Линейные операторы в евклидовом пространстве акция. Операторы в евклидовом пространстве и их продолжение на комплексификацию

20.04.2019
Линейные самосопряженные операторы
Портабельные Windows-приложения на сайте Bodrenko.com

§ 5. Линейные самосопряженные операторы
в евклидовом пространстве
.

1. Понятие сопряженного оператора. Мы будем рассматривать линейные операторы в конечномерном евклидовом пространстве V. Определение 1. Оператор А* из L(V, V) называется сопряженным к линейному оператору А, если для любых х и у из V выполняется соотношение

(Ах, у) = (х, А*у). (5.51)

Легко убедиться в том, что оператор А*, сопряженный к линейному оператору А, сам является линейным оператором. Это вытекает из очевидного соотношения

справедливого для любых элементов х, у 1 , у 2 и любых комплексных чисел α и β.

Докажем следующую теорему.

Теорема 5.12. Каждый линейный оператор А имеет единственный сопряженный.

Доказательство. Очевидно, скалярное произведение (Ах, у) представляет собой полуторалинейную форму (см. гл. 4, § 3, п. 1 и определение полуторалинейной формы). По теореме 5.11 существует единственный линейный оператор А* такой, что эта форма может быть представлена в виде (х, А*у). Таким образом, (Ах, у) = х, А*у.
Следовательно, оператор А* - сопряженный к оператору А. Единственность оператора А* следует из единственности представления полуторалинейного оператора в виде E.44). Теорема доказана.

В дальнейшем символ А* будет обозначать оператор, сопряженный к оператору А.
Отметим следующие свойства сопряженных операторов:

Доказательства свойств 1°-4° элементарны, и мы предоставляем их читателю. Приведем доказательство свойства 5°. Согласно определению произведения операторов справедливо соотношение (АВ)х = А(Вх). С помощью этого равенства и определения сопряженного оператора получаем следующую цепочку соотношений:

((АВ)х, у) = (А(Вх), у) = (Вх, А*у) = = (х, В*(А*у)) = (х, (В*А*)у).

Таким образом, ((АВ)х, у) = (х, (В*А*)у). Иными словами, оператор В*А* является сопряженным к оператору АВ. Справедливость свойства 5° установлена.

Замечание. Понятие сопряженного оператора для вещественного пространства вводится совершенно аналогично. Выводы этого пункта и свойства сопряженных операторов справедливы и для этого случая (при этом свойство 3° формулируется так: (λА)* = λА*).

2. Самосопряженные операторы. Основные свойства.
Определение 2. Линейный оператор А из L(V, V) называется самосопряженным, если справедливо равенство

А* =А.

Самосопряженный оператор в вещественном пространстве определяется аналогично.
Простейшим примером самосопряженного оператора является тождественный оператор I (см. свойство 1° сопряженных операторов в предыдущем пункте).
С помощью самосопряженных операторов можно получить специальное представление произвольных линейных операторов. Именно, справедливо следующее утверждение.

Теорема 5.13 . Пусть А - линейный оператор, действующий в комплексном евклидовом пространстве V. Тогда справедливо представление А = А R + iА I , где А R и А I - самосопряженные операторы, называемые соответственно действительной и мнимой частью оператора А.

Доказательство. Согласно свойствам 2°, 3° и 4° сопряженных операторов (см. предыдущий пункт этого параграфа) операторы A R = (А + А*)/2 и А I = (А - А*)/2i - самосопряженные.

Очевидно, А = А R + iА I Теорема доказана.

В следующей теореме выясняются условия самосопряженности произведения самосопряженных операторов. Мы будем говорить, что операторы А и В коммутируют, если АВ = ВА.

Теорема 5.14. Для того чтобы произведение АВ самосопряженных операторов А и В было самосопряженным оператором, необходимо и достаточно, чтобы они коммутировали.
Доказательство . Так как А и В - самосопряженные операторы, то, согласно свойству 5° сопряженных операторов (см. п. 1 этого параграфа), справедливы соотношения
(АВ)* = В*А* = ВА (5.52)

Следовательно, если АВ = ВА , то (АВ)* = АВ , т.е. оператор АВ - самосопряженный. Если же АВ -самосопряженный оператор, то АВ = (АВ)* , и тогда, на основании (5.52), АВ = ВА. Теорема доказана.
В дальнейших теоремах устанавливается ряд важных свойств самосопряженных операторов.
Теорема 5.15. Если оператор А самосопряженный, то для любого х ϵ V скалярное произведение (Ах, х) - вещественное число.
Доказательство. Справедливость утверждения теоремы вытекает из следующего свойства скалярного произведения в комплексном евклидовом пространстве и определения самосопряженного оператора (Напомним, что если комплексное число равно своему сопряженному, то
это число - вещественное.)

