LCD мониторы. Что собой представляет LCD телевизор

15.08.2019

LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Жидкие кристаллы были открыты давным-давно, но изначально они использовались для других целей. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD мониторы для настольных компьютеров.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) в отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в такой световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели.

При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вдоль поля и на угол поворота плоскости поляризации света становится отличным от 90°.

Для вывода цветного изображения необходима подсветка монитора сзади так, чтобы свет порождался в задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.


Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это описывается далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270°.

В будущем следует ожидать расширения вторжения LCD мониторов на рынок, благодаря тому факту, что с развитием технологии конечная цена устройств снижается, что дает возможность большему числу пользователей покупать новые продукты.

Вкратце расскажем о разрешении LCD мониторов. Это разрешение одно и его еще называют native, оно соответствует максимальному физическому разрешению CRT мониторов. Именно в native разрешении LCD монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD монитора фиксирован. Например, если LCD монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется «Centering» (центрирование), суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка. Второй метод называется «Expansion» (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость. Поэтому, при выборе LCD монитора важно четко знать какое именно разрешение вам нужно.

Отдельно стоит упомянуть о яркости LCD мониторов, так как пока нет никаких стандартов для определения того, достаточной ли яркостью обладает LCD монитор. При этом в центре яркость LCD монитора может быть на 25% выше, чем у краев экрана. Единственный способ определить, подходит ли вам яркость конкретного LCD монитора, это сравнить его яркость с другими LCD мониторами.

И последний параметр, о котором нужно упомянуть, это контрастность. Контрастность LCD монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов. Но, как и в случае с яркостью пока нет никаких стандартов, поэтому главным определяющим фактором являются ваши глаза.

Стоит отметить и такую особенность части LCD мониторов, как возможность поворота самого экрана на 90°, с одновременным автоматическим разворотом изображения. В результате, например, если вы занимаетесь версткой, то теперь лист формата A4 можно полностью уместить на экране без необходимости использовать вертикальную прокрутку, что бы увидеть весь текст на странице. Правда, среди CRT мониторов тоже есть модели с такой возможностью, но они крайне редки. В случае с LCD мониторами, эта функция становиться почти стандартной.

К преимуществам LCD мониторов можно отнести то, что они действительно плоски в буквальном смысле этого слова, а создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов. Отсутствие искажений на экране и массы других проблем свойственных традиционным CRT мониторам. Добавим, что потребляемая и рассеивая мощность у LCD мониторов существенно ниже, чем у CRT мониторов.

Главной проблемой развития технологий LCD для сектора настольных компьютеров, похоже, является размер монитора, который влияет на его стоимость. С ростом размеров дисплеев снижаются производственные возможности. В настоящее время максимальная диагональ LCD монитора пригодного к массовому производству достигает 20", а недавно некоторые разработчики представили 43" модели и даже 64" модели TFT-LCD мониторов готовых к началу коммерческого производства.

Но похоже, что исход битвы между CRT и LCD мониторами за место на рынке уже предрешен. Причем не в пользу CRT мониторов. Будущее, судя по всему, все же за LCD мониторами с активной матрицей. Исход битвы стал ясен после того, как IBM объявила о выпуске монитора с матрицей, имеющей 200 пикселей на дюйм, то есть с плотностью в два раза больше, чем у CRT мониторов. Как утверждают эксперты, качество картинки отличается так же как при печати на матричном и лазерном принтерах. Поэтому вопрос перехода к повсеместному использованию LCD мониторов лишь в их цене.

Для многих жидкокристаллические дисплеи (LCD) ассоциируются, прежде всего, с плоскими мониторами, "крутыми" телевизорами, ноутбуками, видеокамерами и сотовыми телефонами. Некоторые добавят сюда КПК, электронные игры, банковские автоматы. Но существует еще множество областей, где необходимы дисплеи с высокой яркостью, прочной конструкцией, работающие в широком диапазоне температур.

Плоские дисплеи нашли применение там, где критичными параметрами являются минимальные энергопотребление, вес и габариты. Машиностроение, автомобильная промышленность, железнодорожный транспорт, морские буровые установки, горное оборудование, наружные торговые точки, авиационная электроника, морской флот, специальные транспортные средства, системы безопасности, медицинское оборудование, вооружение - вот далеко не полный перечень применений жидкокристаллических дисплеев.

Постоянное развитие технологий в этой области позволило снизить стоимость производства LCD до такого уровня, при котором произошел качественный переход: дорогая экзотика стала обыденным явлением. Важным фактором быстрого распространения ЖК-дисплеев в промышленности стала и простота применения.

В этой статье рассматриваются основные параметры различные типов жидкокристаллических дисплеев, что позволит сделать осознанный и правильный выбор LCD для каждого конкретного применения (метод "побольше и подешевше" практически всегда оказывается слишком дорогим).

Все многообразие ЖК-дисплеев можно разделить на несколько типов в зависимости от технологии производства, конструкции, оптических и электрических характеристик.

Технология

В настоящее время при производстве LCD применяются две технологии (рис.1): пассивная матрица (PMLCD-STN) и активная матрица (AMLCD).

Технологии MIM-LCD и Diode-LCD не получили широкого распространения и поэтому не будем на них тратить время.

Рис. 1. Виды технологий жидкокристаллических дисплеев

STN (Super Twisted Nematic)- матрица, состоящая из ЖК-элементов с изменяемой прозрачностью.

TFT (Thin Film Transistor)- активная матрица, в которой каждый пиксел управляется отдельным транзистором.

По сравнению с пассивной матрицей, TFT LCD имеет более высокую контрастность, насыщенность, меньшее время переключения (нет "хвостов" у движущихся объектов).

Управление яркостью в жидкокристаллическом дисплее основано на поляризации света (курс общей физики): свет поляризуется, проходя через поляризационный фильтр (с определенным углом поляризации). При этом наблюдатель видит только снижение яркости света (почти в 2 раза). Если за этим фильтром поставить еще один такой фильтр, то свет будет полностью поглощаться (угол поляризации второго фильтра перпендикулярен углу поляризации первого) или полностью проходить (углы поляризации совпадают). При плавном изменении угла поляризации второго фильтра интенсивность проходящего света будет также плавно изменяться.

Принцип действия и "бутербродная" структура всех TFT LCD примерно одинакова (рис. 2). Свет от лампы подсветки (неоновая или светодиоды) проходит через первый поляризатор и попадает в слой жидких кристаллов, управляемых тонкопленочным транзистором (TFT). Транзистор создает электрическое поле, которое формирует ориентацию жидких кристаллов. Пройдя такую структуру, свет меняет свою поляризацию и будет - или полностью поглощен вторым поляризационным фильтром (черный экран), или не будет поглощаться (белый), или поглощение будет частичным (цвета спектра). Цвет изображения определяют цветовые фильтры (аналогично электронно-лучевым трубкам, каждый пиксел матрицы состоит из трех субпикселов - красного, зеленого и голубого).


Рис. 2. Структура TFT LCD

Пиксел TFT

Цветные фильтры для красного, зелёного и синего цветов интегрированы в стеклянную основу и расположены близко друг к другу. Это может быть вертикальная полоса, мозаичная структура или дельта-структура (рис. 3). Каждый пиксел (точка) состоит из трёх ячеек указанных цветов (субпикселей). Это означает, что при разрешении m x n активная матрица содержит 3m x n транзисторов и субпикселов. Шаг пиксела (с тремя субпикселами) для 15.1" TFT ЖК-дисплея (1024 x 768 точек) составляет примерно 0.30 мм, а для 18.1" (1280 x 1024 точки)- 0.28 мм. TFT LCD имеют физическое ограничение, которое определяется максимальной площадью экрана. Не ждите разрешения 1280 x 1024 при диагонали 15" и шаге точки 0.297 мм.


Рис. 3. Структура цветного фильтра

На близком расстоянии точки явственно различимы, но это не беда: при формировании цвета используется свойство человеческого глаза смешивать цвета при угле зрения менее 0,03°. На расстоянии 40 см от ЖК-дисплея при шаге между субпикселами 0,1 мм угол зрения составит 0,014° (цвет каждого субпиксела различит только человек с орлиным зрением).

Типы ЖК-дисплеев

TN (Twist Nematic) TFT или TN+Film TFT - первая технология, появившаяся на рынке ЖК-дисплеев, основное достоинство которой& - дешевизна. Недостатки: черный цвет больше похож на темно-серый, что приводит к низкой контрастности изображения, "мертвые" пиксели (при выходе из строя транзистора) очень яркие и заметные.

