диагоналями от 49 до 65 дюймов и KS7000 (плоские) с диагоналями от 49 до 60 дюймов.


Нано-технология покрытия экрана Samsung Ultra Black позволяет поглощать блики света, отражаемого экраном, даже в ярко освещенной комнате.

Что еще используется для улучшения изображения?

Помимо квантовых точек, в SUHD-телевизорах Samsung используется еще несколько важных технологий для улучшения качества изображения. Например, технология Ultra Black, которая реализована в новых телевизионных панелях, по структуре похожих на строение глаза мотылька.

Такая конструктивная особенность позволяет минимизировать блики на экране, снизив отражение внешнего света до 99,7%, и повысить контраст на 35%. В итоге зритель может насладиться отличной глубиной черного цвета при просмотре телевизора в дневное время суток даже в хорошо освещенной комнате.


Технология HDR 1000 (справа) обеспечивает исключительно точную цветопередачу в широком диапазоне оттенков и высокий уровень детализации.

Еще одна технология, воплощенная в SUHD-телевизорах Samsung 2016 года - HDR 1000. Она позволяет воссоздавать реалистичный динамический диапазон яркости, сохраняя насыщенные цвета как в темных, так и в светлых участках изображения. В итоге если кадр содержит как очень темные, так и очень светлые области, они будут выглядеть гораздо более естественно, чем на экране телевизора без поддержки HDR. Пиковый показатель яркости новых телевизоров Samsung составляет 1000 нит, что и отражено в названии технологии. Но чтобы насладиться HDR-эффектом, потребуется соотвествующий контент.

Панели RGB против RGBW: какую выбрать?

Телевизоры с разрешением 4К появились сравнительно недавно. При этом на рынке уже имеются устройства с разными типами матриц. Например, есть модели, содержащие только RGB-пиксели (используются в телевизорах Samsung), а есть панели, в которые добавлен пиксель белого цвета - RGBW. Пользователь, который не разбирается в технологических тонкостях, вряд ли почувствует здесь подвох.

А он есть и заключается в следующем: если в телевизоре с RGB-матрицей каждый пиксель состоит из трех субпикселей красного, синего или зеленого цветов, то в RGBW-матрице таких пикселей на 75% меньше. В остальных один из основных цветов, использующихся в дисплеях для формирования полной палитры оттенков, заменен белым. В результате в таких телевизорах только часть пикселей способна отображать все оттенки.

В рамках разработанной организацией ICDM методики измерения качества дисплеев (IDMS) примечателен показатель Contrast Modulation (CM) или «Модуляция контрастности», который позволяет говорить о том, насколько полно дисплей способен отображать картинку.

Данный показатель для RGBW-телевизоров в полтора раза ниже, чем для RGB: в первом случае он составляет 60%, во втором - 95%. В некоторых странах информация о модуляции контрастности уже указывается, наряду с информацией о разрешении.

Без специальных измерительных приборов заметить отличия в качестве изображения тоже можно: например, когда на экране появляются четкие границы цветовых переходов, на телевизорах с RGB-панелью они отображаются корректно, а на RGBW края переходов представляют немного лестничную структуру.

Кроме того, при отображении на RGBW-матрице RGB-сигнала происходит потеря части цветовой информации, в результате чего фильм предстанет перед вами в несколько ином виде, нежели задумывалось режиссером.

Фото: Компании-производители; PlasmaChem GmbH; Samsung Electronics

Квантовые точки - это крошечные кристаллы, излучающие свет с точно регулируемым цветовым значением. Технология Quantum dot LED существенно повышает качество изображения, не влияя при этом на конечную стоимость устройств, в теории:).

Обычные жидкокристаллические телевизоры могут охватывать лишь 20–30% цветового диапазона, который способен воспринимать человеческий глаз. Изображение на обладает большой реалистичностью, но данная технология не ориентирована на массовое производство больших диагоналей дисплеев. Кто следит за рынком телевизоров, помнит, что еще в начале 2013 года Sony представила первый телевизор на основе квантовых точек (Quantum dot LED, QLED) . Крупные производители телевизоров выпустят модели телевизоров на квантовых точках в этом году, Samsung их уже представил в России под названием SUHD, но об этом в конце статьи. Давайте узнаем, чем отличаются дисплеи, произведенные по QLED технологии, от уже привычных ЖК-телевизоров.