Теорема 5.16. Собственные значения самосопряженного оператора вещественны.
Доказательство. Пусть λ - собственное значение самосопряженного оператора А. По определению собственного значения оператора А (см. определение 2 § 3 этой главы) существует ненулевой вектор х
такой, что Ах = λх. Из этого соотношения следует, что вещественное (в силу теоремы 5.15) скалярное произведение (Ах, х) может быть представлено в виде 2)

( 2) Напомним, что символ ||х|| обозначает норму элемента х.)

Так как ||х|| и (Ах, х) вещественны, то, очевидно, и λ - вещественное число. Теорема доказана.

В следующей теореме выясняется свойство ортогональности собственных векторов самосопряженного оператора.
Теорема 5.17. Если А - самосопряженный оператор, то собственные векторы, отвечающие различным собственным значениям этого оператора, ортогональны.

Доказательство. Пусть λ 1 и λ 2 - различные собственные значения (λ 1 ≠ λ 2) самосопряженного оператора A, a x 1 и х 2 - соответственно отвечающие им собственные векторы. Тогда имеют место соотношения Ax 1 = λ 1 x 1 , Ах 2 = λ 2 х 2 . Поэтому скалярные произведения (Ax 1 , х 2) и (x 1 , Aх 2) соответственно равны следующим выражениям 3):

3) Так как собственные значения самосопряженного оператора вещественны, то

Так как оператор А самосопряженный, то скалярные произведения (Ax 1 , х 2) и (x 1 , Aх 2) равны, и поэтому из последних соотношений путем вычитания получаем равенство

Поскольку λ 1 ≠ λ 2 то из последнего равенства следует равенство нулю скалярного произведения (x 1* х 2), т.е. ортогональность собственных векторов x 1 и х 2 Теорема доказана.

3. Норма линейного оператора. Пусть А - линейный оператор, отображающий евклидово пространство V в это же пространство. Введем понятие нормы оператора А.
Определение 3 . Нормой || A|| линейного оператора А называется число, определяемое соотношением 1)

1) Напомним, что Отсюда следует, что представляет собой непрерывную функцию х, которая на замкнутом множестве ||х|| = 1 достигает конечного наибольшего значения.

Из определения нормы линейного оператора вытекает следующее очевидное неравенство:

(для доказательства достаточно воспользоваться соотношением Ах =

Из соотношения E.54) следует, что если ||А|| = О, то оператор А является нулевым.

Норму самосопряженного оператора А можно определить и другим способом. Именно, справедливо утверждение:

Если А - самосопряженный оператор, то введенная выше норма ||А|| оператора А равна

Доказательство. Для любого х из V справедливо неравенство Коши-Буняковского (см. п. 2 §3 гл.4)

Из него и из неравенства (5.54) получаем следующее неравенство:

Поэтому число

удовлетворяет соотношению

Отметим, что из равенства

и определения числа μ (см. 5.56)) вытекает следующее неравенство:

Обратимся теперь к следующему очевидному тождеству:

(в этом тождестве символ Re (Ax, у) обозначает действительную часть комплексного числа (Ах, у), само тождество легко вытекает из свойств скалярного произведения, см. п. 1 §3 гл.4). Беря левую и правую
части этого тождества по модулю, используя свойство модуля суммы и неравенство E.58), получим следующие соотношения 1) :

1 ) Мы использовали при этом определение нормы элемента в комплексном евклидовом пространстве.

Отсюда при ||х|| = ||у|| = 1 получаем неравенство

Полагая в этом неравенстве (очевидно, ||у|| = 1) и учитывая, что число (Ах, Ах) = ||Ах|| 2 является вещественным (поэтому получим

Отсюда, согласно неравенству (5.53), найдем

Для завершения доказательства остается сравнить полученное неравенство с неравенством (5.57) и воспользоваться определением числа µ (см. 5.56)).