IPS (In-Pane Switching) (Hitachi) или Super Fine TFT (NEC, 1995 год). Характеризуется наибольшим углом обзора и высокой точностью цветопередачи. Угол обзора расширен до 170°, остальные функции - как у TN+Film (время отклика порядка 25мс), практически идеальный черный цвет. Преимущества: хорошая контрастность, "мертвый" пиксель - черный.

Super IPS (Hitachi), Advansed SFT (производитель - NEC). Достоинства: яркое контрастное изображение, искажения цвета почти незаметны, увеличены углы обзора (до 170° по вертикали и по горизонтали) и обеспечена исключительная четкость.

UA-IPS (Ultra Advanced IPS), UA-SFT (Ultra Advanced SFT) (NEC). Время реакции достаточно для обеспечения минимальных искажений цвета при просмотре экрана под разными углами, повышенная прозрачность панели и расширение цветовой гаммы при достаточно высоком уровне яркости.

MVA (Multi-Domain Vertical Alignment) (Fujitsu).Основное преимущество - наименьшее время реакции и высокая контрастность. Главный недостаток - высокая стоимость.

PVA (Patterned Vertical Alignment) (Samsung). Микроструктурное вертикальное размещение ЖК.

Конструкция

Конструкция жидкокристаллического дисплея определяется расположением слоев в "бутерброде" (включая и светопроводящий слой) и имеет наибольшее значение для качества изображения на экране (в любых условиях: от темного помещения до работы при солнечном свете). В настоящее время используются три основных типа цветных LCD:

  • пропускающий (transmissive), предназначенный в основном для оборудования, работающего в помещении;
  • отражающий (reflective) применяется в калькуляторах и часах;
  • проекционный (projection) используется в ЖК-проекторах.

Компромиссной разновидностью пропускающего типа дисплея для работы, как в помещении, так и при внешнем освещении, является полупрозрачный (transflective) тип конструкции.

Пропускающий тип дисплея (transmissive) . В этом типе конструкции свет поступает сквозь жидкокристаллическую панель с задней стороны (подсветка) (рис. 4).По этой технологии сделаны большинство ЖК-дисплеев, используемых в ноутбуках и карманных компьютерах. Transmissive LCD имеет высокое качество изображения в помещении и низкое (черный экран) при солнечном свете, т.к. отраженные от поверхности экрана солнечные лучи полностью подавляют свет, излучаемый подсветкой. Эта проблема решается (в настоящее время) двумя способами: увеличением яркости задней подсветки и уменьшением количества отраженного солнечного света.


Рис. 4. Конструкция жидкокристаллического дисплея пропускающего типа

Для работы при дневном освещении в тени необходима лампа подсветки, обеспечивающая 500 кд/м2, при прямом солнечном свете - 1000 кд/м 2 . Яркости в 300 кд/м 2 можно добиться путем предельного увеличения яркости одной лампы CCFL (Cold Cathode Fluorescent Lamp) или добавлением второй лампы, расположенной напротив. Модели жидкокристаллических дисплеев с повышенной яркостью используют от 8 до 16 ламп. Однако увеличение яркости подсветки увеличивает расход энергии батарей (одна лампа подсветки потребляет около 30% энергии, используемой устройством). Следовательно, экраны с повышенной яркостью можно использовать только при наличии внешнего источника питания.

Уменьшение количества отраженного света достигается нанесением антиотражающего покрытия на один или несколько слоев дисплея, заменой стандартного поляризационного слоя на минимально отражающий, добавлением пленок, повышающих яркость и, таким образом, увеличивающих эффективность источника света. В ЖК-дисплеях Fujitsu преобразователь заполняется жидкостью с коэффициентом рефракции, равным коэффициенту рефракции сенсорной панели, что значительно сокращает количество отраженного света (но сильно сказывается на стоимости).

Полупрозрачный тип дисплея (transflective) похож на пропускающий, но у него между слоем жидких кристаллов и подсветкой имеется т. н. частично отражающий слой (рис.5). Он может быть или частично серебряным, или полностью зеркальным со множеством маленьких отверстий. Когда такой экран используется в помещении, он работает аналогично transmissive LCD, в котором часть освещения поглощается отражающим слоем. При дневном освещении солнечный свет отражается от зеркального слоя и освещает слой ЖК, при этом свет проходит жидкие кристаллы дважды (внутрь, а затем наружу). Как следствие, качество изображения при дневном освещении ниже, чем при искусственном освещении в помещении, когда свет проходит LCD один раз.


Рис. 5. Конструкция жидкокристаллического дисплея полупрозрачного типа

Баланс между качеством изображения в помещении и при дневном освещении достигается подбором характеристик пропускающего и отражающего слоев.

Отражающий тип дисплея (reflective) имеет полностью отражающий зеркальный слой. Все освещение (солнечный свет или свет передней подсветки) (рис. 6), проходит сквозь ЖКИ, отражается от зеркального слоя и снова проходит сквозь ЖКИ. В этом случае качество изображения у дисплеев отражающего типа ниже, чем у полупропускающего (так как в обоих случаях используются сходные технологии). В помещении передняя подсветка не так эффективна, как задняя, и, соответственно, качество изображения - ниже.


Рис. 6. Конструкция жидкокристаллического дисплея отражающего типа

Основные параметры жидкокристаллических панелей

Разрешение. Цифровая панель, число пикселей в которой строго соответствует номинальному разрешению, должна корректно и быстро масштабировать изображение. Простой способ проверки качества масштабирования - изменение разрешения (на экране текст, написанный мелким шрифтом). По контурам букв легко заметить качество интерполяции. Качественный алгоритм дает ровные, но немного размытые буквы, тогда как быстрая целочисленная интерполяция обязательно вносит искажения. Быстродействие - второй параметр разрешения (для масштабирования одного кадра требуется время на интерполяцию).

Мертвые пиксели. На плоской панели могут не работать несколько пикселей (они всегда одного цвета), которые появляются в процессе производства и восстановлению не подлежат.

Стандарт ISO 13406-2 определяет предельные значения количества дефектных пикселов на миллион. В соответствии с таблицей ЖК-панели делятся на 4 класса.

Таблица 1

Тип 1 - постоянно светящиеся пиксели (белый); Тип 2 - "мертвые" пиксели (черный); Тип 3 - дефектные красные, синие и зеленые субпиксели.

Угол обзора. Максимальный угол обзора определяется как угол, при обзоре с которого контрастность изображения уменьшается в 10 раз. Но в первую очередь при изменении угла обзора от 90(видны искажения цвета. Поэтому, чем больше угол обзора, тем лучше. Различают горизонтальный и вертикальный угол обзора, рекомендуемые минимальные значения - 140 и 120 градусов соответственно (наилучшие углы обзора даёт технология MVA).

Время отклика (инерционность)- время, за которое транзистор успевает изменить пространственную ориентацию молекул жидких кристаллов (чем меньше, тем лучше). Для того чтобы быстро движущиеся объекты не казались смазанными, достаточно времени отклика 25 мс. Этот параметр состоит из двух величин: времени на включение пикселя (come-up time) и времени на выключение (come-down time). Время отклика (точнее, время выключения как наибольшее время, за которое отдельный пиксель максимально изменяет свою яркость) определяет частоту обновления изображения на экране

FPS = 1 с/время отклика.

Яркость - преимущество ЖК-дисплея, которая в среднем в два раза выше показателей ЭЛТ: с увеличением интенсивности лампы подсветки сразу возрастает яркость, а в ЭЛТ необходимо усиливать поток электронов, что приведёт к значительному усложнению её конструкции и повысит электромагнитное излучение. Рекомендуемое значение яркости - не менее 200 кд/м 2 .

Контрастность определяется как соотношение между максимальной и минимальной яркостью. Основная проблема заключается в сложности получения точки чёрного цвета, т.к. лампа подсветки включена постоянно и для получения тёмных тонов используется эффект поляризации. Чёрный цвет зависит от качества перекрытия светового потока подсветки.

ЖК-дисплеи как сенсоры. Снижение стоимости и появление моделей LCD, работающих в жестких условиях эксплуатации, позволило совместить в одном лице (в лице жидкокристаллического дисплея) средство вывода визуальной информации и средство ввода информации (клавиатура). Задача построения такой системы упрощается использованием контроллера последовательного интерфейса, который подключается, с одной стороны, к ЖК-дисплею, а с другой - непосредственно к последовательному порту (СОМ1 - СОМ4) (рис.7). Для управления, декодирования сигналов и подавления "дребезга" (если так можно назвать определение прикосновения) применяется PIC-контроллер (например, IF190 фирмы Data Display), обеспечивающий высокое быстродействие и точность определения точки прикосновения.


