Межсетевой экран (Firewall).

16.08.2019

Текстовый вариант видеолекции на YouTube по межсетевым экранам.

Межсетевой экран - это устройство, которое отделяет разные компьютерные сети друг от друга. Другое название межсетевого экрана - брандмауэр или firewall.

Зачем нужны межсетевые экраны

При создании сетей TCP/IP в них был заложен принцип полной связности: любой компьютер в сети может соединиться с любым другим. Но тогда в сети было немного компьютеров, большая часть из которых находилась в университетах и исследовательских центрах. Сейчас ситуация кардинально поменялась: интернет стал огромной сетью с миллиардами компьютеров, которые используются не только для научных целей. В том числе в интернет появилось много злоумышленников, которые могут взломать ваш компьютер. Поэтому принцип полной связности сейчас нежизнеспособен. Наоборот, нам нужен способ отделять сети от небезопасных внешних сетей. Именно это и позволяет делать межсетевой экран.

Как используются межсетевые экраны

Есть несколько вариантов использования межсетевых экранов. Если мы хотим защитить сеть нашей организации или домашнюю сеть, то межсетевой экран устанавливается между защищаемой сетью и интернетом. На рисунке межсетевой экран показан в виде стены с огнем (от английского firewall - огненная стена). В таких случаях, как правило, используется аппаратный межсетевой экран, который представляет собой отдельное устройство или является частью маршрутизатора.

Другой вариант - установка программных межсетевых экранов на компьютеры, которые мы хотим защитить. Один из популярных вариантом программных межсетевых экранов - брандмауэр Windows.

Программные межсетевые экраны особенно полезны для ноутбуков, с которыми вы работаете не только в защищенной сети организации, но и в других местах: других организациях, отелях, кафе, ресторанах и т.п. Здесь вы не имеете контроля над сетью и не можете обеспечить ее безопасность.

Как работают межсетевые экраны

Межсетевые экраны работают на сетевом и транспортном уровнях моделей OSI и TCP/IP. Они анализируют IP-адреса отправителя и получателя, а также порты транспортного уровня.

Межсетевой экран перехватывает все пакеты, которые приходят из интернет и из внутренней сети. У межсетевого экрана есть таблица правил с описанием, какие пакеты можно передавать, а какие нельзя. Если пакет подходит под одно из разрешающих правил в таблице, он передается дальше. В противном случае пакет отбрасывается.

Таблица правил выглядит следующим образом. Здесь показаны наиболее важные для понимания логики работы межсетевого экрана столбцы. В реальных межсетевых экранах таблицы могут отличаться.

IP отправителя Порт отправителя IP получателя Порт получателя Протокол Действие
220.10.1.0/24 >1024 Вне 220.10.1.0/24 80 TCP Разрешить
Вне 220.10.1.0/24 80 220.10.1.0/24 >1024 TCP Разрешить
Любой Любой Любой Любой Любой Запретить

Основные поля в таблице - это IP-адреса и порты отправителя и получателя. Также есть поле протокол, в котором указывается используемый протокол транспортного или сетевого уровня, например, TCP, UDP или ICMP. Последнее после таблицы - действие. В нем прописывается, что межсетевой экран должен сделать с пакетом: разрешить его прохождение или запретить.

Предположим, что мы хотим существенно ограничить политику использования компьютерной сети для обеспечения безопасности. Пользователям разрешается работать с Web-сайтами в интернет, но все остальное запрещено. Для этого нам понадобились три правила, записанные в таблице выше.

Первая строка таблицы содержит правило, которое позволяет пакетам из внутренней сети, предназначенных для Web-серверов, проходить через межсетевой экран. Предположим, что наша внутренняя сеть имеет блок адресов 220.10.1.0/24 . Указываем этот блок в качестве IP-адреса отправителя, порт отправителя >1024 (порты для браузеров назначаются операционной системой автоматически). IP получателя: все, кроме 220.10.1.0/24 , порт получателя: 80 (порт на котором по умолчанию работают Web-серверы). В поле “Протокол” указываем транспортный протокол TCP , который используется прикладным протоколом HTTP. Действие - разрешить .

Второе правило разрешает прохождение пакетов с ответами Web-серверов. IP-адрес отправителя: любой вне 220.10.1.0/24 , порт отправителя: 80 (порт Web-серверов). IP-получателя: 220.10.1.0/24 (наша внутренняя сеть), порт получателя: >1024 (автоматически назначенный порт для браузера). Протокол также TCP , действие Разрешить .

Третье правило запрещает прохождение любых пакетов.

Межсетевой экран читает правила в таблице последовательно и выполняет проверку пакета по прочитанному правилу. Сначала пакет проверяется на соответствие правилу в первой строке, и если он под него подходит, то сразу же передается. Затем межсетевой экран переходит ко второму правилу, проверяет пакет, и передает его, если пакет подходит под второе правило. После этого межсетевой экран переходит к третьему правилу и отбрасывает все пакеты, которые не подошли под первые два правила.

Проверка флагов и состояния соединения

Правила в примере очень ограниченные, но злоумышленник все равно сможет попасть в нашу внутреннюю сеть. Для этого ему нужно сконструировать пакет, у которого порт отправителя равен 80 , IP получателя находится в нашей сети, и порт получателя больше 1024 . Такой пакет подходит под второе правило. Наш межсетевой экран подумает, что это ответ какого-то из Web-серверов, и пропустит его. Таким образом, злоумышленники смогут подключиться к сетевым сервисам, которые работают на портах >1024. Чтобы избежать таких ситуаций, можно контролировать флаги в заголовке TCP , а также факт установки соединения TCP .

Для контроля флагов в TCP-заголовке необходимо добавить соответствующее поле в таблицу межсетевого экрана.

IP отправителя Порт отправителя IP получателя Порт получателя Протокол Флаг Действие
220.10.1.0/24 >1024 Вне 220.10.1.0/24 80 TCP Любой Разрешить
Вне 220.10.1.0/24 80 220.10.1.0/24 >1024 TCP Ack Разрешить
Любой Любой Любой Любой Любой Любой Запретить

В первом правиле мы по-прежнему выпускаем в интернет все пакеты, которые предназначены для Web-серверов. Но во втором правиле во внутреннюю сеть пропускаем только пакеты с установленным флагом ACK (Acknowledgement) в заголовке TCP. Этот флаг установлен почти у всех пакетов TCP, кроме первого пакета с запросом на установку соединения (в таком пакете установлен только флаг SYN). Таким образом, злоумышленник не сможет установить соединения с сервисами нашей внутренней сети, даже если будет посылать пакеты, похожие на ответы Web-серверов.

Межсетевой экран может напрямую проверять, установлено ли TCP соединение между отправителем и получателем. Межсетевой экран перехватывает все пакеты, поэтому он видит и пакеты установки TCP соединения. Таким образом, он легко может узнать, какой компьютер из внутренней сети устанавливал соединение с компьютерами из внешней сети, и с какими именно. После того, как межсетевой экран увидел успешную процедуру установки соединения TCP (трехкратное рукопожатие), он вносит запись в таблицу установленных соединений .

Компьютер из внутренней сети с IP-адресом 220.10.1.86 установил соединение, используя порт 53638 , с Web-сервером 77.88.55.66 (порт 80 ).

Для проверки наличия соединения, в таблицу межсетевого экрана добавляется соответствующее поле.

IP отправителя Порт отправителя IP получателя Порт получателя Протокол Флаг Соединение Действие
220.10.1.0/24 >1024 Вне 220.10.1.0/24 80 TCP Любой - Разрешить
Вне 220.10.1.0/24 80 220.10.1.0/24 >1024 TCP Ack Проверять Разрешить
Любой Любой Любой Любой Любой Любой - Запретить

Компьютеры из внутренней сети должны иметь возможность устанавливать соединение с Web-серверами в интернет, поэтому в первом правиле мы не требуем наличия соединения. Но ответы нужно пропускать только от тех Web-серверов, с которыми соединение уже установлено. Поэтому во втором правиле мы проверяем наличие записи о соединении в таблице соединений.