4. Дальнейшие свойства самосопряженных операторов. В этом пункте мы докажем ряд важных свойств линейных операторов, связанных с понятием нормы. Сначала мы установим необходимое и достаточное условие самосопряженности оператора. Докажем следующую теорему.
Теорема 5.18. Для того чтобы линейный оператор А был самосопряженным, необходимо и достаточно, чтобы 2)

2 ) Символ Im (Ax, х) обозначает мнимую часть комплексного числа (Ах, х). Равенство Im (Ах, х) = 0 означает, что число (Ах, х) является вещественным.

Доказательство. По теореме 5.13 произвольный линейный оператор А может быть представлен в виде

самосопряженные операторы. Поэтому

причем, согласно теореме 5.15, для любого х числа и - вещественные. Следовательно, эти числа соответственно равны действительной и мнимой частям комплексного числа (Ах, х):

Допустим, что А - самосопряженный оператор. По теореме 5.15 в этом случае (Ах, х) - вещественное число,
и поэтому Im (Ax, х) = 0. Необходимость условия теоремы доказана.

Докажем достаточность условия теоремы.

Пусть Im(Ax, х) = (А I х, х) = 0. Отсюда следует, что ||А I || = 0, т. е. А I = 0. Поэтому А = А R , где А R -самосопряженный оператор.
Теорема доказана.
В следующих утверждениях выясняются некоторые свойства собственных значений самосопряженных операторов.

Лемма. Любое собственное значение X произвольного линейного самосопряженного оператора А в евклидовом пространстве равно скалярному произведению (Ах, х), где х - некоторый вектор, удо-
влетворяющий условию ||х|| = 1:

Доказательство. Так как λ - собственное значение оператора А, то существует такой ненулевой вектор z, что

Полагая x = z/||z|| (очевидно, ||х|| = 1), перепишем 5.60) следующим образом: Ах = λ х, ||х|| = 1. Отсюда получаем соотношения т.е. 5.59) имеет место. Лемма доказана.
Cледствие. Пусть А - самосопряженный оператор и λ - любое собственное значение этого оператора. Пусть далее

Справедливы следующие неравенства:

Замечание 1. Так как скалярное произведение (Ах, х) представляет собой непрерывную функцию от х, то на замкнутом множестве ||х|| = 1 эта функция ограничена и достигает своих точных граней m и М.
Замечание 2 . Согласно теореме 5.16 собственные значения самосопряженного оператора вещественны. Поэтому неравенства 5.62) имеют смысл.
Доказательство следствия. Так как любое собственное значение λ удовлетворяет соотношению (5.59), то, очевидно, каждое собственное значение заключено между точными гранями m и М скалярного произведения (Ах, х). Поэтому неравенства (5.62) справедливы.
Мы докажем, что числа т и М, определенные соотношениями (5.61) являются соответственно наименьшим и наибольшим собственными значениями самосопряженного оператора А. Предварительно убедимся в справедливости следующего утверждения.

Теорема 5.19. Пусть А - самосопряженный оператор и, кроме того, (Ах, х) ≥ О для любого х. Тогда норма ||А|| равна наибольшему собственному значению этого оператора 1)

1 ) Так как собственных значений конечное число и они вещественны, то из них можно указать наибольшее.

Доказательство. Мы уже отмечали (см. утверждение предыдущего пункта), что

Так как (Ах, х) ≥ О, то Согласно замечанию 1 этого пункта для некоторого

Обращаясь к определению нормы и используя только что написанные равенства, получим соотношения 2)

Таким образом, или, иначе, - собственное значение оператора А. То, что λ - наибольшее собственное значение, вытекает из только что установленного следствия из леммы этого пункта. Теорема доказана.

Докажем теперь, что числа m и М (см. 5.61)) являются наименьшим и наибольшим собственными значениями самосопряженного оператора А.

