Метод ветвей и границ требует. Метод ветвей и границ

13.05.2019

Определения

называется непустое конечное множество, состоящее из двух подмножеств и . Первое подмножество (вершины) состоит из любого множества элементов. Второе подмножество (дуги) состоит из упорядоченных пар элементов первого подмножества . Если вершины и такие, что , то это вершины смежные.

Маршрутом в графе

называется последовательность вершин не обязательно попарно различных, где для любого смежно с . Маршрут называется цепью, если все его ребра попарно различны. Если то маршрут называется замкнутым. Замкнутая цепь называется циклом.

Постановка задачи

Коммивояжер должен объездить n городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат.

В терминах теории графов задачу можно сформулировать следующим образом. Задано n вершин и матрица {c ij }, где c ij ≥0 – длинна (или цена) дуги (i , j ),

. Под маршрутом коммивояжера z будем понимать цикл i 1 , i 2 ,…, i n , i 1 точек 1,2,…, n. Таким образом, маршрут является набором дуг. Если между городами i и j нет перехода, то в матрице ставится символ «бесконечность». Он обязательно ставится по диагонали, что означает запрет на возвращение в точку, через которую уже проходил маршрут коммивояжера , длина маршрута l (z ) равна сумме длин дуг, входящих в маршрут. Пусть Z – множество всех возможных маршрутов. Начальная вершина i 1 – фиксирована. Требуется найти маршрут z 0 ÎZ , такой, что l (z 0)= minl (z ), z ÎZ .

Решение задачи

Основная идея метода ветвей и границ состоит в том, что вначале строят нижнюю границу φ длин множества маршрутов Z. Затем множество маршрутов разбивается на два подмножества таким образом, чтобы первое подмножество

состояло из маршрутов, содержащих некоторую дугу (i, j), а другое подмножество не содержало этой дуги. Для каждого из подмножеств определяются нижние границы по тому же правилу, что и для первоначального множества маршрутов. Полученные нижние границы подмножеств и оказываются не меньше нижней границы множества всех маршрутов, т.е. φ(Z)≤ φ (), φ(Z) ≤ φ ().

Сравнивая нижние границы φ (

) и φ (), можно выделить то, подмножество маршрутов, которое с большей вероятностью содержит маршрут минимальной длины.

Затем одно из подмножеств

или по аналогичному правилу разбивается на два новых и . Для них снова отыскиваются нижние границы φ (), и φ () и т.д. Процесс ветвления продолжается до тех пор, пока не отыщется единственный маршрут. Его называют первым рекордом. Затем просматривают оборванные ветви. Если их нижние границы больше длины первого рекорда, то задача решена. Если же есть такие, для которых нижние границы меньше, чем длина первого рекорда, то подмножество с наименьшей нижней границей подвергается дальнейшему ветвлению, пока не убеждаются, что оно не содержит лучшего маршрута .

Если же такой найдется, то анализ оборванных ветвей продолжается относительно нового значения длины маршрута. Его называют вторым рекордом. Процесс решения заканчивается, когда будут проанализированы все подмножества.

Для практической реализации метода ветвей и границ применительно к задаче коммивояжера укажем прием определения нижних границ подмножеств и разбиения множества маршрутов на подмножества (ветвление).

Для того чтобы найти нижнюю границу воспользуемся следующим соображением: если к элементам любого ряда матрицы задачи коммивояжера (строке или столбцу) прибавить или вычесть из них некоторое число, то от этого оптимальность плана не изменится. Длина же любого маршрутом коммивояжера изменится на данную величину.

Вычтем из каждой строки число, равное минимальному элементу этой строки. Вычтем из каждого столбца число, равное минимальному элементу этого столбца. Полученная матрица называется приведенной по строкам и столбцам. Сумма всех вычтенных чисел называется константой приведения.

Константу приведения следует выбирать в качестве нижней границы длины маршрутов.