Другие методы ограничения доступа

Кроме межсетевых экранов могут использоваться также другие методы ограничения доступа, работающие на разных уровнях модели OSI.

На канальном уровне возможна фильтрация по MAC-адресам на портах коммутатора. Можно составить список MAC-адресов компьютеров, которым разрешено подключаться к коммутатору. Передавать кадры компьютеров с другими MAC-адресами коммутатор не будет.

На прикладном уровне используются прокси-серверы (proxy server) и фильтры содержимого (content filter). Прокси-серверы работают как межсетевые экраны, но на прикладном уровне: принимают все пакеты, которые передаются по какому-нибудь прикладному протоколу, анализируют заголовки протокола, и могу принять решение, передать пакет дальше, или нет. Часто используются Web-прокси, которые работают по протоколу HTTP. Такие прокси серверы могут ограничивать доступ, например, к социальным сетям с рабочих мест организации.

Фильтры содержимого также работают на прикладном уровне, но они анализируют не только заголовки пакетов, но и данные. С помощью фильтров содержимого можно, например, заблокировать передачу видео, на каких бы сайтах оно ни размещалось.

Системы обнаружения вторжений (intrusion detection system) и предотвращения вторжений (intrusion prevention system) работают по принципу, похожему на межсетевые экраны. Отличие заключается в том, что они анализируют не отдельные пакеты, а последовательности пакетов. Они могут определить, например, что злоумышленник подбирает пароль к вашему серверу или ведет сканирование вашей сети. Система обнаружения вторжений предупредит администратора о проходящей атаке, а система предотвращения вторжений попытается автоматически предпринять какие-то действия, чтобы остановить атаку.

Недостатки межсетевых экранов

Межсетевые экраны обеспечивают безопасность, но нужно быть очень осторожными при их настройке. Ошибка при составлении правил доступа может привести к тому, что все нужные пакеты будет блокироваться межсетевым экраном и сеть будет неработоспособна.

Другая возможная проблема - снижение производительности работы сети при использовании межсетевых экранов. Все пакеты в сети должны быть перехвачены межсетевым экраном и проверены. Если у вас крупная сеть, сложная политика безопасности с большим количеством правил доступа, а межсетевой экран не обладает достаточной производительность, то вся сеть будет работать медленно.

Итоги

Межсетевые экраны - это устройства или программы, предназначенные для отделения сетей друг от друга. Межсетевые экраны перехватывают все пакеты между сетям и проверяют их на соответствие правилам доступа. При проверке используются IP-адреса отправителей и получателей, порты транспортного уровня, флаги в заголовках сетевых протоколов, а также состояние соединения TCP. Если пакет подходит под разрешающее правило, он передается дальше, в противном случае отбрасывается.

16.09.1999

Типы межсетевых экранов и используемые в них технологии. Si vis pacem, para bellum (Хочешь мира - готовься к войне). Константин Пьянзин Благодаря своей открытой архитектуре сеть Internet стала одним из самых удобных средств коммуникации.

Типы межсетевых экранов и используемые в них технологии.

Si vis pacem, para bellum

(Хочешь мира - готовься к войне).

Константин Пьянзин

Благодаря своей открытой архитектуре сеть Internet стала одним из самых удобных средств коммуникации. Вместе с тем открытость Internet породила множество проблем, связанных с безопасностью. Здесь как нельзя лучше подходит изречение: «Каждый - за себя, только Бог - за всех». Любой имеющий выход в Internet компьютер должен рассматриваться как потенциальный объект для атаки. Проблема особенно остро стоит в случае организаций, поскольку им необходимо контролировать работу в Internet большого количества компьютеров и сетевых устройств.

Безопасность при подключении к Internet обеспечивается с помощью следующих специализированных средств:

  • межсетевых экранов;
  • сетевых сканеров, призванных находить изъяны и потенциально опасные участки внутри сетей;
  • снифферов, или анализаторов протоколов, позволяющих отслеживать входящий и исходящий трафики;
  • средств протоколирования событий в сетях;
  • средств построения виртуальных частных сетей и организации закрытых каналов обмена данными.

Важное место в списке средств обеспечения безопасного подключения к Internet занимают межсетевые экраны (часто называемые брандмауэрами, или, по-английски, firewall). Согласно «Руководящему документу. Межсетевые экраны» Гостехкомиссии при Президенте РФ «межсетевым экраном называется локальное (однокомпонентное) или функционально-распределенное средство (комплекс), которое реализует контроль за информацией, поступающей в автоматизированную систему и/или выходящей из нее, и обеспечивает защиту автоматизированной системы посредством фильтрации информации, т. е. анализа по совокупности критериев и принятия решения об ее распространении в (из) автоматизированной системе». К сожалению, такое определение имеет чересчур общий характер и подразумевает слишком расширенное толкование.

В обиходе межсетевыми экранами (МЭ) называют средства защиты, устанавливаемые между общедоступной (такой, как Internet) и внутренней сетью. Межсетевой экран выполняет двойную функцию. Во-первых, он призван ограничить доступ во внутреннюю сеть со стороны общедоступной сети за счет применения фильтров и средств аутентификации, чтобы злоумышленники не могли получить несанкционированный доступ к информации или нарушить нормальную работу сетевой инфраструктуры. Во-вторых, МЭ служит для контроля и регулирования доступа пользователей внутренней сети к ресурсам общедоступной сети, когда те представляют угрозу безопасности или отвлекают сотрудников от работы (порнографические, игровые, спортивные серверы).

Сейчас, правда, сетевые экраны устанавливают и внутри корпоративных сетей, в целях ограничения доступа пользователей к особо важным ресурсам сети, например к серверам, содержащим финансовую информацию или сведения, относящиеся к коммерческой тайне. Существуют также персональные межсетевые экраны, призванные регулировать доступ к отдельным компьютерам и устанавливаемые на эти компьютеры.

Межсетевые экраны по понятным причинам используются для сетей TCP/IP и классифицируются в соответствии с уровнем эталонной модели взаимодействия открытых систем (сетевой моделью) OSI. Однако такая классификация, в силу ряда обстоятельств носит достаточно условный характер. Во-первых, сетевая модель сетей TCP/IP предусматривает только 5 уровней (физический, интерфейсный, сетевой, транспортный и прикладной), в то время как модель OSI - 7 уровней (физический, канальный, сетевой, транспортный, сеансовый, презентационный и прикладной). Поэтому установить однозначное соответствие между этими моделями далеко не всегда возможно. Во-вторых, большинство выпускаемых межсетевых экранов обеспечивают работу сразу на нескольких уровнях иерархии OSI. В-третьих, некоторые экраны функционируют в режиме, который трудно соотнести с каким-то строго определенным уровнем иерархии.

Тем не менее поддерживаемый уровень сетевой модели OSI является основной характеристикой при классификации межсетевых экранов. Различают следующие типы межсетевых экранов:

  • управляемые коммутаторы (канальный уровень);
  • сетевые фильтры (сетевой уровень);
  • шлюзы сеансового уровня (circuit-level proxy);
  • посредники прикладного уровня;
  • инспекторы состояния (stateful inspection), представляющие собой межсетевые экраны сеансового уровня с расширенными возможностями.

Существует также понятие «межсетевой экран экспертного уровня». Такие МЭ обычно базируются на посредниках прикладного уровня или инспекторах состояния, но обязательно комплектуются шлюзами сеансового уровня и сетевыми фильтрами. К МЭ экспертного класса относятся почти все имеющиеся на рынке коммерческие брандмауэры.