Рис. 7. Блок-схема TFT LCD на примере NL6448BC-26-01 дисплея фирмы NEC

Завершим на этом теоретические изыскания и перейдем к реалиям сегодняшнего дня, а точнее - к тому, что имеется сейчас на рынке жидкокристаллических дисплеев. Среди всех изготовителей TFT LCD рассмотрим продукцию NEC, Sharp, Siemens и Samsung. Выбор этих фирм обусловлен

  1. лидерством на рынке ЖК-дисплеев и технологий производства TFT LCD;
  2. доступностью продукции на рынке стран СНГ.

Компания NEC Corporation выпускает жидкокристаллические дисплеи (20% рынка) практически с момента их появления и предлагает не только широкий выбор, но и различные варианты исполнения: стандартный (Standard), специальный (Special) и особый (Specific). Стандартный вариант - компьютеры, офисное оборудование, домашняя электроника, коммуникационные системы и т.п. Специальное исполнение применяется на транспорте (любом: наземном и морском), системах управления движением, системах безопасности, медицинском оборудовании (не связанном с системами жизнеобеспечения). Для систем вооружений, авиации, космического оборудования, систем управления ядерными реакторами, систем жизнеобеспечения и других аналогичных предназначен особый вариант исполнения (понятно, что стоит это недешево).

Перечень выпускаемых ЖК-панелей для промышленного применения (инвертер для лампы подсветки поставляется отдельно) приведен в таблице 2, а блок-схема (на примере 10-дюймового дисплея NL6448BC26-01)- на рис. 8.


Рис. 8. Внешний вид дисплея

Таблица 2. Модели ЖК-панелей фирмы NEC

Модель Размер по диагонали, дюйм Количество пикселей Число цветов Описание
NL8060BC31-17 12,1 800x600 262144 Высокая яркость (350кд/м 2)
NL8060BC31-20 12,1 800x600 262144 Широкий угол обзора
NL10276BC20-04 10,4 1024x768 262144 -
NL8060BC26-17 10,4 800x600 262144 -
NL6448AC33-18A 10,4 640x480 262144 Встроенный инвертор
NL6448AC33-29 10,4 640x480 262144 Высокая яркость, широкий угол обзора, встроенный инвертор
NL6448BC33-46 10,4 640x480 262144 Высокая яркость, широкий угол обзора
NL6448CC33-30W 10,4 640x480 262144 Без подсветки
NL6448BC26-01 8,4 640x480 262144 Высокая яркость (450 кд/м 2)
NL6448BC20-08 6,5 640x480 262144 -
NL10276BC12-02 6,3 1024x768 16, 19M -
NL3224AC35-01 5,5 320x240 Full color
NL3224AC35-06 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор, тонкий
NL3224AC35-10 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-13 5,5 320x240 Full color Отдельный вход NTSC/PAL RGB, встроенный инвертор
NL3224AC35-20 5,5 320x240 262, 144 Высокая яркость (400 кд/м 2)

Сыграла значительную роль в развитии LCD-технологий. Компания Sharp и сейчас находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. В 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы с разрешением 160х120 пикселов. Краткий перечень продукции - в таблице 3.

Таблица 3. Модели ЖК-панелей фирмы Sharp

Выпускает жидкокристаллические дисплеи с активной матрицей на низкотемпературных поликремниевых тонкопленочных транзисторах. Основные характеристики дисплеев с диагональю 10,5" и 15" приведены в таблице 4. Обратите внимание на диапазон рабочих температур и стойкость к ударам.

Таблица 4. Основные характеристики ЖК-дисплеев фирмы Siemens

Примечания:

I - встроенный инвертор l - в соответствии с требованиями стандарта MIL-STD810

Фирма выпускает жидкокристаллические дисплеи под торговой маркой "Wiseview™". Начав с выпуска 2-дюймовой TFT панели для поддержки Интернета и анимации в мобильных телефонах, Samsung теперь производит гамму дисплеев от 1,8" до 10,4" в сегменте малых и средних TFT LCD, причем некоторые модели предназначены для работы при естественном освещении (таблица 5).

Таблица 5. Основные характеристики ЖК-дисплеев Samsung малых и средних размеров

Примечания:

LED - светодиодная; CCFL - флуоресцентная лампа с холодным катодом;

В дисплеях используется технология PVA.

Выводы.

В настоящее время выбор модели жидкокристаллического дисплея определяется требованиями конкретного применения и в значительно меньшей степени - стоимостью LCD.

Основным элементом LCD – мониторов, безусловно, является жидкокристаллическая панель (ЖК-панель). ЖК-панель можно отнести к основным элементам мониторов по следующим соображениям: она является самым габаритным и самым дорогим элементом монитора, а также именно характеристики панели определяют качество изображения и характеристики самого монитора. Устройство панели и принципы, заложенные в ее производство, определяют схемотехнику всей остальной части монитора, определяют его интерфейс и его элементную базу. ЖК-панель, в свою очередь, далеко не простое устройство, ведь в ее составе кроме самой матрицы жидких кристаллов, имеются еще и схемы строчных и столбцовых драйверов, имеются схемы, осуществляющие выборку строк и столбцов. Также внутри панели имеются интерфейсные схемы и микроконтроллер, обслуживающий интерфейсы. Кроме того, многие производители в состав панели вводят и блок задней подсветки. Все это подводит нас к выводу, что грамотный ремонт и диагностика мониторов LCD просто невозможны без знаний о ЖК-панелях.

Самым лучшим способом изучения принципов работы и устройства ЖК-панелей является рассмотрение этих вопросов на примере конкретного изделия. В качества такого примера предлагается выбрать панель модели LTM213U4-L01 производства фирмы Samsung Electronics, являющейся одним из лидеров в производстве данной продукции.

Характеристики ЖК-панели

Вначале, конечно же, стоит определиться, что же за панель предлагается к рассмотрению, ведь ее разрешающая способность, размер, цветовые характеристики и т.п. могут значительно изменять конструктив самой панели. Основные характеристики и особенности ЖК-панели представлены в виде таблицы – табл.1.

Таблица 1.

Параметр, характеристика

Значение

Тип

Активная матрица TFT

Размеры

432 х 324 мм (21.3 дюйма – диагональ), толщина – 26 мм

Вес

3.9 кг

Элемент изображения

Тонкопленочный транзистор на аморфном кремнии ( a - Si )

Количество отображаемых цветов

16.7 миллионов (8 бит на каждый цвет)

Количество точек (разрешение)

1600х1200

Типовое время отклика

25 мс

Максимальное время отклика

35 мс

Угол обзора по вертикали или горизонтали

170°

Угол обзора во всех направлениях

Не менее 85 °

Шаг точек

0.27 мм

Режим дисплея

Нормально - черный

Тип задней подсветки

Встроенные лампы типа CCFT – две тройных лампы (всего шесть)

Тип интерфейса

Open LDI (LVDS )

Тип используемого приемника LVDS

DS90CF388

Расположение точек

Вертикальные полосы R , G , B

Используемые технологии

Диапазон рабочих температур

От 0 до +50 °С

Диапазон температур при хранении

От -20 до +65 °С

Допустимые вибрации

До 1 G

Допустимые удары

До 50 G

Конструктив ЖК-панели

Конструктив ЖК-панели

Структурная схема панели LCD -панели показана на рис.1, и по этой схеме можно сделать следующие замечания.

1) В составе панели имеется модуль задней подсветки. Такое решение характерно далеко не для всех моделей LCD -модулей. Однако стоит обратить внимание, что схема инвертора не является составной частью изделия, и инвертор должен разрабатываться производителем монитора. Инвертор – это источник питания, обеспечивающий преобразование напряжения постоянного тока от источника питания в импульсное высоковольтное напряжение, подводимое к лампам. Модуль задней подсветки образован шестью люминесцентными лампами с холодным катодом ( CCFL ). Эти шесть ламп собраны в две группы (по три в каждой). Как и в подавляющем большинстве других ЖК-панелей лампы размещаются по краям матрицы жидких кристаллов. Для каждой из шести ламп имеется отдельный соединительный разъем.

2) ЖК-панель оснащена интерфейсом LVDS , что позволяет обеспечить высокую скорость передачи данных и понизить вероятность помех. Применение этого интерфейса также обеспечивает универсальность панели, т.е. ее можно использовать с любой управляющей платой, которая оборудована интерфейсом LVDS . При использовании интерфейса LVDS информация на ЖК-панель передается в последовательном виде, и поэтому в составе панели имеется преобразователь последовательных данных в параллельный вид. Такой преобразователь представляет собой интегральную микросхему, называемую Receiver (приемник). Данные, преобразованные в параллельный вид, передаются далее на микросхему дисплейного контроллера TCON .