Разбиение множества маршрутов на подмножества

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, рассмотрим в приведенной матрице все элементы, равные нулю. Найдем степени Θ ij нулевых элементов этой матрицы. Степень нулевого элемента Θ ij равна сумме минимального элемента в строке i и минимального элемента в столбце j (при выборе этих минимумов c ij – не учитывается). С наибольшей вероятностью искомому маршруту принадлежат дуги с максимальной степенью нуля.

Для получения платежной матрицы маршрутов, включающей дугу (i , j ) вычеркиваем в матрице строку i и столбец j , а чтобы не допустить образования цикла в маршруте, заменяем элемент, замыкающий текущую цепочку на бесконечность.

Множество маршрутов, не включающих дугу (i , j ) получаем путем замены элемента c ij на бесконечность.

Пример решения задачи коммивояжера методом ветвей и границ

Коммивояжер должен объездить 6городов. Для того чтобы сократить расходы, он хочет построить такой маршрут, чтобы объездить все города точно по одному разу и вернуться в исходный с минимумом затрат. Исходный город A. Затраты на перемещение между городами заданы следующей матрицей:

A B C D E F
A 26 42 15 29 25
B 7 16 1 30 25
C 20 13 35 5 0
D 21 16 25 18 18
E 12 46 27 48 5
F 23 5 5 9 5

Решение задачи

Для удобства изложения везде ниже в платежной матрице заменим имена городов (A, B, …, F) номерами соответствующих строк и столбцов (1, 2, …, 6).

Найдем нижнюю границу длин множества всех маршрутов. Вычтем из каждой строки число, равное минимальному элементу этой строки, далее вычтем из каждого столбца число, равное минимальному элементу этого столбца, и таким образом приведем матрицу по строкам и столбцам. Минимумы по строкам: r 1 =15, r 2 =1, r 3 =0, r 4 =16, r 5 =5, r 6 =5.

После их вычитания по строкам получим:


1 2 3 4 5 6
1 11 27 0 14 10
2 6 15 0 29 24
3 20 13 35 5 0
4 5 0 9 2 2
5 7 41 22 43 0
6 18 0 0 4 0

Минимумы по столбцам: h 1 =5, h 2 =h 3 =h 4 =h 5 =h 6 .

После их вычитания по столбцам получим приведенную матрицу:

1 2 3 4 5 6
1 11 27 0 14 10
2 1 15 0 29 24
3 15 13 35 5 0
4 0 0 9 2 2
5 2 41 22 43 0
6 13 0 0 4 0

Найдем нижнюю границу φ (Z ) = 15+1+0+16+5+5+5 = 47.

Для выделения претендентов на включение во множество дуг, по которым производится ветвление, найдем степени Θ ij нулевых элементов этой матрицы (суммы минимумов по строке и столбцу). Θ 14 = 10 + 0,
Θ 24 = 1 + 0, Θ 36 = 5+0, Θ 41 = 0 + 1, Θ 42 = 0 + 0, Θ 56 = 2 + 0, Θ 62 = 0 + 0,
Θ 63 = 0 + 9, Θ 65 = 0 + 2. Наибольшая степень Θ 14 = 10. Ветвление проводим по дуге (1, 4).

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа. Вторая образуется путем добавления к задаче ЗЛП-0 ограничения. Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например. Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений. Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке. Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и. В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.

Рассмотрим задачу дискретного программирования в общем виде:

Найти -вектор неизвестных, D- конечное

множество допустимых значений этого вектора, F(x)- заданная целевая функция.

Идея метода состоит в разбиении D на непересекающиеся подмножества Di (эта процедура называется ветвлением) и вычислении верхней и нижней границ целевой функции на каждом из подмножеств. Нижнюю границу будем обозначать Н, а верхнюю Е. Соответственно Hi Eo, то это подмножество не содержит точку оптимума и может быть исключено из дальнейшего рассмотрения. Если верхняя граница Ei H заменяем Н на min Hi. Если Е=Н, то задача решена, иначе надо продолжить процедуру ветвления и вычисления верхней и нижней границ. При этом разбиению на очередном шаге могут подвергаться все или только некоторые подмножества до достижения равенства верхней и нижней границ, причём не на отдельном подмножестве, а для допустимой области в целом.