В ЖК-телевизорах отсутствуют чистые цвета

Ведь жидкокристаллические дисплеи состоят из 5 слоев: источником является белый свет, излучаемый светодиодами, который проходит через несколько поляризационных фильтров. Фильтры, расположенные спереди и сзади, в совокупности с жидкими кристаллами управляют проходящим световым потоком, понижая или повышая его яркость. Это происходит благодаря транзисторам пикселей, влияющие на количество света, проходимое через светофильтры (красный , зеленый , синий ). Сформированный цвет этих трех субпикселей, на которые наложены фильтры, дает определенное цветовое значение пикселя. Смешение цветов происходит довольно «гладко», но получить таким образом чистый красный, зеленый или синий попросту невозможно. Камнем преткновения выступают фильтры, которые пропускают не одну волну определенной длины, а целый ряд различных по длине волн. К примеру, через красный светофильтр проходит также оранжевый свет.

Светодиод излучает свет при подаче на него напряжения. Благодаря этому электроны (e) переходят из материала N-типа в материал P-типа. Материал N-типа содержит атомы с избыточным количеством электронов. В материале P-типа присутствуют атомы, которым не хватает электронов. При попадании в последний избыточных электронов они отдают энергию в виде света. В обычном полупроводниковом кристалле это, как правило, белый свет, образуемый множеством волн различной длины. Причина этого заключается в том, что электроны могут находиться на различных энергетических уровнях. В результате полученные фотоны (P) имеют различную энергию, что выражается в различной длине волн излучения.

Стабилизация света квантовыми точками

В телевизорах QLED в качестве источника света выступают квантовые точки - это кристаллы размером лишь несколько нанометров. При этом необходимость в слое со светофильтрами отпадает, поскольку при подаче на них напряжения кристаллы излучают свет всегда с четко определенной длиной волны, а значит, и цветовым значением. Данный эффект достигается мизерными размерами квантовой точки, в которой электрон, как и в атоме, способен передвигаться лишь в ограниченном пространстве. Как и в атоме, электрон квантовой точки может занимать только строго определенные энергетические уровни. Благодаря тому что эти энергетические уровни зависят в том числе и от материала, появляется возможность целенаправленной настройки оптических свойств квантовых точек. К примеру, для получения красного цвета используют кристаллы из сплава кадмия, цинка и селена (CdZnSe), размеры которых составляют около 10–12 нм. Сплав кадмия и селена подходит для желтого, зеленого и синего цветов, последний можно также получить при использовании нанокристаллов из соединения цинка и серы размером 2–3 нм.

Массовое производство синих кристаллов очень сложное и затратное, поэтому представленный в 2013 году компанией Sony телевизор не является «породистым» QLED-телевизором на основе квантовых точек . В задней части производимых их дисплеев располагается слой синих светодиодов, свет которых проходит через слой красных и зеленых нанокристаллов. В результате они, по сути, заменяют распространенные в настоящее время светофильтры. Благодаря этому цветовой охват в сравнении с обычными ЖК-телевизорами увеличивается на 50%, однако не дотягивает до уровня «чистого» QLED-экрана. Последние помимо более широкого цветового охвата обладают еще одним преимуществом: они позволяют экономить энергию, так как необходимость в слое со светофильтрами отпадает. Благодаря этому передняя часть экрана в QLED-телевизорах еще и получает больше света, чем в обычных телевизорах, которые пропускают лишь около 5% светового потока.

QLED телевизор с дисплеем на основе технологии квантовых точек от Samsung

Компания Samsung Electronics представила в России премиальные телевизоры, изготовленные по технологии квантовых точек. Новинки с разрешением 3840 × 2160 пикселей оказались не из дешёвых, а флагманская модель вовсе оценена в 2 млн рублей.

Нововведения. Изогнутые телевизоры Samsung SUHD на квантовых точках отличаются от распространённых ЖК-моделей более высокими характеристиками цветопередачи, контрастности и энергопотребления. Интегрированный процессор обработки изображения SUHD Remastering Engine позволяет масштабировать видеоконтент низкого разрешения в 4K. Помимо этого, новые телевизоры получили функции интеллектуальной подсветки Peak Illuminator и Precision Black, технологии Nano Crystal Color (улучшает насыщенность и естественность цветов), UHD Dimming (обеспечивает оптимальный контраст) и Auto Depth Enhancer (автоматическая настройка контрастности для определённых областей картинки). В программной основе телевизоров лежит операционная система Tizen с обновлённой платформой Samsung Smart TV.