3) Микросхема TCON обеспечивает управление синхронизацией, приемом и распределением данных по столбцовым и строковым драйверам. На выходе микросхемы TCON формируется столько управляющих сигналов, сколько всего имеется управляющих транзисторов в панели, а рассчитать их количество достаточно просто. Если данная панель поддерживает «разрешение» 1600х1200, то на экране имеется 1200 строк и 4800 столбцов (1600х3), т.е. каждая цветная точка образована тремя стоящими рядом точками. В данной панели используется именно полосковая топология точек ( Stripe ), и пример расположения точек демонстрируется на рис.2.

4) Столбцовые драйверы реализованы в виде интегральной микросхемы. Сигналы на выбор того, или иного драйверного транзистора поступают от микросхемы TCON в виде сигналов TTL – эта взаимосвязь на рис.1показана линией Control . Кроме того, для обеспечения градаций шкалы серого цвета используется метод ШИМ ( Pulse Width Modulation - PWM ) . При этом методе используется различная ширина импульсов выборки строки в процессе адресации. При этом поддержка метода ШИМ обеспечивается аппаратно в структуре именно драйвера столбцов. По шине управления (на рис. 1 она обозначена VideoData ) для каждого пиксела передается 8-битовый код, которому соответствует 256 градаций шкалы серого. Коды градации записываются в регистр столбцового драйвера, а затем преобразуются в длительностьимпульсов пропорционально коду.

Оптические характеристики ЖК-панели и методы их измерения

Основные оптические характеристики, которые специфицируются для панелей на основе жидких кристаллов, и их значения для панели Samsung LTM 213 U 4- L 01представлены в табл.2.

Конструктив ЖК-панели

Структурная схема панели LCD-панели показана на рис.1, и по этой схеме можно сделать следующие замечания.

Рис. 1

1) В составе панели имеется модуль задней подсветки. Такое решение характерно далеко не для всех моделей LCD-модулей. Однако стоит обратить внимание, что схема инвертора не является составной частью изделия, и инвертор должен разрабатываться производителем монитора. Инвертор – это источник питания, обеспечивающий преобразование напряжения постоянного тока от источника питания в импульсное высоковольтное напряжение, подводимое к лампам. Модуль задней подсветки образован шестью люминесцентными лампами с холодным катодом (CCFL). Эти шесть ламп собраны в две группы (по три в каждой). Как и в подавляющем большинстве других ЖК-панелей лампы размещаются по краям матрицы жидких кристаллов. Для каждой из шести ламп имеется отдельный соединительный разъем.

2) ЖК-панель оснащена интерфейсом LVDS, что позволяет обеспечить высокую скорость передачи данных и понизить вероятность помех. Применение этого интерфейса также обеспечивает универсальность панели, т.е. ее можно использовать с любой управляющей платой, которая оборудована интерфейсом LVDS. При использовании интерфейса LVDS информация на ЖК-панель передается в последовательном виде, и поэтому в составе панели имеется преобразователь последовательных данных в параллельный вид. Такой преобразователь представляет собой интегральную микросхему, называемую Receiver (приемник). Данные, преобразованные в параллельный вид, передаются далее на микросхему дисплейного контроллера TCON.

3) Микросхема TCON обеспечивает управление синхронизацией, приемом и распределением данных по столбцовым и строковым драйверам. На выходе микросхемы TCON формируется столько управляющих сигналов, сколько всего имеется управляющих транзисторов в панели, а рассчитать их количество достаточно просто. Если данная панель поддерживает «разрешение» 1600х1200, то на экране имеется 1200 строк и 4800 столбцов (1600х3), т.е. каждая цветная точка образована тремя стоящими рядом точками. В данной панели используется именно полосковая топология точек (Stripe), и пример расположения точек демонстрируется на рис.2.


Рис. 2

4) Столбцовые драйверы реализованы в виде интегральной микросхемы. Сигналы на выбор того, или иного драйверного транзистора поступают от микросхемы TCON в виде сигналов TTL – эта взаимосвязь на рис.1 показана линией Control. Кроме того, для обеспечения градаций шкалы серого цвета используется метод ШИМ (Pulse Width Modulation - PWM) . При этом методе используется различная ширина импульсов выборки строки в процессе адресации. При этом поддержка метода ШИМ обеспечивается аппаратно в структуре именно драйвера столбцов. По шине управления (на рис. 1 она обозначена VideoData) для каждого пиксела передается 8-битовый код, которому соответствует 256 градаций шкалы серого. Коды градации записываются в регистр столбцового драйвера, а затем преобразуются в длительность импульсов пропорционально коду.

5) В составе ЖК-панели имеется схема управления питающими напряжениями. Эта схема представляет собой преобразователь и регулятор, формирующий питающие напряжения для всех элементов панели, причем номиналы этих напряжений различны.

Оптические характеристики ЖК-панели и методы их измерения

Основные оптические характеристики, которые специфицируются для панелей на основе жидких кристаллов, и их значения для панели Samsung LTM213U4-L01 представлены в табл.2.

Таблица 2.

Характеристика

Обознач.

Условия измерения

Значение

Ед. измер

мин

тип

макс

Масштаб контрастности

Измерительная аппаратура размещается строго перпендикулярно экрану – угол обзора равен 0° в любом направлении:

θ = 0°

φ = 0°

Время отклика

Нарастающий фронт

мсек

Спадающий фронт

мсек

Яркость белого (центр экрана)

Y(L)

Кд/м 2

Цветовые

координаты

Красного

цвета

(X )

Отклонение

0 .03

0.632

Отклонение

0 .03

(Y )

0.353

Зеленого цвета

(X )

0.293

(Y )

0.590

Синего цвета

(X )

0.140

(Y )

0.090

Белого цвета

(X )

0.310

(Y )

0.340

Угол

обзора

По горизонтали

Влево

Измерение угла осуществляется при уровне контрастности больше 10 ( C / R > 10)

град.

Вправо

град.

По

вертикали

Вверх

φ H

град.

Вниз

φ L

град.

Неравномерность яркости

Buni

Достаточно интересными являются методики измерения тех характеристик, которые упоминаются в табл.2, и рассмотрение более подробно этих методик дает очень хорошее представление о том, на что обращать внимание при выборе и определении качества LCD-монитора. Эта информация также необходима и сервисным службам, т.к. после завершения ремонтных работ необходимо осуществлять контроль выходных параметров отремонтированного изделия, и в случае несоответствия их заданным значениям, либо произвести регулировку, либо осуществить замену изделия из-за невозможности обеспечить требуемого качества изображения. Начнем рассмотрение методик по порядку упоминания характеристик монитора в таблице.

Но прежде чем говорить о методиках измерения параметров ЖК-панели, стоит сказать о том, что эти работы необходимо производить только после того, как температура панели стабилизируется. Поэтому следует вначале оставить ЖК-монитор в помещении, где будут производиться измерения примерно на 30 минут. Это помещение должно быть темным, т.е. в нем не должно быть окон, и температура в комнате измерений должна быть стабильной. Температура окружающего воздуха в комнате измерений должна иметь значение +25°С (±2°С). Требование отсутствия окон в помещении связано с тем, что внешний свет может исказить результаты измерения яркости, контрастности и угла обзора.

После истечения 30 минут монитор включается, и начинают светить лампы задней подсветки, что приводит к разогреву самой ЖК-панели. Чтобы избежать возможных искажений и неточностей измерений, необходимо подождать, пока панель не прогреется уже под действием лампы задней подсветки. После включения монитора необходимо подождать еще около 30 минут. И только после этого можно быть уверенным в точности измерений и в отсутствии температурных погрешностей.

Как уже упоминалось, измерительное оборудование должно устанавливаться строго против центра экрана, без каких либо наклонов, так как это показано на рис.3.

Рис. 3

В качестве измерителей характеристик монитора фирмой Samsung предлагается использовать анализаторы (фотодетекторы) следующих типов:

1. TOPCON BM-5A

3. PHOTO RESEARCH PR650

Прибор BM-5A размещают на расстоянии 40 см от экрана и этим прибором проводятся измерения яркости, диапазона контрастности, угла обзора и неравномерности яркости экрана. Прибором BM-7 проводится измерение времени отклика точек, и размещается прибор на расстоянии 50 см от экрана. Прибором PR650, устанавливаемым на расстоянии 50см от поверхности экрана, проводится измерение цветовых характеристик (координат) панели.

Для получения некоторых параметров ЖК-панели измерения нужно производить не только в центре, но и на краях экрана. Эти точки (и их координаты, т.е. строки и столбцы) отмечены на рис.4.