Теорема 5.20. Пусть А - самосопряженный оператор, а m и М - точные грани (Ах, х) на множестве ||х|| = 1. Эти числа представляют собой наименьшее и наибольшее собственные значения оператора А.
Доказательство . Очевидно, достаточно доказать, что числа m и М - собственные значения оператора А. Тогда из неравенств 5.62) сразу же следует, что т и М являются соответственно наименьшим и наибольшим собственными значениями.
Докажем сначала, что М - собственное значение. Для этого рассмотрим самосопряженный оператор В = А - mI. Так как

то оператор В удовлетворяет условиям теоремы 5.19, и поэтому норма ||В|| этого оператора равна наибольшему собственному значению. С другой стороны,

Таким образом, (М - m) - наибольшее собственное значение оператора В. Следовательно, существует такой ненулевой вектор х 0 , что

Так как

Подставляя это выражение Вх 0 в левую часть равенства (5.63), получим после несложных преобразований соотношение Ах 0 = Мх 0 - Таким образом, М - собственное значение оператора А. Убедимся теперь, что число m также является собственным значением оператора А.
Рассмотрим самосопряженный оператор В = -А. Очевидно, что

Согласно только что проведенному доказательству число - m представляет собой собственное значение оператора В. Так как В = -А, то т будет являться собственным значением оператора А. Теорема доказана.

В следующей теореме выясняется важное свойство собственных векторов самосопряженного оператора.


Теорема 5.21. У каждого самосопряженного линейного оператора А, действующего в n-мерном евклидовом пространстве V, существует n линейно независимых попарно ортогональных и единичных собственных векторов.

Доказательство . Пусть λ 1 - максимальное собственное значение оператора

Обозначим через e 1 собственный вектор, отвечающий λ 1 и удовлетворяющий условию ||e 1 || = 1 (возможность его выбора следует из доказательства леммы этого пункта).
Обозначим через V 1 (n - 1)-мерное подпространство пространства V, ортогональное к е 1 Очевидно, V 1 - инвариантное подпространство оператора А (т. е. если х ϵ V 1 , то и Ах ϵ V 1 . Действительно, пусть х ϵ V 1 (т. е. (х,е 1 =0). Тогда 1 )

1 ) Мы использовали свойство самосопряженности оператора (Ах, e 1 ) = (х, Ае 1 ) и то обстоятельство, что e 1 - собственный вектор оператора:

Следовательно, Ах - элемент V 1 , и поэтому V 1 - инвариантное подпространство оператора А. Это дает нам право рассматривать оператор А в подпространстве V 1 . В этом подпространстве А будет представлять собой самосопряженный оператор. Следовательно, имеется максимальное собственное значение А 2 этого оператора, которое можно найти с помощью соотношения 1 )

1 ) Символ обозначает ортогональность векторов e 1 и e 2

Кроме того, можно указать такой вектор что

Обращаясь далее к (n - 2)-мерному подпространству V 2 , ортогональному векторам e 1 и е 2 , и повторяя проведенные выше рассуждения, мы построим собственный вектор е з, ||е з || = 1, ортогональный e 1 и е 2. Рассуждая и далее таким же образом, мы последовательно найдем n взаимно ортогональных собственных векторов е 1 , е 2 ,..., е n , удовлетворяющих условию
Замечание 1. Договоримся в дальнейшем нумеровать собственные значения самосопряженного оператора в порядке убывания с учетом повторяющихся, т. е. кратных собственных значений. При этом

и отвечающие им собственные векторы е 1 , е 2 ,..., е n можно считать взаимно ортогональными и удовлетворяющими условию

Таким образом,

Замечание 2 . Из рассуждений в доказательстве теоремы следует соотношение

Это соотношение можно также записать в виде

линейная оболочка векторов е 1 , е 2 ,..., е m . Справедливость замечания вытекает из того, что (х, х) = ||х|| 2 , и поэтому

причем норма элемента х/||х|| равна 1.

Пусть ∑ m - множество всех m-мерных подпространств пространства V. Справедливо следующее важное минимаксное свойство собственных значений.
Теорема 5.22. Пусть А - самосопряженный оператор и - его собственные значения, занумерованные в порядке, указанном в замечании 1. Тогда

220400 Алгебра и геометрия Толстиков А.В.

Лекции 15. Линейные операторы в евклидовых пространствах

План

1. Сопряженные операторы евклидовых пространствах и их свойства.

2. Самосопряженные операторы.

3. Ортогональные матрицы и их свойства.

4. Ортогональные операторы и их свойства.

1. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1984.

2. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997.

3. Воеводин В.В. Линейная алгебра.. М.: Наука 1980.

4. Сборник задач по для втузов. Линейная алгебра и основы математического анализа. Под ред. Ефимова А.В., Демидовича Б.П.. М.: Наука, 1981.

5. Бутузов В.Ф., Крутицкая Н.Ч., Шишкин А.А. Линейная алгебра в вопросах и задачах. М.: Физматлит, 2001.