Межсетевые экраны могут опираться на один из двух взаимоисключающих принципов обработки поступающих пакетов данных. Первый принцип гласит: «Что явно не запрещено, то разрешено». Т. е. если МЭ получил пакет, не подпадающий не под одно из принятых ограничений или не идентифицированный правилами обработки, то он передается далее. Противоположный принцип - «Что явно не разрешено, то запрещено» - гарантирует гораздо большую защищенность, но оборачивается дополнительной нагрузкой на администратора. В этом случае внутренняя сеть изначально полностью недоступна, и администратор вручную устанавливает разрешенные при обмене данными с общедоступной сетью сетевые адреса, протоколы, службы и операции.

Правила обработки информации во многих межсетевых экранах экспертного класса могут иметь многоуровневую иерархическую структуру. Например, они могут позволять задать такую схему: «Все компьютеры локальной сети недоступны извне, за исключением доступа к серверу A по протоколу ftp и к серверу B по протоколу telnet, однако при этом запрещен доступ к серверу A с операцией PUT сервиса ftp».

Межсетевые экраны могут выполнять над поступающими пакетами данных одну из двух операций: пропустить пакет далее (allow) или отбросить пакет (deny). Некоторые МЭ имеют еще одну операцию - reject, при которой пакет отбрасывается, но отправителю сообщается по протоколу ICMP о недоступности сервиса на компьютере-получателе информации. В противовес этому при операции deny отправитель не информируется о недоступности сервиса, что является более безопасным.

Ниже мы рассмотрим достоинства и недостатки каждого типа межсетевого экрана более подробно.

КОММУТАТОРЫ

Коммутаторы среднего и старшего уровня Cisco, Bay Networks (Nortel), 3Com и других производителей позволяют привязывать MAC-адреса сетевых карт компьютеров к определенным портам коммутатора. Более того, немало коммутаторов предоставляет возможность фильтрации информации на основе адреса сетевой платы отправителя или получателя, создавая при этом виртуальные сети (VLAN). Другие коммутаторы позволяют организовать VLAN на уровне портов самого коммутатора. Таким образом, коммутатор может выступать в качестве межсетевого экрана канального уровня.

Следует заметить, что большинство специалистов по безопасности информационных систем редко относят коммутаторы к межсетевым экранам. Основная причина такого отношения вызвана тем, что область фильтрующего действия коммутатора простирается до ближайшего маршрутизатора и поэтому не годится для регулирования доступа из Internet.

Кроме того, подделать адрес сетевой платы обычно не составляет труда (многие платы Ethernet позволяют программно менять или добавлять адреса канального уровня), и такой подход к защите является до крайности ненадежным. Правда, организация виртуальных сетей на уровне портов коммутатора более надежна, но, опять же, она ограничена рамками локальной сети.

Тем не менее если следовать буквальной трактовке «Руководящего документа» Гостехкомиссии, то коммутаторы с возможностью создания VLAN являются межсетевыми экранами.

СЕТЕВЫЕ ФИЛЬТРЫ

Сетевые фильтры работают на сетевом уровне иерархии OSI (см. Рисунок 1). Сетевой фильтр представляет собой маршрутизатор, обрабатывающий пакеты на основании информации, содержащейся в заголовках пакетов. Сетевые фильтры существуют для сетей TCP/IP и IPX/SPX, но последние применяют в локальных сетях, поэтому мы их рассматривать не будем.

При обработке пакетов ими учитывается следующая информация:

  • IP-адрес отправителя;
  • IP-адрес получателя;
  • протокол (TCP, UDP, ICMP);
  • номер программного порта отправителя;
  • номер программного порта получателя.

Администратор на основе этой информации задает правила, в соответствии с которыми пакеты будут либо пропускаться через фильтр, либо отбрасываться им. Например, сетевой фильтр позволяет реализовать следующую схему обмена данными между компьютерами корпоративной сети и Internet:

  1. все компьютеры корпоративной сети имеют возможность общаться с внешними серверами Web и ftp, но не с telnet, NNTP и т. д.;
  2. доступ извне запрещен ко всем компьютерам корпоративной сети, кроме доступа к серверу A по протоколу HTTP и к серверу B по протоколу ftp; кроме того, внешнему компьютеру Z разрешается доступ к внутреннему серверу C и к любым службам TCP и UDP, но не ICMP.

Сетевые фильтры очень легко реализовать, поэтому они получили повсеместное распространение и представлены программно-аппаратными и чисто программными реализациями. В частности, маршрутизаторы Cisco, Bay Networks (подразделение Nortel) и других производителей снабжены функциями сетевой фильтрации, вследствие чего такие маршрутизаторы называют фильтрующими. Список программных сетевых фильтров еще более внушителен, и большинство из них представляет бесплатные или условно-бесплатные утилиты. Они реализованы для множества сетевых платформ, в том числе для UNIX, Windows NT, NetWare, VMS, MVS.

К сожалению, оборотной стороной простоты реализации и низкой цены сетевых фильтров является сложность их администрирования и слабая защищенность от атак.

В сетевых фильтрах в основном используется статическая фильтрация, когда администратору приходится создавать свой фильтр для каждого уникального типа пакета, требующего обработки. Поясним это на примере. Допустим, всем компьютерам по умолчанию запрещен доступ в Internet. Однако компьютеру Z (IP-адрес 123.45.67.89) необходим доступ к внешнему серверу A (IP-адрес 211.111.111.111), предоставляющему сервис telnet. В данном случае администратор должен задать два правила:

  1. пропустить пакет, если он передается со стороны сетевого интерфейса внутренней сети на сетевой интерфейс внешней сети и имеет параметры: IP-адрес отправителя 123.45.67.89, IP-адрес получателя 211.111.111.111, протокол транспортного уровня TCP, программный порт отправителя больше 6000, программный порт получателя 23;
  2. пропустить пакет, если он передается со стороны сетевого интерфейса внешней сети на сетевой интерфейс внутренней сети и имеет параметры: IP-адрес отправителя 211.111.111.111, IP-адрес получателя 123.45.67.89, протокол транспортного уровня TCP, программный порт отправителя 23, программный порт получателя более 6000.

Таким образом, для каждого канала обмена данными необходимо задавать два правила (фильтра); в случае многоканальных соединений (например, для сервиса ftp) количество правил соответственно увеличивается. Для большой сети список правил достигает очень внушительных размеров, в которых администратору легко запутаться. Правда, сетевые фильтры позволяют обычно объединять правила для подмножества компьютеров на основе IP-подсетей.

Поскольку при получении каждого пакета сетевой фильтр просматривает таблицу правил в последовательном порядке, каждое новое правило уменьшает общую производительность маршрутизатора.

Ряд производителей (в частности, Novell в утилите FILTCFG.NLM) предусматривает динамическую, или контекстную (stateful), фильтрацию и фильтрацию фрагментов IP-пакетов, но по характеристикам они скорее относятся к разряду шлюзов сеансового уровня и поэтому будут рассмотрены позднее.

Еще одной проблемой, особенно для бесплатных сетевых фильтров, является невозможность создания иерархической структуры правил. Например, в случае принципа «что явно не разрешено, то запрещено» фильтр просматривает сначала список исключений, и если пакет не подходит не под одно исключение, то в соответствии с указанным принципом пакет отсеивается. Если же пакет подходит хотя бы под одно исключение, то он передается дальше. Однако представим такую ситуацию: сеть закрыта от доступа снаружи, но один сервер должен быть доступен для внешнего мира по протоколу ftp. Все это прекрасно можно организовать с помощью сетевого фильтра, за исключением маленькой, но очень неприятной детали - на доступ к серверу по ftp нельзя наложить дополнительные ограничения. К примеру, невозможно в таком случае запретить доступ к нему со стороны компьютера Z, которым пользуется злоумышленник. Более того, хакер может передавать на сервер пакеты с адресом отправителя, соответствующим адресу компьютера внутренней сети (самый опасный вид подделки IP-пакетов). И сетевой фильтр пропустит такой пакет. Чтобы избежать подобных проблем, администраторы вынуждены ставить два последовательно подключенных фильтра, чтобы таким образом реализовывать иерархические правила фильтрации.