Цены. Семейство Samsung SUHD TV представлено в трёх сериях (JS9500, JS9000 и JS8500), где стоимость начинается со 130 тыс. рублей. Во столько российским покупателям обойдётся 48-дюймовая модель UE48JS8500TXRU. Максимальная цена на телевизор с квантовыми точками достигает 2 млн рублей - за модель UE88JS9500TXRU с 88-дюймовым изогнутым дисплеем.

Телевизоры нового поколения по технологии QLED готовят южнокорейские Samsung Electronics и LG Electronics, китайские TCL и Hisense, а также японская Sony. Последняя уже выпустила LCD-телевизоры, изготовленные по технологии квантовых точек, о чем я упоминал в описании технологии Quantum dot LED.

4 декабря 2016 в 22:35

Квантовые точки и зачем их ставят

  • Квантовые технологии ,
  • Мониторы и ТВ

Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - ħ/(2md^2), где:

  1. ħ - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

Теги:

  • QLED
  • LED
  • Quantum display
Добавить метки

Еще совсем недавно дисплеи телевизоров на органических светодиодах (OLED) считались последним словом в развитии дисплейных технологий. Однако прогресс не стоит на месте и вниманию покупателей представляется новинка – жидкокристаллические дисплеи на основе квантовых точек.

В переводе с английского означает, собственно, квантовые точки. Они представляют собой мельчайшие частицы с диаметром всего в несколько нанометров. Увидеть невооруженным взглядом их невозможно. Но это является их основным преимуществом. Регулируя размер и придавая определенную форму этому полупроводнику, можно осуществлять точный контроль над электроводностью, а значит, и менять цветность света, исходящего от квантовой точки. Крупные точки будут казаться красными, более мелкие – синими, средние – зелеными. Благодаря своей стабильности, а также точному контролю над размерами частиц, стало возможным получить именно тот цвет, который необходим. При этом заданный оттенок будет практически вечным.

Преимущества нанокристаллов перед LED

Дисплеи современных жидкокристаллических телевизоров со светодиодной подсветкой (LED) имеют большой недостаток: их изображение зависит от светодиодов, которые излучают не чисто белый свет, при этом с узким цветовым спектром. Есть определенные технологии, позволяющие приблизить белый к идеалу, но на выходе полученные цвета все равно не обладают одинаковой интенсивностью (зеленый и синий будут ярче красного). Чтобы как-то сгладить эту разницу используют специальные настройки цветов в телевизоре, понижая значения синего и зеленого, но в результате изображение становится гораздо бледнее, чем необходимо.

Проблема поиска источника идеального белого света, который обеспечил бы при преломлении весь световой спектр с цветами одинаковой интенсивности, была решена при использовании квантовых точек.

Так, при создании дисплеев с использованием нанокристаллов была использована следующая технология. На специальную пленку наносятся квантовые частицы красного и зеленого оттенков. Они не разбиты на субпиксели как в модели RGB, а просто смешаны друг с другом. За этим слоем расположены светодиоды синего цвета. При попадании света от диода, квантовые точки начинают излучать свои красные и зеленые цвета. И как раз в процессе смешивания всех трех цветов получается искомый источник идеального белого света. Это обеспечивает правильную цветопередачу без искажения цветового спектра и потери интенсивности цветов.

Таким образом, квантовый механизм позволят разрешить целый ряд проблем, имеющихся у обычных ЖК-дисплеев с подсветкой. Среди основных преимуществ технологии QD-LED можно выделить следующие:

  1. Применение источника идеального белого света.
  2. Отсутствие проблемы с потерями контраста и яркости. Все цвета светового спектра имеют одинаковую степень интенсивности. Ни один цвет не преобладает над другим.
  3. Увеличение реалистичности цветопередачи более чем на 50 процентов (около миллиарда оттенков).
  4. Насыщенность цветов возрастает на 40 процентов.

Преимущества нанокристаллов перед OLED

OLED-дисплеи, работа которых основана на органических светодиодах, стали очередной ступенью в развитии электроники. По сравнению с обычными жидкокристаллическими дисплеями OLED имеют ряд преимуществ:

  • качество изображения не меняется в зависимости от угла обзора;
  • отсутствует подсветка;
  • уменьшается вес и габариты изделия;
  • повышается яркость и контрастность изображения.