6. Воеводин В.В. Линейная алгебра. М.: Наука, 1980.

1. Сопряженные операторы евклидовых пространствах и их свойства. Пусть E - евклидово пространство над полем действительных чисел R , на котором определено скалярное произведение векторов (a ,b ), a , b ÎE.

Определение 1. Линейный оператор A * евклидова пространства E называется сопряженным линейному оператору A * пространства E , если для любых векторов a , b ÎE выполняется условие:

(Aa ,b ) = (a , A * b ). (1)

Лемма 1. Если произведение данной строки U на любой столбец Y равно нулю, то строка U нулевая. Если произведение любой строки X t на данную столбец U равно нулю, то столбец нулевой.

Доказательство. Пусть U = (u 1 , u 2 ,…, u n ), Y = (y 1 , y 2 ,…, y n ) t . По условию теоремы для любых чисел y 1 , y 2 ,…, y n U Y = (u 1 , u 2 ,…, u n )(y 1 , y 2 ,…, y n ) t = u 1 y 1 + u 2 y 2 +…+ u n y n =0. Если все числа y 1 , y 2 ,…, y n равны 0, кроме y j , которое =1, то отсюда получаем, что u j (i = 1,2,…,n ). Поэтому U =0. Аналогично доказывается второе утверждение теоремы. 

Теорема 1. Пусть v = (v 1 , v 2 ,…, v n ) - базис евклидова пространства E , A - матрица линейного оператора A относительно базиса v , G = (g ij ) - матрица Грама базиса v . Если для линейного оператора A существует сопряженный оператор A * , то выполняется равенство

A t G = G A * . (2)

Доказательство. Пусть X и Y координатные столбцы векторов a , b ÎE относительно базиса v , A и A * матрицы линейных операторов A и A * относительно базиса v . Тогда

(Aa , b ) =(v (AX ), vY ) = (AX ) t GY , (a , A * b ) = X t G A * Y. (3)

Отсюда по формуле (1) получим равенство (AX ) t GY = X t G A * Y, справедливое для любых вектор столбцов X и Y. Так как векторы a , b произвольные, то по лемме 1 получаем A t G = G A * .

Теорема 2. Если базис v = (v 1 , v 2 ,…, v n ) евклидова пространства E ортонормированный, то матрица A * сопряженного линейного оператора A * является транспонированной к матрице Aоператора A ;

A t = A * . (4)

Доказательство. Так как матрица Грамма ортонормированного базиса единичная, G = E , то (4) следует из (2). 

Следствие 1 . Для любого оператора A справедливо равенство (A * ) * = A .

Доказательство. По формуле (4) для матриц линейных операторов (A * ) * и A в ортонормированном базисе имеем (A * ) * = (A t ) t = A . Поэтому (A * ) * = A .

Следствие 2 . Для любых оператора A , B справедливо равенство (AB ) * = B * A * .

Доказательство. По формуле (4) для матриц линейных операторов A , B и A * , B * в ортонормированном базисе имеем (AB ) * = (AB ) t = B t A t = B * A * . Поэтому (AB ) * = B * A * .

Следствие 3 . Собственные значения линейных операторов A и A * совпадают .

Доказательство. Так как характеристические многочлены матриц и совпадают, то собственные значения линейных операторов, которые являются корнями характеристического уравнения совпадают. 

Теорема 3. Для любого линейного оператора A евклидова пространства E существует единственный сопряженный линейный оператор A * .

Доказательство. Пусть v = (v 1 , v 2 ,…, v n) ортонормированный базис евклидова пространства E , A - линейный оператор с матрицей A относительно базиса v . Рассмотрим в E линейный оператор B с матрицей A t относительно данного базиса. Оператор B существует и единственный. Правые части равенств (3) равны: (AX ) t GY = X t G A * Y. Поэтому равны и левые (Aa , b ) = (a , Bb ). Поэтому оператор B - сопряженный для оператора A . 

2. Самосопряженные операторы.

Определение 1. Линейный оператор A евклидова пространства E называется самосопряженным или симметричным , если A = A * , т.е. для любых векторов двух a , b ÎE выполняется условие:

(Aa , b ) = (a , Ab ). (1)

Теорема 1 . Линейный оператор A евклидова пространства E самосопряжен тогда и только, когда матрица A линейного оператора A в ортогональном базисе симметрическая матрица, т. е . A = A * .