Рис. 4

Измерение контрастности

Масштаб (диапазон) контрастности, обозначаемый в англоязычной технической документации как C/R, является соотношением двух значений яркости: для белого и для черного экрана – формула (1).

Анализатором получают два значения Gmax и Gmin в центральной точке экрана (точка №5 на рис.4). Значение Gmax измеряется, когда все точки ЖК-панели светятся белым цветом. Значение Gmin измеряется анализатором при условии, что все точки экрана – черные.

Большое значение масштаба контрастности является несомненным достоинством изделия, т.к. такая панель обеспечивает широкий диапазон регулировки контрастности изображения.

Измерение времени отклика

Время отклика является суммой двух параметров: времени нарастания (Tr) и временем спада (Tf). Время нарастания измеряется при переключении ЖК-панели с черного цвета на белый. Время спада измеряется при переключении панели с белого цвета на черный. Принцип измерения времени Tr и времени Tf демонстрируется на рис.5.

Рис. 5

Измерение яркости белого

Эта характеристика ЖК-панели измеряется прибором BM-5A в центре экрана (точка №5 на рис.4). Большое значение этой характеристики соответствует широкому диапазону яркости и также является признаком хорошей панели.

Измерение цветовых характеристик

Цветовые координаты каждого цвета измеряются прибором PR650, также устанавливаемым строго напротив центра экрана (точка №5 на рис.4). Измерение цветовых характеристик проводится в соответствии со спецификацией CIE1931. Измерение цветовых координат производится для каждого цвета в отдельности, для чего на экране последовательно включается соответствующий цвет.

Измерение неравномерности яркости экрана

Для получения данной характеристики прибором BM-5A измерение яркости проводится девять раз – в каждой из точек, указанных на рис.4 при условии, что все точки экрана белые. Далее из девяти полученных результатов выбирается два – максимально значение (Bmax) и минимальное (Bmin), и по этим двум результатам вычисляется неравномерность в соответствии с формулой (2).

Кроме визуальных параметров LCD-панель описывается еще и электрическими характеристиками, приведенными в табл. 3.

Таблица 3.

Параметр

Обознач.

Значение

Ед.

измер

мин

тип

макс

Напряжение питания

Тип интерфейса

LVDS

Open LDI

Потребляемый ток

При черном шаблоне

1020

мА

При мозаичном шаблоне

1060

1200

мА

1260

1520

мА

Гц

F H

кГц

F DCLK

МГц

Пиковое значение тока

I RUSH

Некоторые данные, приведенные в таблице, нуждаются в пояснении.

1. Полоса пропускания (основная частота) – это частота синхронизации точек, определяемая на входе передатчика шины LVDS (об этом подробнее читайте в №2 нашего журнала).

2. Пиковое значение тока определяется в момент подачи питающего напряжения на ЖК-панель. Для получения пикового тока в момент подачи напряжения питания должны быть выполнены следующие условия:

- все управляющие и все сигнальные линии ЖК-панели должны быть заземлены;

- время нарастания питающего напряжения должно быть около 470 мкс (если быть точным, то за 470 мкс уровень напряжения в линии питания ЖК-панели должен измениться от величины 10% до 90% от номинального значения).

3. Величина потребляемого ЖК-панелью тока зависит от выводимого изображения. Минимальный ток панель потребляет при выводе сплошного черного изображения, а максимальный – при сплошной белой картинке. Но измерять величину Idd принято при загрузке на экран определенного шаблона. Как видно из таблицы, потребляемый ток измеряется три раза – на разных шаблонах, что дает более объективную картину .

Такими шаблонами являются:

1. Сплошной черный экран - рис.6.

Рис. 6

2. Мозаичный экран, или шахматное поле - рис.7.

Рис. 7

3. Вертикальные чередующиеся черные и белые линии, причем каждая линия (как черна, так и белая) состоит из двух вертикальных логических столбцов – рис.8.


Рис. 8

Модуль задней подсветки

В панели Samsung LTM213U4-L01 модуль задней подсветки состоит из шести ламп, разделенных на две группы – в каждой группе по три лампы. Электрические характеристики пары ламп модуля задней подсветки представлены в табл.4.

Таблица 4.

Параметр

Обознач.

Значение

Ед.

измер

мин

тип

макс

Напряжение питания

Тип интерфейса

LVDS

Open LDI

Потребляемый ток

При черном шаблоне

1020

мА

При мозаичном шаблоне

1060

1200

мА

При шаблоне двух вертикальных линий

1260

1520

мА

Частота кадровой синхронизации

Гц

Частота строчной синхронизации

F H

кГц

Полоса пропускания (основная частота)

F DCLK

МГц

Пиковое значение тока

I RUSH


В современных ЖК-панелях традиционно используются люминесцентные лампы с холодным катодом (CCFL) – исключением не является и рассматриваемая в этом обзоре. Но для всех люминесцентных ламп характерна одна особенность – это значительная зависимость и яркости свечения и режима включения лампы от окружающей температуры.

Напряжение питания на лампы подается с инвертора, который может управляться методом широтно-импульсной модуляции (ШИМ). Яркость ламп и их время «жизни» определяется исключительно схемой инвертора, поэтому задачей производителя монитора будет разработка такой схемы инвертора, которая не должна выдавать слишком высокое напряжение на лампы. В качестве требований к инвертору можно назвать еще и стабильность импульсного высокочастотного напряжения на выходе.

Высокая частота в несколько десятков кГц, на которой работают люминесцентные лампы, может стать причиной явления интерференции, вызванного взаимодействием частоты ламп и частоты срочной развертки. Явление интерференции приводит к появлению на экране монитора такого явления, как «плывущие» строки и муар. Для подавления интерференции частота, на которой работает инвертор, должна отличаться от частоты строчной развертки и от частоты основных гармоник строчной развертки настолько, насколько это возможно обеспечить.

Хорошо спроектированный инвертор должен обеспечивать собственное отключение не позднее чем через 1 сек. В том случае, если разъем ламп задней подсветки не подключен.

Время «жизни» ламп (Hr) является условной величиной, вычисляемой как время, в течение которого выходная яркость ламп уменьшится вдвое по сравнению с начальным периодом работы. При вычислении времени «жизни» необходимо учитывать окружающую температуру, которая должна быть 25°С, а также величину действующего тока лампы, который для данной панели должен быть на уровне 6.5 мArms.

Так как лампы размещают по краям экрана, то для обеспечения симметрии с каждой стороны экрана находится по одной лампе из пары (рис.9).

Рис. 9

На рис.10 демонстрируется распределение выводов модуля задней подсветки по разъемам и их соответствие разъемам инвертора.

Рис. 10

Интерфейсы панели

ЖК-панель соединяется с внешними схемами тремя интерфейсами:

- интерфейс напряжения питания (12-контактный разъем);

- интерфейс напряжения питания модуля задней подсветки (6 разъемов по 3-4 контакта);

- интерфейс LVDS для передачи управляющих сигналов, сигналов синхронизации и цветовой информации.

Интерфейс напряжения питания имеет весьма простое распределение сигналов по контактам – первые шесть выводов – напряжение +5В, оставшиеся шесть выводов – «земля» (табл.5).

Таблица 5.

Назначение

5 В

5 В

5 В

5 В

5 В

5 В

9,10


Интерфейс модуля задней подсветки уже был достаточно подробно расписан в предыдущем разделе статьи. Осталось решить вопрос с информационным интерфейсом.

В ЖК-панели LTM213U4-L01используется интерфейс LVDS, ставший на сегодняшний момент самым широко используемым в LCD-модулях. Так как данные по этому интерфейсу передаются по паре дифференциальных линий в последовательном виде, в составе ЖК-модуля имеется приемник шины LVDS, который обеспечивает преобразование последовательного кода получаемых данных в параллельный вид, удобный для контроллера TCON. В качестве приемника шины LVDS в данном устройстве используется микросхема DS90C388. Но приемник и передатчик сигналов LVDS обычно представляют собой единый набор интегральных микросхем. В паре с приемником в качестве передатчика LVDS применяется микросхема DS90C387, размещаемая на плате управления ЖК-панелью. Интерфейс LVDS выполнен в виде 31-контактного разъема, распределение сигналов на котором описывается таблицей 6.

Таблица 6.

Обознач.