Сетевые фильтры имеют ряд принципиальных недостатков. Прежде всего аутентификация (или, если точнее, идентификация) отправителя производится только на основании IP-адреса. Однако с помощью подмены IP-адресов (IP-spoofing) злоумышленник без особых усилий может обойти такую преграду. Кроме того, за уполномоченный компьютер может в принципе сесть человек, не имеющий права работать с сервером. Аутентификация на основе имени и пароля пользователя намного надежнее, но в сетевых фильтрах ее применить не представляется возможным.

Сетевой фильтр не может отслеживать работу сетевых приложений, и вообще он не контролирует содержимое пакетов транспортного, сеансового и прикладного уровня. Поэтому наличие сетевого фильтра не оградит корпоративную сеть от атак по типу SYN-flooding (см. врезку ), от атак, связанных с фрагментацией пакетов, и от вторжений через сервисы прикладного уровня.

Основным (помимо цены и простоты реализации) достоинством сетевых фильтров является их очень высокая производительность, намного более высокая, чем у межсетевых экранов сеансового и прикладного уровня. Несмотря на серьезные недостатки, сетевой фильтр является неотъемлемой частью любого межсетевого экрана экспертного класса. Однако он представляет собой всего лишь одну из его составных частей, поскольку работает в сочетании со шлюзом более высокого уровня иерархии OSI. В такой схеме сетевой фильтр препятствует прямому общению между внутренней и внешней сетью (кроме заранее определенных компьютеров). Вся же основная фильтрация, но уже на вышестоящих уровнях OSI, организуется шлюзом соответствующего уровня или инспектором состояния.

ШЛЮЗЫ СЕАНСОВОГО УРОВНЯ

Шлюзы сеансового уровня, как и следует из названия, оперируют на сеансовом уровне иерархии OSI. Однако в сетевой модели TCP/IP нет уровня, однозначно соответствующего сеансовому уровню OSI. Поэтому к шлюзам сеансового уровня относят фильтры, которые невозможно отождествить ни с сетевым, ни с транспортным, ни с прикладным уровнем.

Фильтры сеансового уровня имеют несколько разновидностей в зависимости от их функциональных особенностей, но такая классификация носит достаточно условный характер, поскольку их возможности во многом пересекаются. Следует помнить, что в состав межсетевых экранов входят шлюзы сеансового уровня всех или большинства видов.

ФИЛЬТРЫ КОНТРОЛЯ СОСТОЯНИЯ КАНАЛА СВЯЗИ

К фильтрам контроля состояния канала связи нередко относят сетевые фильтры (сетевой уровень) с расширенными возможностями.

Динамическая фильтрация в сетевых фильтрах. В отличие от стандартной статической фильтрации в сетевых фильтрах, динамическая (stateful) фильтрация позволяет вместо нескольких правил фильтрации для каждого канала связи назначать только одно правило. При этом динамический фильтр сам отслеживает последовательность обмена пакетами данных между клиентом и сервером, включая IP-адреса, протокол транспортного уровня, номера портов отправителя и получателя, а иногда и порядковые номера пакетов. Понятно, что такая фильтрация требует дополнительной оперативной памяти. По производительности динамический фильтр несколько уступает статическому фильтру.

Фильтр фрагментированных пакетов. При передаче через сети с различными MTU IP-пакеты могут разбиваться на отдельные фрагменты, причем только первый фрагмент всегда содержит полный заголовок пакета транспортного уровня, включая информацию о программных портах. Обычные сетевые фильтры не в состоянии проверять фрагменты, кроме первого, и пропускают их (при выполнении критериев по IP-адресам и используемому протоколу). За счет этого злоумышленники могут организовать опасные атаки по типу «отказ в обслуживании», преднамеренно генерируя большое количество фрагментов и тем самым блокируя работу компьютера-получателя пакетов. Фильтр фрагментированных пакетов не пропускает фрагменты, если первый из них не пройдет регистрации.

Контроль битов SYN и ACK. Ряд фильтров позволяет отслеживать биты SYN и ACK в пакетах TCP. Все они призваны бороться с атаками по типу SYN-flooding (см. врезку ), но используют различные подходы. Самый простой фильтр запрещает передачу TCP-пакетов с битом SYN, но без бита ACK со стороны общедоступной сети на компьютеры внутренней сети, если последние не были явно объявлены серверами для внешней сети (или хотя бы для определенной группы компьютеров внешней сети). К сожалению, такой фильтр не спасает при атаках SYN-flooding на машины, являющиеся серверами для внешней сети, но расположенные во внутренней сети.

Для этих целей применяют специализированные фильтры с многоступенчатым порядком установления соединений. Например, фильтр SYNDefender Gateway из состава межсетевого экрана FireWall-1 производства Check Point работает следующим образом. Допустим, внешний компьютер Z пытается установить соединение с внутренним сервером A через межсетевой экран МЭ. Процедура установления соединения показана на Рисунке 2. Когда МЭ получает пакет SYN от компьютера Z (этап 1), то этот пакет передается на сервер A (этап 2). В ответ сервер A передает пакет SYN/ACK на компьютер Z, но МЭ его перехватывает (этап 3). Далее МЭ пересылает полученный пакет на компьютер Z, кроме того, МЭ от имени компьютера Z посылает пакет ACK на сервер A (этап 4). За счет быстрого ответа серверу A, выделяемая под установление новых соединений память сервера никогда не окажется переполнена, и атака SYN-flooding не пройдет.

Дальнейшее развитие событий зависит от того, действительно ли компьютер Z инициализировал установление соединения с сервером A. Если это так, то компьютер Z перешлет пакет ACK серверу A, который проходит через МЭ (этап 5a). Сервер A проигнорирует второй пакет ACK. Затем МЭ будет беспрепятственно пропускать пакеты между компьютерами A и Z. Если же МЭ не получит пакета ACK или кончится тайм-аут на установление соединения, то он вышлет в адрес сервера A пакет RST, отменяющий соединение (этап 5б).

Фильтр SYNDefender Relay из состава того же Check Point FireWall-1 работает несколько иначе. Прежде чем передавать пакет SYN на сервер A, МЭ сначала устанавливает соединение с компьютером Z. Процедура установления соединения для этого случая показана на Рисунке 3. Только после получения пакета ACK от компьютера Z межсетевой экран инициализирует соединение с сервером A (этап 3). Очевидно, что после установления соединений межсетевой экран будет вынужден в динамическом режиме менять значения полей Sequent number (порядковый номер) и Acknowledgement number (номер подтверждения) во всех пакетах TCP, передаваемых между компьютерами A и Z, что снижает производительность.

ШЛЮЗЫ, ТРАНСЛИРУЮЩИЕ АДРЕСА ИЛИ СЕТЕВЫЕ ПРОТОКОЛЫ

Пожалуй, самым известным шлюзом сеансового уровня можно считать шлюз с преобразованием IP-адресов (Network Address Translation, NAT). При использовании шлюза NAT внутренняя сеть имеет адреса, невидимые (и даже незарегистрированные) в общедоступной сети. При обращении внутреннего компьютера наружу шлюз перехватывает запрос и выступает от имени клиента, задействуя свой внешний (зарегистрированный) IP-адрес. Полученный ответ шлюз передает внутреннему компьютеру (после подстановки внутреннего адреса компьютера), выступая в качестве передаточного звена. Это позволяет убить сразу двух зайцев: резко сократить количество зарегистрированных IP-адресов и контролировать поток информации, т. е. назначать или запрещать доступ в Internet отдельным компьютерам.