Пусть линейный оператор А действует в евклидовом пространстве E n и преобразует это пространство само в себя.

Введем определение : оператор А * назовем сопряженным оператору А , если для любых двух векторов x,y из Е n выполняется равенство скалярный произведений вида:

(Ax,y ) = (x,A * y )

Еще определение : линейный оператор называется самосопряженным, если он равен своему сопряженному оператору, т. е. справедливо равенство:

(Ax,y ) = (x,Ay )

или, в частности (Ax,x ) = (x,Ax ).

Самосопряженный оператор обладает некоторыми свойствами. Упомянем некоторые из них:

    Собственные числа самосопряженного оператора - вещественны (без доказательства);

    Собственные векторы самосопряженного оператора ортогональны. Действительно, если x 1 и x 2 – собственные векторы, а  1 и  2 – их собственные числа, то: Ax 1 =  1 x ; Ax 2 =  2 x ; (Ax 1 ,x 2 ) = (x 1 ,Ax 2 ), или  1 (x 1 ,x 2 ) =  2 (x 1 ,x 2 ). Поскольку  1 и  2 различны, то отсюда (x 1 ,x 2 ) = 0, что и требовалось доказать.

    В евклидовом пространстве существует ортонормированный базис из собственных векторов самосопряженного оператора А . Т. е. матрицу самосопряженного оператора всегда можно привести к диагональному виду в некотором ортонормированном базисе, составленном из собственных векторов самосопряженного оператора.

Еще одно определение : назовем самосопряженный оператор, действующий в евклидовом пространстве симметричным оператором. Рассмотрим матрицу симметричного оператора. Докажем утверждение: чтобы оператор был симметричным, необходимо и достаточно, чтобы в ортонормированном базисе его матрица была бы симметричной.

Пусть А – симметричный оператор, т. е.:

(Ax,y ) = (x,Ay )

Если А – матрица оператора А, а x и y – некоторые векторы, то запишем:

координаты x и y в некотором ортонормированном базисе

Тогда: (x,y ) = X T Y = Y T X и имеем (Ax,y ) = (AX) T Y = X T A T Y

(x,Ay ) = X T (AY) = X T AY,

т.е. X T A T Y = X T AY. При произвольных матрицах-столбцах X,Y это равенство возможно только при А Т = А, а это означает, что матрица А – симметричная.

Рассмотрим некоторые примеры линейных операторов

Оператор проектирования. Пусть требуется найти матрицу линейного оператора, осуществляющего проектирование трехмерного пространства на координатную ось е 1 в базисе е 1 , е 2 , е 3 . Матрица линейного оператора – это матрица, в столбцах которой должны стоять образы базисных векторов е 1 = (1,0,0), е 2 = (0,1,0), е 3 = (0,0,1). Эти образы, очевидно, есть: Ае 1 = (1,0,0)

Ае 2 = (0,0,0)

Ае 3 = (0,0,0)

Следовательно, в базисе е 1 , е 2 , е 3 матрица искомого линейного оператора будет иметь вид:

Найдем ядро этого оператора. Согласно определению ядро – это множество векторов х , для которых АХ = 0. Или


Т. е. ядро оператора составляет множество векторов, лежащих в плоскости е 1 , е 2 . Размерность ядра равна n – rangA = 2.

Множество образов этого оператора – это, очевидно, множество векторов, коллинеарных е 1 . Размерность пространства образов равна рангу линейного оператора и равна 1 , что меньше размерности пространства прообразов. Т. е. оператор А – вырожденный. Матрица А тоже вырождена.

Еще пример : найти матрицу линейного оператора, осуществляющего в пространстве V 3 (базис i , j , k ) линейное преобразование – симметрию относительно начала координат.

Имеем: Ai = -i

Т. е. искомая матрица

Рассмотрим линейное преобразование – симметрию относительно плоскости y = x .

Aj = i (1,0,0)

Ak = k (0,0,1)

Матрица оператора будет:

Еще пример – уже знакомая матрица, связывающая координаты вектора при повороте осей координат. Назовем оператор, осуществляющий поворот осей координат, - оператор поворота. Допустим, осуществляется поворот на угол :

Ai ’ = cosi + sinj

Aj ’ = -sini + cosj

Матрица оператора поворота:

Ai Aj

Вспомним формулы преобразования координат точки при смене базиса – замена координат на плоскости при смене базиса:

Эти формулы можно рассматривать двояко. Ранее мы рассматривали эти формулы так, что точка стоит на месте, поворачивается координатная система. Но можно рассматривать и так, что координатная система остается прежней, а перемещается точка из положения М * в положение М. Координаты точки М и М* определены в той же координатной системе.