Назначение

Общий

Общий

A 0 M

Вход данных (канал 0) дифференциальной пары (инверсный вывод)

Вход данных (канал 0) дифференциальной пары (прямой вывод)

Вход данных (канал 1) дифференциальной пары (инверсный вывод)

Вход данных (канал 1) дифференциальной пары (прямой вывод)

Вход данных (канал 2) дифференциальной пары (инверсный вывод)

Вход данных (канал 2) дифференциальной пары (прямой вывод)

Общий

Общий

CLKM

Вход синхросигналов для преобразования данных из последовательного вида в параллельный. Инверсный вывод дифференциального усилителя.

CLKP

Вход синхросигналов для преобразования данных из последовательного вида в параллельный. Прямой вывод дифференциального усилителя.

A 3 M

Выход данных (канал 3) дифференциальной пары (инверсный вывод)

Выход данных (канал 3) дифференциальной пары (прямой вывод)

Общий

Общий

Вход данных (канал 4) дифференциальной пары (инверсный вывод)

Вход данных (канал 4) дифференциальной пары (прямой вывод)

Вход данных (канал 5) дифференциальной пары (инверсный вывод)

Вход данных (канал 5) дифференциальной пары (прямой вывод)

Вход данных (канал 6) дифференциальной пары (инверсный вывод)

Вход данных (канал 6) дифференциальной пары (прямой вывод)

Общий

Общий

Вход данных (канал 7) дифференциальной пары (инверсный вывод)

Вход данных (канал 7) дифференциальной пары (прямой вывод)

Зарезервированы

Более полное представление о конфигурации интерфейса дает рис.11.

Рис. 11

Цвет каждой точки кодируется 24-битами, т.е. по 8 разрядов на каждый из основных цветов (красный, зеленый, синий). Информация по каждому из трех цветов передается по двум дифференциальным линиям, что делается для увеличения производительности интерфейса. Таким образом, для передачи цвета используется шесть каналов дифференциальных линий. Еще один дифференциальный канал используется для передачи сигналов строчной и кадровой синхронизации.

На выходе приемника LVDS формируются 24 бита данных четных точек строки (BE...,GE..,RE...) и 24 бита нечетных точек (BO..., GO..., RO...). Временные диаграммы интерфейса представлены на рис.12.

Рис. 12

Техническое обслуживание и эксплуатация ЖК-панели

Рассмотрев все особенности внутреннего устройства ЖК-панели Samsung LTM213U4-L01, переходим к одному из самых практических вопросов: как правильно работать с этим модулем, что допускается с ним делать, а что категорически запрещается, каким образом обеспечить грамотный уход за панелью во время эксплуатации и какие меры предосторожности соблюдать при проведении ремонтных работ. Все правила и рекомендации, приведенные ниже, относятся к ЖК-панели, но так как она является основным элементом мониторов, то автоматически все сказанное можно перенести и на LCD-мониторы в целом.

Правила хранения ЖК-панели

1. Нельзя надолго помещать ЖК-модуль в условия повышенной температуры и повышенной влажности. Наиболее оптимальными условиями для хранения является температура от 0 до +35°С, при относительной влажности менее 70%.

2. Нельзя хранить панели TFT-LCD при воздействии на них прямого солнечного света.

3. ЖК-панели должны храниться в темном месте, защищенном от попадания солнечного света и света люминесцентных ламп.

Правила эксплуатации и обслуживания ЖК-панели

1. ЖК-панель не должна подвергаться механическим деформациям и воздействию сил на скручивание.

2. Избегать воздействия сильных ударов и воздействия перегрузок. Это может приводить к повреждению не только самой матрицы LCD-TFT, но и ламп модуля задней подсветки.

3. Поляризующая поверхность панели очень хрупкая и может быть очень легко повреждена. Нельзя нажимать на поверхность экрана и царапать ее карандашами, ручками и т.п.

4. При попадании на поверхность экрана капель воды, масла или жира немедленно удалить (вытереть) их. Если капли оставить, то это может привести к образованию пятен и потери цветопередачи в данных местах.

5. В случае загрязнения поверхности экрана чистку производить специальными абсорбирующими салфетками или очень мягкой тканью.

6. В качества очищающих средств для чистки экрана желательно использовать воду, изопропиловый спирт или гексан.

7. Категорически запрещается применять растворители класса кетонов (например, ацетон), этиловый спирт, толуол, этиловую кислоту, метолхлорид и все средства, производимые на их основе. Применение перечисленных веществ может мгновенно повредить поляризующий слой экрана за счет возникающей химической реакции.

8. Если из панели вытекает материал жидких кристаллов, то запрещается его трогать руками, подносить к глазам, носу и рту. Если же этот состав все-таки попал на кожу, руки или на одежду, то необходимо промыть все тщательно водой с мылом.

9. Необходимо принять меры по защите панели от электростатических разрядов, которые могут стать причиной отказа электронных элементов (микросхем) внутри панели.

11. Защитная пленка с экрана должна удаляться непосредственно перед применением, т.к. она обеспечивает защиту и от электростатических разрядов.

12. При наружном применении ЖК-панели (на открытом воздухе) желательно использовать ультрафиолетовые фильтры.

13. При эксплуатации необходимо избегать образования конденсата.

14. Если на экране в течение очень долгого времени отображается одна и та же информация, то пользователь может столкнуться с явлением, при котором даже при выключенном мониторе на экране видны контуры этого изображения, т.е. экран как бы «прогорает» под соответствующее изображение.

1. При установке ЖК-панели необходимо следить за тем, чтобы все крепежные элементы были использованы, т.е. панель в корпус должна устанавливаться надежно и крепко.

2. Стоит предотвращать изгиб проводов ламп задней подсветки и запрещается сильно тянуть эти провода.

4. Запрещается трогать голыми руками (без перчаток) контакты соединительных разъемов панели – это может ухудшить их проводимость.

5. Монтажные и демонтажные работы лучше всего проводить на специальных лотках, покрытых мягкими антистатическими материалами и с использованием мягких перчаток.

6. Подключение и отключение панели от управляющих схем следует производить исключительно при выключенном питании.

7. Высокие частоты, на которых работают внутренние электронные схемы ЖК-панели, могут стать причиной явления электромагнитной интерференции. Для уменьшения этих явлений осуществляется «заземление» панели и ее экранировка. Поэтому при монтаже панели все эти меры должны строго соблюдаться.

8. Стоит также учесть тот момент, что длина соединительного кабеля между лампами задней подсветки и инвертором должна быть минимальной, и лампы к инвертору должны подключаться непосредственно. Удлинение соединительных проводов может стать причиной снижения яркости задней подсветки и увеличения пускового напряжения.

ЖК дисплей на основе микроконтроллера HD44780 является наиболее часто используемым в электроники. Вы можете его встретить в кофейных автоматах, часах, копирах, принтерах, роутерах и т.п. Также данный дисплей используется в LCD шилдах для Arduino .

ЖК дисплей представляет из себя модуль , состоящий из микроконтроллера HD44780 разработанный фирмой Hitachi и непосредственно самим ЖК дисплеем . Микроконтроллер принимает команды и обрисовывает соответствующие символы на ЖК дисплее.

Существует огромное количество разновидностей данного ЖК модуля, он может быть 1,2, 4 –ех строчный с различным числом символов на строке , с подсветкой или без , с различным цветом подсветки и т.п. Объединяет их всех наличие микроконтроллера HD44780 , зная команды которого позволит нам без проблем использовать в своих проектах ту или иную модификацию .

Предисловие

Для работы с дисплеями на основе HD44780 создано большое количество библиотек как на ассемблере так и на СИ , также для Arduino существует своя библиотека «LiquidCrystal ».

Для изучения я решил не использовать наработки, а поработать с ним на «низком уровн е», подергать его ножки самим , тем самым я получу представление о его работе. Полученные навыки позволят мне самому написать библиотеку если в этом будет необходимость.

Где взять первоисточник информации?

Если вы захотите сами разобраться как работать с LCD дисплеем на HD44780 и вникнуть глубже , то в этом вам поможет даташит на микроконтроллер HD44780 , которые легко найти в интернете (но если вам лень, вы можете с сайта).

Изучение я разобью на два этапа

1. Сначалая я приведу матчасть по работе с LCD на HD44780 , этому посвящён данный пост

Вам будет интересно:


Из серии «Взгляд изнутри» речь зашла о повседневных вещах, но, не смотря на обилие материала, полученного в этом направлении в течение прошедшего месяца, всё-таки давайте вернёмся к тематике, связанной с IT.

Специально ко Дню Защитника Отечества на препарационный стол легли LCD и E-Ink дисплеи, которые, так или иначе, достались мне в несколько побитом жизнью виде.

Как Антон кидал телефон об стену, а также о результатах скрупулёзного разбора дисплеев читайте под катом.