Простая идея метода ветвей и границ требует дополнительных вычислений для определения границ. Как правило, это приводит к решению вспомогательной оптимизационной задачи. Если эти дополнительные вычисления требуют большого числа операций, то эффективность метода может быть невелика.

Схему динамического программирования при движении от начальной точке к конечной (рис. 5.1) можно представлять как процедуру ветвления.

Множество всех допустимых траекторий (последовательность по-шаговых переходов) - это исходное множество D, на котором мы должны найти нижнюю и верхнюю границы, а также траекторию, на которой целевая функция достигает верхней границы и объявить рекордом соответствующее ей значение целевой функции. Построение множества состояний, получаемых после первого шага, - это первое ветвление.


Рис. 5.1.

Теперь подмножествами Di являются множества траекторий, каждая из которых проходит через соответствующую i-ую точку.

На последующих шагах после отбраковки всех путей, приводящих в любое (i-oe) состояние, кроме одного, соответствующим подмножеством является этот оставшийся путь со всеми его допустимыми продолжениями (рис. 5.1). Для каждого из таких подмножеств надо как-то найти верхнюю и нижнюю границы. Если нижняя граница превышает текущее значение рекорда, соответствующее состояние и все его продолжения отбраковываются. Если верхняя граница достигается на некоторой траектории и она меньше текущего значения рекорда, то получаем новый рекорд.

Эффективность такого подхода зависит от точности получаемых оценок, т.е. от Ei - Hi, и от затрат времени на их вычисление.

Фактически в упрощённом виде мы уже использовали этот метод при решении задачи о защите поверхности (разд. 4.6), когда отбраковывали состояния, для которых текущие затраты превышали суммарные затраты для начального приближения. В этом случае текущие затраты являются нижней границей, если считать нулевыми затраты на весь оставшийся путь, а суммарные затраты, соответствующие начальному приближению, являются рекордом. При таком подходе рекорд не обновлялся, хотя это можно было сделать построением начального приближения (верхней границы) для оставшегося пути подобно тому как это делалось для всей траектории при построении начального приближения. Получаемая без вычислений нижняя граница соответствует нулевым затратам на весь оставшийся путь и является крайне грубой оценкой, но получаемой «бесплатно», т.е. без вычислений.

Покажем как получать и использовать более точные оценки при решении рассмотренных выше и целого ряда других задач. При этом будем стремиться получать авозможно более точные границы при минимуме вычислений.

Ниже приведено условие задачи и текстовая часть решения. Все решение полностью, в формате doc в архиве, вы можете скачать. Некоторые символы могут не отображаться на странице, но документе word все отображается. Еще примеры работ по ЭМММ можно посмотреть

ПОСТАНОВКА ЗАДАЧИ

Издательское предприятие должно выполнить в течении недели (число дней m = 5) работу по набору текста с помощью работников n категорий (высокая, средняя, ниже средней, низкая). Требуются определить оптимальную численность работников по категориям, при которой обеспечивается выполнение работы с минимальным расходом фонда зарплаты при заданных ограничениях. Исходные данные приведены в таблице 1 и 2.

Таблица 1

Таблица 2

Задача должна решаться методом целочисленного линейного программирования в Mathcad 2000/2001.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
РЕШЕНИЯ
ЗАДАЧИ

Для расчета оптимальной численности работников, при которой обеспечивается минимум расхода фонда зарплаты, составляется математическая модель целочисленного линейного программирования, так как численность работников не может быть дробной величиной.

Решение задачи целочисленного программирования выполняется в два этапа.

На первом этапе выполняется задача линейного программирования без учета целочисленности.

На втором этапе производится пошаговый процесс замены нецелочисленных переменных ближайшими верхними или нижними целыми значениями.

Сначала решается, задача без учета условия целочисленности.