Все сказанное позволяет подойти к следующей задаче, которую приходится решать программистам, занимающимся графикой на ЭВМ. Пусть необходимо на экране ЭВМ осуществить поворот некоторой плоской фигуры (например треугольника) относительно точки О’ с координатами (a,b) на некоторый угол . Поворот координат описывается формулами:

Параллельный перенос обеспечивает соотношения:

Для того, чтобы решить такую задачу, обычно применяют искусственный прием: вводят так зазываемые “однородные” координаты точки на плоскости XOY: (x, y, 1). Тогда матрица, осуществляющая параллельный перенос, может быть записана:

Действительно:

А матрица поворота:

Рассматриваемая задача может быть решена в три шага:

1 й шаг: параллельный перенос на вектор А(-а, -b) для совмещения центра поворота с началом координат:

2 й шаг: поворот на угол :

3 й шаг: параллельный перенос на вектор А(а, b) для возвращения центра поворота в прежнее положение:

Искомое линейное преобразование в матричном виде будет выглядеть:

(**)

Пусть S - евклидово пространство и - его комплексификация. Введем скалярное произведение в S по формуле:

Нужно проверить корректность этого определения. Аддитивность по первому аргументу при фиксированном втором очевидна. Для проверки линейности по первому аргументу достаточно убедиться в возможности вынесения комплексного множителя из первого аргумента. Соответствующее вычисление не представляет труда, но довольно громоздко. Именно:

Симметрия с инволюцией очевидна - при перестановке местами вещественная часть скалярного произведения не меняется, а мнимая меняет знак на обратный.

Наконец, если . Таким образом, комплексификация евклидова пространства S становится унитарным пространством.

Заметим еще, что скалярное произведение пары векторов и скалярное произведение пары комплексно сопряженных с ними векторов комплексно сопряженные. Это непосредственно следует из определения скалярного произведения в .

2. Операторы в евклидовом пространстве и их продолжение на комплексификацию.

В евклидовом пространстве для оператора определяется сопряженный оператор той же формулой при любых х и у, что и в унитарном пространстве. Доказательство существования и единственности сопряженного оператора ничем не отличается от аналогичных доказательств для унитарного пространства. Матрица оператора в ортонормальном базисе просто транспонирована с матрицей оператора При продолжении взаимно сопряженных операторов с S на они останутся сопряженными.

Действительно,

3. Нормальные операторы в евклидовом пространстве.

Нормальный оператор в евклидовом пространстве S остается нормальным и при его продолжении на комплексификацию пространства S. Поэтому в S существует ортонормальный базис из собственных векторов, диагонализующий матрицу оператора А.

Для вещественных собственных значений можно взять вещественные собственные векторы, т. е. лежащие в S. Действительно, координаты собственных векторов относительно базиса определяются из линейных однородных уравнений с вещественными коэффициентами в случае вещественности собственного значения.

Комплексные собственные значения появляются парами сопряженных с одинаковой кратностью. Выбрав ортонормальный базис из собственных векторов, принадлежащих некоторому собственному значению при базис из собственных векторов для собственного значения можно взять из векторов, сопряженных с векторами базиса собственных значений для X. Такой базис будет ортонормальный. Теперь натянем на каждую пару и сопряженных векторов двумерное комплексное подпространство.

Все эти подпространства инвариантны, ортогональны друг другу и вещественным собственным векторам, соответствующим вещественным собственным значениям.

Комплексное пространство, натянутое на векторы и очевидно, совпадает с комплексным подпространством, натянутым на Вещественные векторы u и у, и, следовательно, является комплексификацией вещественного подпространства, натянутого на .

ибо в евклидовом пространстве S скалярное произведение симметрично.