Шлюзы NAT могут работать в одном из четырех режимов: динамическом, статическом, статическом с динамической выборкой IP-адресов и комбинированном.

При динамическом режиме, иногда называемом трансляцией на уровне портов (Port Address Translation, PAT), шлюз имеет один-единственный внешний IP-адрес. Все обращения в общедоступную сеть (Internet) со стороны клиентов внутренней сети осуществляются с использованием этого внешнего адреса, при этом шлюз оперирует лишь портами внешнего интерфейса, т. е. при обращении клиента шлюз выделяет ему уникальный программный порт транспортного протокола (UDP, TCP) для внешнего IP-адреса. В распоряжении шлюза NAT могут иметься пулы до 64 000 портов TCP, 64 000 портов UDP и 6 4000 портов ICMP (в протоколе ICMP термин «порт» не применяется, но разработчики шлюзов используют его, чтобы подчеркнуть принцип трансляции пакетов), хотя в некоторых реализациях емкость пулов может быть много меньше этих величин, например в Novell BorderManager каждый пул содержит по 5000 портов.

Динамический режим предназначен для сетей, компьютеры которых выступают исключительно в качестве клиентов ресурсов Internet.

При статическом режиме внешнему интерфейсу шлюза назначается столько зарегистрированных IP-адресов, сколько компьютеров имеется во внутренней сети. Каждому компьютеру внутренней сети ставится в соответствие уникальный внешний IP-адрес шлюза. При обмене данными между внутренней и общедоступной сетями шлюз транслирует внутренние IP-адреса во внешние и наоборот. Статический режим необходим, если компьютеры внутренней сети работают в качестве серверов Internet.

Статический режим с динамической выборкой IP-адресов аналогичен статическому, за исключением того, что за внутренними компьютерами не закрепляются заранее (статически) определенные внешние IP-адреса, они резервируются динамически из пула внешних IP-адресов.

Комбинированный режим подразумевает одновременное использование сразу нескольких вышеперечисленных режимов и предназначен для сетей, где имеются как клиенты, так и серверы Internet.

Помимо общих недостатков шлюзов сеансового уровня (см. ниже) шлюзам NAT присущ свой специфический изъян: они не поддерживают сетевые приложения, пакеты прикладного уровня которых содержат IP-адреса. Единственным исключением является сервис ftp, для которого большинство шлюзов NAT умеет контролировать (и изменять) IP-адреса внутри пакетов прикладного уровня.

Вторым недостатком шлюзов NAT можно назвать то, что они не поддерживают аутентификацию на уровне пользователей, а только на уровне IP-адресов, что делает их уязвимыми для атак по типу IP-spoofing. Кроме того, шлюзы NAT не могут предотвратить атаки типа «отказ в обслуживании», в частности SYN-flooding, поэтому их имеет смысл применять только совместно с другими типами шлюзов сеансового и/или прикладного уровней. Кроме шлюзов NAT достаточно известны шлюзы IPX/IP, предназначенные для организации выхода в Internet компьютеров, работающих в сетях IPX/SPX. При запросе клиента внутренней сети к серверу Internet шлюз перехватывает запрос и вместо пакета IPX формирует соответствующий IP-пакет. При поступлении отклика от сервера шлюз делает обратное преобразование. Пожалуй, это самый надежный тип шлюзов, поскольку внутренняя сеть имеет принципиально другую, по сравнению с TCP/IP, программную среду. Не было отмечено еще ни одного случая взлома такой инфраструктуры. Кроме того, в отличие от шлюзов NAT, аутентификация на шлюзах IPX/IP осуществляется не только на уровне сетевых адресов компьютеров, но и на уровне пользователей с помощью информации база данных NDS (для NetWare 4.x и 5.x) или BINDERY (для NetWare 3.x). Правда, такая аутентификация возможна лишь при доступе из внутренней сети в Internet, за исключением случая, когда внешний клиент использует NetWare на основе TCP/IP.

ПОСРЕДНИКИ СЕАНСОВОГО УРОВНЯ

Прежде чем разрешить установление соединения TCP между компьютерами внутренней и внешней сети, посредники сеансового уровня сначала как минимум регистрируют клиента. При этом неважно, с какой стороны (внешней или внутренней) этот клиент находится. При положительном результате регистрации между внешним и внутренним компьютерами организуется виртуальный канал, по которому пакеты передаются между сетями. С этого времени посредник не вмешивается в процесс обмена данными и не фильтрует информацию. Но такая схема является обобщенной, конкретные реализации шлюзов прикладного уровня могут иметь свои особенности. Наиболее известным и популярным посредником сеансового уровня является посредник SOCKS 5, который выступает в качестве сервера SOCKS 5. Когда клиент пытается связаться с сервером, находящимся по другую сторону посредника, то его SOCKS-клиент обращается к SOCKS-серверу, где происходит не только регистрация, но и полноценная аутентификация на основе имени и пароля пользователя. Аутентификация может быть организована так, чтобы пароль передавался в зашифрованном виде. При положительном результате аутентификации посредник SOCKS разрешает установление соединения клиента с сервером и более не вмешивается в процесс обмена информацией. Однако сервис SOCKS 5 позволяет устанавливать между клиентом и посредником передачу данными в зашифрованном виде по протоколу SSL. Принимая во внимание перечисленные характеристики, очевидно, что применение посредника SOCKS 5 особенно актуально в ситуации, когда сервер находится во внутренней сети, а клиент - в общедоступной. Но и случай, когда внутренние клиенты обращаются к ресурсам Internet, не стоит сбрасывать со счетов, поскольку посредник SOCKS 5 позволяет регулировать доступ на уровне имен и паролей пользователей. Недостатком посредников SOCKS является необходимость установки специализированного программного обеспечения - клиентской части SOCKS - на каждое клиентское место.

ОБЩИЕ НЕДОСТАТКИ ШЛЮЗОВ СЕАНСОВОГО УРОВНЯ

Основным недостатком шлюзов сеансового уровня следует назвать невозможность регулирования передачи информации на прикладном уровне и, как следствие, отслеживания некорректных или потенциально опасных действий пользователя. Например, они не позволят контролировать выполнение команды PUT сервиса ftp или отфильтровывать приложения ActiveX со стороны внешних машин, если такая операция допустима для внутренних клиентов.

Хотя применение шлюзов сеансового уровня позволяет предотвратить ряд опасных атак на внутреннюю сеть, некоторые типы атак, в частности категории «отказ в обслуживании», можно реализовать в обход этих шлюзов. За исключением шлюза IPX/IP и посредника SOCKS 5, все остальные фильтры имеют крайне ненадежную систему идентификации и аутентификации, основанную на IP-адресах отправителя/получателя. В свою очередь, применение шлюзов IPX/IP и SOCKS 5 привносит свои проблемы, так как требует установки на клиентские машины специализированного ПО.

За исключением шлюзов IPX/IP и SOCKS 5, другие шлюзы сеансового уровня обычно не поставляются в виде коммерческого продукта. Тем не менее все межсетевые экраны экспертного класса в обязательном порядке комплектуются самыми разными шлюзами сеансового уровня (так же, как и сетевыми фильтрами), поскольку посредники прикладного уровня или инспекторы состояния не могут отслеживать передачу данных на нижних уровнях иерархии OSI.