Целевая функция определяется по формуле:

где Q - общий фонд зарплаты на выполнение работы;

x 1 , x 2 , …, x n - численность работников по категориям;

n - число категорий работников;

c 1 , c 2 ,…, c n - дневная тарифная ставка одного работника по категориям;

m - число рабочих дней в неделю, m = 5.

Целевую функцию можно записать в векторной форме:

При решении задачи должны выполняться следующие ограничения. Ограничение сверху

x d (1)

задает максимальную численность работников по категориям, где d —вектор, определяющий численность по категориям.

В ограничении

учтено, что общая численность работников не должна превышать k max .

В ограничении снизу

р × х≥Р (3)

отражается, что все работники вместе должны выполнить заданный объем работ Р .

В качестве последнего ограничения записывается условие неотрицательности вектора переменных

x ≥0 (4)

Математическая модель решения задачи без учета условия целочисленности включает следующие выражения:

x d

р × х≥Р ,

x ≥ 0 .

Модель целочисленного программирования должна включать выражения (5), а также дополнительные ограничения, с помощью которых нецелочисленные переменные х заменяются целочисленными значениями. Конкретные выражения модели с целочисленными переменными рассмотрены в следующем подразделе.

РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ В MATHCAD

Исходные данные для примера даны в табл. 1 и 2.

Для решения задачи используется пакет Mathcad с функцией Minimize. Данная функция определяет вектор решения задачи:

х := Minimize (Q , x ),

где Q — выражение целевой функции, определяющей минимальный фонд зарплаты, х - вектор переменных.

Сначала задача решается без учета условия целочисленности. Это решение приведено в Приложении 1. В первой строке введены нулевые начальные значения вектора х и целевая функция Q (x ) . После слова Given и перед функцией Minimize указаны ограничения. В результате получена нецелочисленная оптимальная численность по категориям:

х =

с фондом зарплаты Q = 135 у. е.

Из данного решения находится целочисленное решение методом ветвей и границ.

Сначала в полученном решении анализируется дробная величина х 4 =
= 1,143. Для нее можно задать два целочисленных значения: х 4 = 1 и х 4 = 2. Начинается построение дерева решений (Приложение 2). На дереве решений откладывается начальный нулевой узел. Затем он соединяется первым узлом х 4 , и из этого узла проводятся две ветви, соответствующие ограничениям: х 4 = 1 и х 4 = 2.

Для ветви с ограничением х 4 = 1 решается задача линейного программирования, данная в Приложении 1, с учетом этого ограничения.

В результате получено решение этой задачи. Переменная х 1 стала целочисленная, но переменная х 2 стала дробной х 2 = 0,9.

Для продолжения ветви создается узел х 3 и ветвь х 3 = 1. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1. С этими ограничениями задача имеет решение х Т =
= (1,938 1 1 1).

Для продолжения ветви создается узел х 1 и ветвь х 1 = 2. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1, х 1 = 2. С этими ограничениями задача имеет решение х Т = = (2 1 1 1).

Процесс построения дерева решении и выполнение задачи линейного программирования повторяется, пока не будут построены все ветви.

В Приложении 2 приводится полное дерево возможных целочисленных решений, из которого следуют, что в задаче имеется 4 результативных решения.

Из результативных выбирается наилучшее и оно принимается как оптимальное целочисленное решение всей задачи с минимальной величиной Q (x ) . В нашем случае мы имеем два оптимальных целочисленных решения

Q (х) = 140,

x T = (2 1 1 1),

x T = (1 1 2 2).

Следовательно, издательская организация должна привлечь для набора текста двух работников высокой категории, одного работника средней категории, одного работника ниже средней категории и одного работника низкой категории. Возможен так же другой равнозначный вариант привлечения работников: один работник высокой категории, один работник средней категории, два работника категории ниже средней и два работника низкой категории. В обоих вариантах затраты будут минимальными и составят 140 ден. ед.

Скачать решение задачи:


Имя файла: 2.rar
Размер файла: 24.99 Kb

Если закачивание файла не начнется через 10 сек, кликните