Из этого равенства следует, что , т. е. векторы и и v ортогональны, а также . Вспомним теперь, что вектор нормированный, т. е., ввиду ортогональности и и . Поэтому , так что векторы и и v не нормированны, но становятся нормированными после умножения на

Итак, для нормального оператора, действующего в евклидовом пространстве S, существует ортонормальный базис, составленный из собственных векторов, принадлежащих вещественным собственным значениям, и умноженных на вещественных и мнимых частей собственных векторов, принадлежащих комплексным собственным значениям. Одномерные подпространства, натянутые на вещественные собственные векторы, и двумерные, натянутые на компоненты комплексных собственных векторов, инвариантны, так что матрица оператора в построенном базисе квазидиагональна и составлена из диагональных блоков первого и второго порядка. Блоки первого порядка - это вещественные собственные значения. Найдем блоки второго порядка. Пусть и - собственный вектор, принадлежащий собственному значению . Тогда

Ровно те же соотношения сохранятся после умножения векторов на Таким образом, блоки второго порядка имеют вид

Заметим еще, что эти блоки появляются из подпространства, натянутого на сопряженные собственные векторы, принадлежащие сопряженным собственным значениям так что наряду с блоком записанным при помощи собственного значения не нужно включать блок соответствующий собственному значению

4. Самосопряженные операторы в евклидовом пространстве.

Нормальный оператор в евклидовом пространстве самосопряжен в том и только в том случае, если все его собственные значения вещественны. Действительно, самосопряженный оператор в евклидовом пространстве остается самосопряженным и в комплексификации. Поэтому существует ортонормальный базис в самом евклидовом пространстве, в котором его матрица диагональна. В терминах матриц это значит, что для любой вещественной симметричной матрицы А существует ортогональная матрица С такая, что диагональна. Это обстоятельство было выяснено еще в гл. V в связи с ортогональным преобразованием квадратичной формы к каноническому виду. Тесная связь между теорией самосопряженных операторов в евклидовом пространстве с теорией квадратичных форм ясно видна из того, что скалярное произведение выражается через координаты вектора в ортонормальном базисе в виде квадратичной формы с матрицей, равной матрице оператора М в том же базисе, и при ортогональном преобразовании координат матрица оператора и матрица квадратичной формы преобразуются одинаково:

ибо для ортогональной матрицы

Для самосопряженных операторов в евклидовом пространстве имеют место те же свойства, которые отмечались для самосопряженных операторов в унитарном пространстве, и их доказательства ничем не отличаются от доказательств в случае унитарного пространства.

Поэтому ограничимся их перечислением.

Самосопряженный оператор положительно определен в том и только в том случае, когда его собственные значения положительны.

Из самосопряженного положительно определенного оператора можно извлечь положительно определенный квадратный корень.

Любой невырожденный оператор можно представить в виде произведения положительно определенного самосопряженного оператора на ортогональный, как в одном, так? и в другом порядке.

Оператор ортогонального проектирования есть самосопряженный идемпотентный оператор и обратно, самосопряженный идемпотентный оператор есть оператор ортогонального проектирования.

5. Ортогональные операторы.

Ортогональный оператор имеет ортогональную матрицу в любом ортонормальном базисе. Так как ортогональный оператор нормален, существует ортонормальный базис, в котором матрица оператора блочно-диагональна и состоит из вещественных чисел на диагонали и блоков вида ортогональности такой матрицы следует, что и в каждом блоке второго порядка (Это можно увидеть также из того, что ортогональный оператор становится унитарным при продолжении на комплексификацию, и, следовательно, все его собственные значения равны 1 по модулю.)

Можно положить . Оператор на плоскости с матрицей есть оператор вращения плоскости на угол .

Ортогональный оператор называется собственно ортогональным, если определитель его матрицы равен 1; если же определитель равен -1, то оператор называется несобственно ортогональным. Порядок базисных векторов можно выбрать так, чтобы по диагонали следовали сначала 1, потом -1 и за ними блоки второго порядка. В случае, если оператор собственно ортогонален, число диагональных элементов, равных -1, четно. Матрицу второго порядка рассматривать как блок второго порядка геометрически означающий поворот плоскости на .

Таким образом, действие собственно ортогонального оператора геометрически означает следующее. Пространство разбивается в ортогональную сумму подпространств, одно из которых натянуто на собственные векторы, принадлежащие собственному значению 1, - это подпространство неподвижных векторов, и нескольких двумерных подпространств, каждое из которых вращается на некоторый угол (вообще говоря, разные плоскости на разные углы).

В случае несобственно ортогонального оператора имеется еще один базисный вектор, переходящий в противоположный под действием оператора.