ПОСРЕДНИКИ ПРИКЛАДНОГО УРОВНЯ

Посредники прикладного уровня (application-level proxy), часто называемые proxy-серверами, контролируют и фильтруют информацию на прикладном уровне иерархии OSI (см. Рисунок 4). Посредники различают по поддерживаемым протоколам прикладного уровня: чем их больше, тем дороже продукт. Наиболее часто поддерживаются службы Web (HTTP), ftp, SMTP, POP3/IMAP, NNTP, Gopher, telnet, DNS, RealAudio/RealVideo. Когда клиент внутренней сети обращается, например, к серверу Web, то его запрос попадает к посреднику Web (или перехватывается им). Последний устанавливает связь с сервером от имени клиента, а полученную информацию передает клиенту. Для внешнего сервера посредник выступает в качестве клиента, а для внутреннего клиента - в качестве сервера Web. Аналогично посредник может работать и в случае внешнего клиента и внутреннего сервера.

Посредники прикладного уровня делятся на прозрачные (transparent) и непрозрачные. Прозрачные посредники невидимы для клиентов и серверов: клиент обращается к серверу самым обычным образом, а посредник перехватывает запрос и действует от лица клиента. Особой популярностью пользуются прозрачные посредники для сервиса Web, их нередко устанавливают провайдеры Internet в целях повышения производительности работы и снижения нагрузки на глобальные каналы связи за счет кэширования информации.

В случае непрозрачных посредников клиентскую систему требуется явным образом настроить на работу с посредником (например, при использовании непрозрачного посредника Web в опциях настройки браузеров необходимо указать IP-адрес посредника и присвоенный ему порт TCP). Непрозрачные посредники хороши там, где требуется строгая аутентификация при входе во внутреннюю сеть или на выходе из нее, особенно для служб, не поддерживающих шифрование паролей. Обычно это службы telnet и ftp, при этом задействуется система одноразовых паролей (One-Time Password, OTP) (более подробно о системах OTP см. в статье «Удаленное управление сетевыми ОС» в LAN №5 за 1999 г.).

На Рисунке 5 показан типичный пример использования telnet. Здесь клиент с помощью системы OTP устанавливает соединение с сервером tn.anywhere.com, находящимся за непрозрачным посредником fw.anywhere.com. Пользователь сначала должен зарегистрироваться на посреднике, сообщив для начала свое имя, в ответ на которое ему передается вызов (673 jar564). С помощью калькулятора OTP пользователь вычисляет затем парольную фразу, которую и вводит в поле Password. Далее он сообщает адрес сервера, с которым собирается установить соединение. Следует отметить, что регистрации на сервере tn.anywhere.com не требуется, поскольку межсетевой экран и данный сервер используют общую базу учетных записей пользователей.

Общим недостатком непрозрачных посредников является их «непрозрачность» для клиентского ПО и пользователей. Далеко не всякие клиентские программы можно настроить, например, на непрозрачные посредники SMTP, POP3, IMAP4, DNS, ftp.

В отличие от шлюзов сеансового уровня посредники прикладного уровня обрабатывают только те пакеты данных прикладного уровня, службы которых ими поддерживаются, а пакеты неизвестных (для посредника) или не сконфигурированных протоколов удаляются из обращения. Например, если посредник настроен только на обслуживание сервиса ftp, то он не пропустит пакеты telnet или HTTP.

Посредник прикладного уровня проверяет содержимое каждого пакета данных. Более того, посредник фильтрует пакеты на уровне конкретных операций сетевых служб. Например, межсетевой экран Raptor Firewall компании AXENT Technologies позволяет отфильтровывать пакеты ftp, содержащие команду PUT.

Посредники прикладного уровня в обязательном порядке поддерживают строгую аутентификацию с помощью либо операционной системы или одной из служб каталогов (доменов) NDS, Windows NT, NIS/NIS+, либо систем RADIUS, TACACS и т. д.

Оборотной стороной названных возможностей посредников прикладного уровня является их невысокая производительность (для тех сетевых служб, где не предусматривается кэширование информации). Вдобавок, для каждого соединения TCP посредник вынужден устанавливать два канала связи: один - с сервером, другой - с клиентом. Но следует помнить, что узким местом соединений с Internet являются главным образом медленные глобальные линии связи, поэтому о невысокой производительности посредников прикладного уровня можно говорить весьма условно.

Особое место среди посредников прикладного уровня занимают посредники Web, поскольку наряду с контролем трафика они кэшируют информацию. В силу своих функциональных возможностей посредники Web превратились в самостоятельную отрасль разработки ПО, поэтому ниже мы более подробно остановимся на этом сервисе.

ПОСРЕДНИКИ WEB

Сервис Web является основным в глобальной сети Internet. Однако медленные каналы связи, активное использование графики и мультимедиа на страницах Web ведут к снижению производительности работы пользователей в Internet. Между тем пользователи очень часто обращаются к одним и тем же ресурсам Internet. Поэтому для повышения скорости доступа все популярные браузеры кэшируют информацию. Тем не менее в корпоративной среде кэширование на уровне отдельных компьютеров не способно решить всех проблем, так как к одним и тем же ресурсам нередко обращаются совершенно разные пользователи, особенно если они работают в одной организации. Очевидно, что наилучшим способом борьбы с невысокой производительностью глобальных линий является установка кэширующего посредника Web на границе внутренней сети. Вдобавок, такой подход позволяет снизить нагрузку на каналы связи Internet, и таким образом либо экономить деньги, либо запускать дополнительные сетевые службы.

Кэширующих посредников Web устанавливают даже там, где не требуется аутентификации пользователей или фильтрации информации, а исключительно в целях повышения производительности.

Существует четыре типа кэширования информации на посредниках Web:

  • пассивное;
  • активное;
  • негативное;
  • иерархическое.

Наиболее мощные современные посредники Web могут поддерживать все четыре типа кэширования. При пассивном кэшировании (иначе называемом базовым или кэшированием по требованию) клиент через браузер Web обращается к посреднику, а посредник возвращает запрашиваемую информацию из своего кэша, если она там есть. В противном случае посредник Web обращается к серверу Web.

Активное кэширование предполагает наличие у посредника некоторого интеллекта. Кэширование осуществляется заранее (read-ahead), до поступления явного запроса от клиента. Например, браузер запрашивает страницу Web, содержащую рисунки или иные элементы. Посредник не будет дожидаться явных запросов со стороны клиента на подкачку этих компонентов и постарается получить их самостоятельно, так сказать, загодя. Активное кэширование происходит в фоновом режиме, что повышает производительность работы.

Негативное кэширование подразумевает кэширование отказов. Если браузер запросил страницу, которую посредник не может получить (нет связи или из-за отсутствия страницы на сервере), то отказ кэшируется. При повторном обращении клиент сразу получит отрицательный ответ. Однако посредник будет продолжать пытаться получить затребованную страницу в фоновом режиме. Негативное кэширование у посредников Web появилось недавно, в так называемом втором поколении посредников, разработанных в соответствии с технологией Harvest/Squid. Созданные в рамках старой технологии CERN посредники не кэшируют отказы и пытаются каждый раз связаться с сервером Web.

Иерархическое кэширование представляет собой еще одно достижение технологии Harvest/Squid. В соответствии с ней посредники могут образовывать сложные иерархические структуры с равноправными или подчиненными связями. Например, организация имеет два одинаковых по производительности канала в Internet. На каждый канал устанавливается посредник, и между ними определяются равноправные отношения. В этом случае при отсутствии запрошенной информации в кэше посредник обратится не к серверу Internet, а ко второму посреднику. Если у второго посредника в кэше имеется необходимая информация, то она будет передана первому посреднику и далее клиенту. В противном случае первый посредник будет вынужден сам обратиться к серверу Web. При подчиненных отношениях типа «потомок-родитель» посредник со статусом «потомок» никогда не обращается к серверу Web самостоятельно, а только через «родителя». Подобные схемы значительно уменьшают загрузку глобальных линий связи и повышают отказоустойчивость подключения. Иерархическое кэширование организуется в соответствии с одним из двух стандартизированных протоколов кэширования: ICP (Internet Caching Protocol) или CARP (Cache Array Routing Protocol). Хотя протокол CARP разработан позже ICP, он получил большее распространение, поскольку устраняет избыточное кэширование информации между посредниками.