Однако, несмотря на все преимущества, у данной технологии имеется целый ряд недостатков. Так, например, срок эксплуатации у OLED-дисплеев небольшой. Синие светодиоды имеют ограниченный несколькими годами непрерывной работы срок службы. А при выходе их из строя точность цветопередачи значительно искажается. Яркость изображения также отражается на длительности работы дисплеев и энергопотреблении: чем выше яркость, тем меньше срок эксплуатации и большее потребление энергии. Но самой значительной проблемой использования органических светодиодов является их серийное производство. Данная технология требует полной замены аппаратуры и конвейеров на заводах-изготовителях, а это приведет к значительному удорожанию продукции.

Использование же квантовых точек требует лишь небольших изменений и усовершенствования имеющихся конвейеров. Это прямо отразится на итоговой стоимости дисплеев. К тому же использование нанокристаллов решает проблему с недолговечностью цветопередачи и энергоэффективностью. В результате выходит качественное изображение, сопоставимое с OLED при этом более доступное для приобретения. /Более подробно читайте в нашем сайте.

Таким образом, квантовые точки становятся новой вехой в развитии жидкокристаллических дисплеев. Хотя кто знает, может не за горами будет новое научное открытие, которое перевернет наши сегодняшние представления о совершенных технологиях.

На этой неделе компания Samsung представила несколько игровых мониторов, матрицы которых выполнены по технологии квантовых точек (QLED). Чем эта технология отличается от других и стоит ли покупать такие мониторы?

Samsung будет выпускать изогнутые мониторы модели CH711 с экраном 27 и 31,5 дюйма, оба с разрешением 2560×1440 пикселей, 178-градусным углом обзора и 125-процентным охватом спектра sRGB. Для Samsung это не первые мониторы с квантовыми точками, хотя компания до сих пор в основном использует в своих мониторах и телевизорах технологии PLS (аналог IPS) и OLED. Первые мониторы Samsung с квантовыми точками были представлены в сентябре 2016 года на выставке IFA в Берлине, а модель CH711 будет продемонстрирована в начале января 2017 года на CES в Лас-Вегасе.

Стоимость мониторов с QLED-матрицами довольно высокая: CFG70 с 27-дюймовым экраном стоит 450 долларов, а CF791 с 34-дюймовым экраном - 1000 долларов.


По словам Samsung, экраны на квантовых точках лишены недостатков матриц, созданных на основе других технологий, хотя и не обладают таким глубоким чёрным цветом, как OLED-мониторы.

Технологию QLED следует считать разновидностью LCD, поскольку в ней тоже используется светодиодная подсветка, хотя диоды созданы на основе квантовых точек. До сих пор ни одному производителю не удалось создать матрицу, которая состояла бы только из квантовых точек и не содержала светодиоды, однако такие экраны могут появиться в будущем.

Квантовые точки - это полупроводниковые нанокристаллы, которые светятся, когда подвергаются воздействию тока. Они излучают различные цвета в зависимости от их размера и материала, из которого они изготовлены. По словам исследователей, дисплеи могут потреблять в пять раз меньше энергии в сравнении с обычными ЖК-дисплеями, а также обладают более продолжительным сроком службы по сравнению с OLED-дисплеями. Стоимость производства QLED-матриц может быть вдвое ниже стоимости изготовления ЖК- и OLED-дисплеев.

Идея использования квантовых точек в качестве источника света впервые была предложена в 1990-х годах, однако первый прототип QLED-экрана был создан компанией Samsung лишь в 2011 году. Ещё несколько лет назад считалось, что дисплеи на основе этой технологии неоправданно сложны в производстве, поскольку требуют опасного для людей кадмия. Сейчас эта проблема решена - опасными процессами занимаются химические компании.

Сейчас производством мониторов на квантовых точках занимается преимущественно Samsung, однако первый коммерчески доступный дисплей на основе этой технологии был выпущен гонконгской компанией TPV Technology под брендом Philips - модель 276E6ADS с 27-дюймовой FullHD-панелью. Ажиотажа вокруг технологии QLED не наблюдается. По всей видимости, она мало кого интересует и вряд ли можно считать её перспективной.