Предисловие

Жил-был на свете Антон Городецкий.
Бросила жена, он грустил не по-детски…

Так начинается известная песня группы Уматурман. Так же начинается и история с исследованием дисплеев. После первой публикации на Хабре пришёл ко мне мой друг-аспирант ФНМ МГУ и говорит: «Я тут свой мобильник разбил, не хочешь ли ты его распилить?» Я удивился, потому что этот человек всегда носил с собой китаефон, который я считал практически не убиваемым. Придя однажды домой, Антон по привычке кинул телефон в шкаф, но, видимо, что-то не рассчитав попал аккурат дисплеем в ребро полки.

Осознавая свои смехотворные потери от утраты мобильного и ввиду общего плохого настроения в тот день, он поступил, как истинный джентльмен, швыряя вновь и вновь бездыханное тело телефона о бетонную стену. Когда же останки дошли до меня, то половина китаефона просто отсутствовала, дисплей был покрыт мелкой паутинкой трещин.
Пришлось отложить его до лучших времён (как я тогда полагал, пока кто-нибудь таким же образом не поступит с iPhone или другим сенсорным смартфоном) и начать заниматься HDD и CD, потом лампочками, флешками и т.д.

Через некоторое время уже мой сосед приносит мне треснувший E-Ink дисплей. Его друг разбил тонкое стекло в небезызвестной читалке с порядковым номером 601 во время игры в страйкбол, кажется, и отдал читалку практически даром для ремонта и восстановления.

Вот это уже было интереснее, две технологии можно сравнить между собой, попытаться разглядеть RGB-субпиксели и микрокапсулы, в которых плавают заряженные частицы. Но я надеялся на получение смартфона с ёмкостным сенсором, чтобы сравнить заодно его и резистивный сенсор китаефона.

И вот Василий (научный коллега по одной из лабораторий факультета), приехав к нам на ХимФак из Черноголовки и увидев, чем я собственно занимаюсь с электронным микроскопом, сказал, что готов пожертвовать телефон известного корейского производителя с несколько побитым дисплеем для разборки и распила с пометкой «ради науки ничего не жалко».

Несмотря на все заверения, что сенсор ёмкостной, он оказался резистивным, пусть и более продвинутой конструкции, нежели сенсорная панель китаефона. Из этого телефона была добыта важная деталь, которая ждёт своего часа распила – матрица фото/видео камеры…

Часть теоретическая

Как устроен LCD дисплей?
Мы все так давно пользуемся плоскими телевизорами, мониторами, телефонами, смартфонами, что уже и забыли, что когда-то хороший монитор весил килограмм 10-15 (у нас один такой мастодонт ещё стоит и, главное, исправно работает!).

Всё это стало возможным, благодаря открытиям вековой давности (жидкие кристаллы открыты в 1888 году) и развитию технологий в последние 30-40 лет (1968 год – устройство для отображения информации, использовавшее ЖК, 1970-е – общедоступность жидких кристаллов). Многое о жидких кристаллах и ЖК-мониторах можно подчерпнуть на Wiki.

Итак, практически любой ЖК-монитор состоит из следующих основных частей: активной матрицы, представляющей собой набор транзисторов, с помощью которых и формируется изображение, слоя жидких кристаллов со светофильтрами, которые либо пропускают свет, либо нет, и системы подсветки, которую на сегодняшний день стараются полностью перевести на светодиоды. Хотя на моём «стареньком» Asus G2S дисплей великолепного качества подсвечивается именно люминесцентными лампами.

Как это всё работает? Свет, поступая от источника (LED или лампы) через специальную прозрачную пластину-волновод, рассеивается таким образом, чтобы вся матрица имела равную освещённость по всей свой площади. Далее фотоны проходят поляризационный фильтр, который пропускает только волны с заданной поляризацией . Затем проникнув через стеклянную подложку, на которой находится активная матрица из тонкоплёночных транзисторов, свет попадает на молекулу жидкого кристалла.

Эта молекула получает «команду» от нижележащего транзистора, на какой угол повернуть поляризацию световой волны, чтобы она, пройдя сквозь ещё один поляризационный фильтр, задала интенсивность свечения отдельного субпиксела. А за окраску субпиксела отвечает слой светофильтров (красных, зелёных или синих). Смешиваясь, волны от трёх невидимых глазу человека субпикселей формируют пиксел изображения заданного цвета и интенсивности.

а) Схематическое устройство LCD дисплея, б) устройство жидкокристаллической плёнки в деталях.

Очень наглядно, как мне кажется, это продемонстрировано в ролике компании Sharp :

Помимо хорошо зарекомендовавшей себя технологии LCD + TFT (thin-film transistors – тонкоплёночные транзисторы) существует активно продвигаемая технология органических светодиодов OLED + TFT, то есть AMOLED – active matrix OLED. Основное отличие последней заключается в том, что роль поляризатора, слоя ЖК и светофильтров играют органические светодиоды трёх цветов.

По сути, это молекулы, способные при протекании электрического тока испускать свет, а в зависимости от количества протекшего тока менять интенсивность окраски, подобно тому, как это происходит в обычных LED. Убрав поляризаторы и ЖК из панели, мы потенциально можем сделать её более тонкой, а самое главное – гибкой!

Какие сенсорные панели бывают?
Так как сенсоры на данный момент больше применяют с LCD и OLED дисплеями, то думаю, будет разумно сразу про них и рассказать.

Очень подробное описание танчскринов или сенсорных панелей дано (источник когда-то жил , но почему-то исчез), поэтому я не буду описывать все типы сенсорных панелей, остановлюсь лишь на двух основных: резистивном и ёмкостном.

Начнём с резистивного сенсора. Состоит он из 4 основных компонент: стеклянной панели (1), как носителя всей сенсорной панели, двух прозрачных полимерных мембран с резистивным покрытием (2, 4), слоя микроизоляторов (3), разделяющих эти мембраны, и 4, 5 или 8 проводков, которые и отвечают за «считывание» касания.


Схема устройства резистивного сенсора

Когда мы нажимаем на такой сенсор с определённой силой, то происходит соприкосновение мембран, электрическая цепь замыкается, как показано на рисунке ниже, измеряется сопротивление, которое впоследствии пересчитывается в координаты:


Принцип расчёта координат для 4-х проводного резистивного дисплея ()

Всё предельно просто.

Важно помнить две вещи: а) резистивные сенсоры на многих китайских телефонах не отличаются высоким качеством, это может быть связано как раз с неравномерностью расстояния между мембранами или некачественными микроизоляторами, то есть «мозг» телефона не может адекватно пересчитать измеренные сопротивления в координаты; б) такой сенсор требует именно нажатия, продавливания одной мембраны до другой.

Ёмкостные сенсоры несколько отличаются от резистивных. Стоит сразу оговориться, что речь будет идти лишь о проекционно-ёмкостных сенсорах, которые сейчас применяется в iPhone и прочих портативных устройствах.

Принцип работы такого тачскрина довольно прост. На внутренней стороне экрана наносится сетка электродов, а внешняя покрывается, например, ITO – сложным оксидом индия-олова. Когда мы касаемся стекла, наш палец образует с таким электродом маленький конденсатор, а обрабатывающая электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).

Соответственно, ёмкостной сенсор реагирует только на плотное прикосновение и только проводящими предметами, то есть от касания гвоздём такой экран работать будет через раз, равно как и от руки, вымоченной в ацетоне или обезвоженной. Пожалуй, основным преимуществом данного тачскрина перед резистивным является возможность сделать достаточно прочную основу – особо прочное стекло, как, например, Gorilla Glass.


Схема работы поверхностно-ёмкостного сенсора()

Как устроен E-Ink дисплей?
Пожалуй, E-Ink по сравнению с LCD устроен гораздо проще. Вновь мы имеем дело с активной матрицей, ответственной за формирование изображения, однако ЖК-кристаллов и ламп подсветки здесь нет и в помине, вместо них – колбочки с двумя типами частиц: отрицательно заряженными чёрными и положительно заряженными белыми. Изображение формируется подачей определённой разности потенциалов и перераспределения частиц внутри таких микроколбочек, на рисунке ниже это наглядно продемонстрировано:


Сверху схема работы E-Ink дисплея, снизу реальные микрофотографии такого работающего дисплея ()

Если кому-то этого недостаточно, то принцип работы электронной бумаги продемонстрирован в этом видео:

Помимо технологии E-Ink существует технологи SiPix, в которой есть только один вид частиц, а сама «заливка» чёрная:


Схема работы SiPix дисплея ()

Тем же, кто серьёзно хочет ознакомиться с «магнитной» электронной бумагой, прошу сюда , в Персте когда-то была отличная статья.