Рисунок 6. Прямое кэширование Web.

Кроме типов кэширования (пассивное, активное, негативное и иерархическое) посредники различаются также по режимам кэширования: прямому (forward) и обратному (reverse). Прямое кэширование - это то, к чему мы все привыкли. Т. е. посредник устанавливается на входе во внутреннюю сеть и кэширует информацию с серверов Internet для клиентов внутренней сети (см. Рисунок 6). При использовании прозрачного посредника клиенты могут даже не знать о существовании посредника, в то время как в случае непрозрачного посредника в опциях браузера необходимо задать его координаты.


Рисунок 7. Обратное кэширование Web.

Обратное кэширование подразумевает обслуживание внешних клиентов, запрашивающих информацию с серверов, расположенных во внутренней сети организации. Т. е. за посредником с обратным кэшированием закрепляется один или несколько серверов Web, информацию с которых он скачивает. Такой посредник лучше всего устанавливать у провайдера Internet, чтобы снизить нагрузку на канал связи с провайдером и увеличить производительность доступа внешних клиентов к серверу Web (см. Рисунок 7). Посредник с обратным кэшированием должен быть прозрачным для внешних пользователей. Однако это возможно лишь при обратном кэшировании только одного сервера (к порту 80 протокола TCP, отвечающему за сервис HTTP, на посреднике можно привязать только один сервер - для других серверов необходимо назначать другие порты). Тем не менее с помощью не очень сложных манипуляций работу посредника по кэшированию сразу нескольких серверов можно сделать практически прозрачной для клиентов.

Некоторые посредники позволяют кэшировать информацию в автономном режиме, т. е. фактически выполняя функции автономного браузера.

Кэширование информации - это, конечно, очень привлекательная функция посредников Web, но нельзя забывать и о других возможностях, характерных для посредников прикладного уровня. Посредники Web способны поддерживать надежную аутентификацию пользователей, фильтровать приложения Java и ActiveX, осуществлять поиск вирусов, регулировать доступ пользователей к определенным URL. Более того, для посредников Web поставляются специальные программы, содержащие списки порнографических, расистских, игровых, развлекательных серверов. С помощью таких программ администратору легко регулировать доступ к подобным узлам.

ИНСПЕКТОРЫ СОСТОЯНИЯ

Инспекторы состояния, или иначе брандмауэры с контекстной проверкой (stateful inspection firewall), являются по сути шлюзами сеансового уровня с расширенными возможностями. Термин «инспектор состояния» был введен компанией Check Point, дабы подчеркнуть отличие ее технологии от других применяемых в межсетевых экранах. Инспекторы состояния оперируют на сеансовом уровне, но «понимают» и протоколы прикладного уровня (см. Рисунок 8). Т. е. при получении пакета данных содержимое этого пакета сравнивается с некими шаблонами, специфическими для соответствующего протокола прикладного уровня. И в зависимости от результата сравнения, пакет либо передается далее, либо отбрасывается. Чем мощнее инспектор состояния, тем больший список шаблонов он имеет. Если пакет не соответствует ни одному шаблону, то он будет отсеян.

В отличие от посредника прикладного уровня, открывающего два виртуальных канала TCP (один - для клиента, другой - для сервера) для каждого соединения, инспектор состояния не препятствует организации прямого соединения между клиентом и сервером. За счет этого производительность инспектора состояния оказывается много выше производительности посредников прикладного уровня и приближается к производительности сетевых фильтров. Правда, разработчики посредников прикладного уровня указывают на более высокий уровень защищенности своих продуктов, поскольку трафик контролируется непосредственно на прикладном уровне. Но большинство специалистов считают такие утверждения спорными или, во всяком случае, не очевидными. У кого, например, повернется язык назвать недостаточно надежным межсетевой экран Check Point FireWall-1, являющийся инспектором состояния, когда ему принадлежит 40% рынка межсетевых экранов и он удостоен множества самых престижных наград, в том числе и за безопасность?

Со своей стороны разработчики инспекторов состояния указывают, что их системы имеют гораздо больше возможностей расширения. При появлении новой службы или нового протокола прикладного уровня для его поддержки достаточно добавить несколько шаблонов. В то же время разработчики посредников прикладного уровня вынуждены писать «с нуля» модуль для каждого нового протокола. Так-то оно так, но добавить модуль в посредник прикладного уровня ничуть не сложнее, чем добавить шаблоны в инспектор состояния. К тому же производители инспекторов состояния и посредников прикладного уровня привыкли решать проблему кардинальным способом, посредством выпуска новой версии продукта.

Единственным достоинством инспекторов состояния (не затрагивая вопрос производительности) по сравнению с посредниками прикладного уровня является то, что инспектор состояния абсолютно прозрачен для клиентов и не требует дополнительной настройки клиентского ПО. Однако, в свою очередь, классические инспекторы состояния не годятся для кэширования Web. Поэтому даже если межсетевой экран основан на инспекторе состояния, для кэширования Web в него включают посредник Web прикладного уровня.

На самом деле, спор, что лучше - инспектор состояния или посредник прикладного уровня, представляется беспочвенным. Для большинства задач они примерно равноценны. Преимущество же в производительности инспекторов состояния не имеет особого значения, если речь идет о подключении к Internet по медленным каналам связи.

Межсетевые экраны экспертного класса основываются либо на технологии инспекторов состояния, либо на технологии посредников прикладного уровня, но обязательно дополняются сетевыми фильтрами и шлюзами сеансового уровня. Подавляющее большинство выпускаемых межсетевых экранов представляет собой посредники прикладного уровня, но, как было отмечено ранее, инспекторы состояния (вернее, один инспектор - FireWall-1 компании Check Point) доминируют на рынке.

ДРУГИЕ ВОЗМОЖНОСТИ МЕЖСЕТЕВЫХ ЭКРАНОВ

Помимо выполнения своих основных функций, межсетевые экраны экспертного класса имеют хорошо продуманную систему протоколирования событий и оповещения администраторов. МЭ позволяет регистрировать все обращения пользователей к ресурсам, проходящие через экран, в том числе кто, когда, с какой машины обратился к конкретному ресурсу или получил отказ. Протоколирование позволяет выявить случаи проведения атак на внутреннюю сеть, обнаружить местонахождение хакера и заранее блокировать трафик от него.

Составной частью большинства коммерческих межсетевых экранов экспертного уровня являются средства построения виртуальных частных сетей, позволяющие шифровать информацию при ее передаче по общедоступной сети. Более того, такими средствами обладают даже некоторые сетевые фильтры на базе аппаратных маршрутизаторов.

Немалая часть межсетевых экранов снабжается средствами поддержки удаленных пользователей, в том числе мощными средствами аутентификации таких пользователей.

ЗАКЛЮЧЕНИЕ

Межсетевые экраны не являются панацеей при борьбе с атаками злоумышленников. Они не могут предотвратить атаки внутри локальной сети, но вместе с другими средствами защиты играют исключительно важную роль для защиты сетей от вторжения извне. Понимание технологии работы межсетевых экранов позволяет не только сделать правильный выбор при покупке системы защиты, но и корректно настроить межсетевой экран. Враг не должен пройти!

Константин Пьянзин - обозреватель LAN. С ним можно связаться по адресу: [email protected]

В середине 90-х годов атака по типу SYN-flooding была одной из самых распространенных. Она использует недостатки протокольной машины TCP. Атака SYN-flooding попадает под категорию атак «отказ в обслуживании» (Denial of Service, DoS), приводящих к зависанию компьютера - т. е. компьютер продолжает работать, но становится недоступным через сеть.