Часть практическая

Китаефон vs корейский смартфон (резистивный сенсор)
После «аккуратной» отвёрточной разборки оставшейся от китаефона платы и дисплея, я с превеликим удивлением обнаружил упоминание одного известного корейского производителя на материнской плате телефона:


Самсунг и китаефон едины!

Экран разбирал бережно и аккуратно – так, что все поляризаторы остались целыми, поэтому просто не мог не поиграться с ними и с работающим большим братом препарируемого объекта и вспомнить практикум по оптике:


Так работают 2 поляризационных фильтра : в одном положении световой поток практически не проходит через них, при повороте на 90 градусов – полностью проходит

Обратите внимание, что вся подсветка зиждется всего-навсего на четырёх крохотных светодиодах (я думаю, их суммарная мощность не более 1 Вт).

Затем долго искал сенсор, искренне полагая, что это будет довольно толстая панелька. Оказалось совершенно наоборот. Как в китайском, так и в корейском телефоне сенсор представляет из себя несколько листов пластика, которые очень качественно и плотно приклеены к стеклу внешней панели:


Слева сенсор китаефона, справа – корейского телефона

Резистивный сенсор китайского телефона выполнен по схеме «чем проще, тем лучше», в отличие от своего более дорогого собрата из Южной Кореи. Если я не прав, то поправьте меня в комментариях, но слева на картинке – типичный 4-х контактный, а справа – 8-ми контактный сенсор.

LCD-дисплей китаефона
Так как дисплей китайского телефона всё равно был разбит, а корейского – всего лишь незначительно повреждён, то на примере первого я и постараюсь рассказать о LCD. Но пока не будем его ломать окончательно, а посмотрим под оптическим микроскопом:


Оптическая микрофотография горизонтальных линий LCD-дисплея китайского телефона. Левой верхней фотографии присущ некоторый обман нашего зрения из-за «неправильных» цветов: белая тонкая полоска и есть контакт.

Один провод питает сразу две линии пикселов, а развязка между ними устроена с помощью совершенно необычного «электрического жука» (правая нижняя фотография). За всей это электрической схемой находятся дорожки-светофильтры, выкрашенные в соответствующие цвета: красный (R), зелёный (G) и синий (B).

С противоположного конца матрицы по отношению к месту крепления шлейфа можно найти аналогичную цветовую разбивку, номера дорожек и всё те же переключатели (если бы кто-нибудь просветил в комментариях, как это работает, то было бы очень здорово!):


Номера-номера-номера…

Так вживую выглядит работающий LCD дисплей под микроскопом:

Вот и всё, теперь этой красоты мы уже не увидим, я раскрошил в буквальном смысле этого слова, а немножко помучавшись одну такую кроху «расщепил» на два отдельных кусочка стекла, из которых и состоит основная часть дисплея…

Теперь можно посмотреть на отдельные дорожки светофильтров. О тёмных «пятнах» на них я расскажу чуть позже:


Оптическая микрофотография светофильтров с загадочными пятнами…

А теперь небольшой методический аспект, касающийся электронной микроскопии. Те же самые цветные полосы, но уже под пучком электронного микроскопа: цвет исчез! Как я и говорил ранее (например, в самой первой статье) электронному пучку совершенно «чёрно-бело» взаимодействует ли он с цветным веществом или нет.


Вроде бы те же полоски, но уже без цвета…

Заглянем и на обратную сторону. На ней расположены транзисторы:


В оптический микроскоп – в цвете…


И электронный микроскоп – черно-белое изображение!

В оптический микроскоп это видно чуть хуже, но СЭМ позволяет разглядеть окантовку каждого субпикселя – это довольно важно для нижеследующего вывода.

Итак, что это за странные тёмные области?! Долго думал, ломал себе голову, прочитал много источников (пожалуй, самым доступным оказалась Wiki) и, кстати, по этой причине задержал выпуск статьи в четверг 23 февраля. И вот к какому выводу я пришёл (возможно, я не прав – поправьте!).

В VA- или MVA-технологии – одна из самых простых, и не думаю, что китайцы придумали что-то новое: каждый субпиксел должен быть чёрный. То есть через него не проходит свет ( приведён пример работающего и неработающего дисплея), принимая во внимание то, что в «обычном» состоянии (без приложения внешнего воздействия) жидкий кристалл разориентирован и не даёт «нужной» поляризации, то логично предположить, что каждый отдельный субпиксел имеет свою плёнку с ЖК.

Таким образом, вся панель собрана из единичных микро-ЖК-дисплеев. Сюда органично вписывается и замечание об окантовке каждого отдельного субпиксела. Для меня это стало, своего рода, неожиданным открытием прямо по ходу подготовки статьи!

Дисплей корейского телефона ломать я пожалел: надо ведь что-то показывать детям и тем, кто приходит к нам на факультет на экскурсию. Не думаю, что можно было бы увидеть ещё что-то интересное.

Далее, баловства ради приведу пример «организации» пикселов у двух ведущих производителей коммуникаторов: HTC и Apple. iPhone 3 был пожертвован на безболезненную операцию одним добрым человеком, а HTC Desire HD собственно мой:


Микрофотографии дисплея HTC Desire HD

Небольшое замечание по поводу дисплея HTC: специально не искал, но не может ли быть вот эта полоса посреди верхних двух микрофотографий тем частью того самого ёмкостного сенсора?!


Микрофотографии дисплея iPhone 3

Если мне не изменяет память, то у HTC дисплей – superLCD, а у iPhone 3 – обычный LCD. Так называемый Retina Display, то есть LCD, у которого оба контакта для переключения жидкого кристалла лежат в одной плоскости, In-Plane Switching – IPS, устанавливается уже в iPhone 4.

Надеюсь, что скоро на тему сравнения различных технологий дисплеев выйдет статья при поддержке 3DNews. А пока хочу просто отметить тот факт, что дисплей HTC действительно необычен: контакты на отдельные субпикселы заведены нестандартным образом – как-то сверху, в отличие от iPhone 3.

И напоследок в этом разделе добавлю, что размеры одного субпиксела у китаефона – 50 на 200 микрометров, HTC – 25 на 100 микрометров, а iPhone – 15-20 на 70 микрометров.

E-Ink известного украинского производителя
Начнём, пожалуй, с банальных вещей – «пикселов», а точнее ячеек, которые ответственны за формирование изображения:


Оптическая микрофотография активной матрицы E-Ink дисплея

Размер такой ячейки около 125 микрометров. Так как смотрим мы на матрицу через стекло, на которое она нанесена, то прошу обратить внимание на жёлтый слой на «заднем» плане – это золотое напыление, от которого нам впоследствии предстоит избавиться.


Вперёд на амбразуру!


Сравнение горизонтальных (слева) и вертикальных (справа) «вводов»

Кроме всего прочего, на стеклянной подложке обнаружилось много интересных вещей. Например, позиционных меток и контактов, которые, по всей видимости, предназначены для тестирования дисплея на производстве:


Оптические микрофотографии меток и тестовых контактных площадок

Конечно, такое происходит не часто и обычно является несчастным случаем, но дисплеи иногда ломаются. Например, эта едва заметная трещина толщиной меньше человеческого волоса способна навсегда лишить радости читать любимую книгу о туманном Альбионе в душном московском метро:


Если дисплеи ломают, значит это кому-нибудь нужно… Мне, например!

Кстати, вот оно, то золото, о котором я упоминал – гладкая площадка «снизу» ячейки для качественного контакта с чернилами (о них чуть ниже). Золото удаляем механически и вот результат:


You"ve got a lot of guts. Let"s see what they look like! (с)

Под тонкой золотой плёнкой скрываются управляющие компоненты активной матрицы, если можно её так именовать.

Но самое интересно, конечно же, это сами «чернила»:


СЭМ-микрофотография чернил на поверхности активной матрицы.

Конечно, трудно найти хотя бы один разрушенную микрокапсулу, чтобы заглянуть внутрь и увидеть «белые» и «чёрные» пигментные частицы:

СЭМ-микрофотография поверхности электронных «чернил»


Оптическая микрофотография «чернил»

Или всё-таки внутри что-то есть?!


То ли разрушенная сфера, то ли выдранная из несущего полимера

Размер отдельных шариков, то есть некоторого аналога субпиксела в E-Ink, может составлять всего 20-30 мкм, что значительно ниже геометрических размеров субпикселов в LCD-дисплеях. При условии, что такая капсула может работать в половину своего размера, то и изображение получается на хороших, качественных E-Ink дисплеях гораздо более приятным, чем на LCD.

И на десерт – видео о том, как работают E-Ink дисплеи под микроскопом.