Когда клиентский компьютер устанавливает соединение с сервером по протоколу TCP, он посылает TCP-пакет с выставленным битом SYN. В ответ сервер посылает TCP-пакет с битами SYN/ACK. В свою очередь клиент отправляет TCP-пакет с битом ACK. После этого соединение между клиентом и сервером считается установленным. Такая схема соединения называется трехступенчатой, поскольку она предусматривает обмен тремя пакетами.

Когда сервер получает пакет SYN, он выделяет дополнительную память для нового соединения. В большинстве операционных систем для каждой из сетевых служб предусмотрен лимит (обычно равный десяти) на количество вновь создаваемых соединений TCP (в некоторых системах такого лимита нет, но положение от этого не намного лучше, поскольку при отсутствии свободной памяти зависнет весь компьютер, а не только одна конкретная служба). Пока сервер не получит пакет SYN/ACK или пакет RST (см. далее) либо не наступит тайм-аут на вновь создаваемое соединение (обычно 75 секунд), соединение продолжает резервировать память.

Атака SYN-flooding предусматривает посылку на сервер множества пакетов TCP с выставленным битом SYN от лица несуществующих или неработающих хостов (за счет применения подмены IP-адресов). Последнее требование важно, поскольку если запрос на установку соединения придет от имени работающего хоста, то, когда сервер пошлет в его адрес пакет SYN/ACK, хост ответит пакетом RST (reset), инициирующим сброс соединения. И соединение будет удалено из памяти сервера.

При атаке SYN-flooding выделенная под установление новых соединений память сервера быстро исчерпывается, и сетевой сервис зависает.

Для противодействия атакам SYN-flooding помимо увеличения размера памяти под устанавливаемые соединения и уменьшения тайм-аута на межсетевых экранах применяются различные хитроумные методы борьбы. Установка межсетевых экранов сеансового и прикладного уровня или инспекторов состояний кардинально решает проблему атак SYN-flooding, поскольку именно они отражают все атаки, в то время как компьютеры внутренней сети даже не знают об их проведении.



Межсетевой экран или брандмауэр (по-нем. brandmauer , по-англ. , по-рус. граница огня ) - это система или комбинация систем, позволяющих разделить сеть на две или более частей и реализовать набор правил, определяющих условия прохождения пакетов из одной части в другую (см. рис.1). Чаще всего эта граница проводится между локальной сетью предприятия и INTERNET , хотя ее можно провести и внутри локальной сети предприятия. Брандмауэр, таким образом, пропускает через себя весь трафик. Для каждого проходящего пакета брандмауэр принимает решение пропускать его или отбросить. Для того чтобы брандмауэр мог принимать эти решения, ему необходимо определить набор правил. О том, как эти правила описываются и какие параметры используются при их описании, речь пойдет чуть позже.
рис.1

Как правило, брандмауэры функционируют на какой-либо UNIX платформе - чаще всего это BSDI, SunOS, AIX, IRIX и т.д., реже - DOS, VMS, WNT, Windows NT. Из аппаратных платформ встречаются INTEL, Sun SPARC, RS6000, Alpha, HP PA-RISC, семейство RISC процессоров R4400-R5000. Помимо Ethernet, многие брандмауэры поддерживают FDDI, Token Ring, 100Base-T, 100VG-AnyLan, различные серийные устройства. Требования к оперативной памяти и объему жесткого диска зависят от количества машин в защищаемом сегменте сети.

Обычно в операционную систему, под управлением которой работает брандмауэр, вносятся изменения, цель которых - повышение защиты самого брандмауэра. Эти изменения затрагивают как ядро ОС, так и соответствующие файлы конфигурации. На самом брандмауэре не разрешается иметь счета пользователей (а значит и потенциальных дыр), только счет администратора. Некоторые брандмауэры работают только в однопользовательском режиме. Многие брандмауэры имеют систему проверки целостности программных кодов. При этом контрольные суммы программных кодов хранятся в защищенном месте и сравниваются при старте программы во избежание подмены программного обеспечения.

Все брандмауэры можно разделить на три типа:

Все типы могут одновременно встретиться в одном брандмауэре.

Пакетные фильтры

Брандмауэры с пакетными фильтрами принимают решение о том, пропускать пакет или отбросить, просматривая IP-адреса, флаги или номера TCP портов в заголовке этого пакета. IP-адрес и номер порта - это информация сетевого и транспортного уровней соответственно, но пакетные фильтры используют и информацию прикладного уровня, т.к. все стандартные сервисы в TCP/IP ассоциируются с определенным номером порта.

Для описания правил прохождения пакетов составляются таблицы типа:

Поле "действие" может принимать значения пропустить или отбросить.
Тип пакета - TCP, UDP или ICMP.
Флаги - флаги из заголовка IP-пакета.
Поля "порт источника" и "порт назначения" имеют смысл только для TCP и UDP пакетов.

Сервера прикладного уровня

Брандмауэры с серверами прикладного уровня используют сервера конкретных сервисов (proxy server) - TELNET, FTP и т.д., запускаемые на брандмауэре и пропускающие через себя весь трафик, относящийся к данному сервису. Таким образом, между клиентом и сервером образуются два соединения: от клиента до брандмауэра и от брандмауэра до места назначения.

Полный набор поддерживаемых серверов различается для каждого конкретного брандмауэра, однако чаще всего встречаются сервера для следующих сервисов:

  • терминалы (Telnet, Rlogin);
  • передача файлов (Ftp);
  • электронная почта (SMTP, POP3);
  • WWW (HTTP);
  • Gopher;
  • Wais;
  • X Window System (X11);
  • сетевая печать (LP);
  • удаленное выполнение задач (Rsh);
  • Finger;
  • новости Usenet (NNTP);
  • Whois;
  • RealAudio.

Использование серверов прикладного уровня позволяет решить важную задачу - скрыть от внешних пользователей структуру локальной сети, включая информацию в заголовках почтовых пакетов или службы доменных имен (DNS). Другим положительным качеством является возможность аутентификации на пользовательском уровне (напоминаю, что аутентификация - процесс подтверждения идентичности чего-либо; в данном случае это процесс подтверждения, действительно ли пользователь является тем, за кого он себя выдает).

    При описании правил доступа используются такие параметры, как
  • название сервиса,
  • имя пользователя,
  • допустимый временной диапазон использования сервиса,
  • компьютеры, с которых можно пользоваться сервисом,
  • схемы аутентификации.

Сервера прикладного уровня позволяют обеспечить наиболее высокий уровень защиты, т.к. взаимодействие с внешним миров реализуется через небольшое число прикладных программ, полностью контролирующих весь входящий и выходящий трафик.

Сервера уровня соединения

Сервер уровня соединения представляет из себя транслятор TCP соединения. Пользователь образует соединение с определенным портом на брандмауэре, после чего последний производит соединение с местом назначения по другую сторону от брандмауэра. Во время сеанса этот транслятор копирует байты в обоих направлениях, действуя как провод.

Как правило, пункт назначения задается заранее, в то время как источников может быть много (соединение типа один - много). Используя различные порты, можно создавать различные конфигурации.

Такой тип сервера позволяет создавать транслятор для любого определенного пользователем сервиса, базирующегося на TCP, осуществлять контроль доступа к этому сервису, сбор статистики по его использованию.

Сравнительные характеристики пакетных фильтров и серверов прикладного уровня

Ниже приведены основные достоинства и недостатки пакетных фильтров и серверов прикладного уровня относительно друг друга.

    Достоинства пакетных фильтров:
  • относительно невысокая стоимость;
  • гибкость в определении правил фильтрации;
  • небольшая задержка при прохождении пакетов.
    Недостатки пакетных фильтров:
  • локальная сеть видна (маршрутизируется) из INTERNET;
  • правила фильтрации пакетов трудны в описании, требуются очень хорошие знания технологий TCP и UDP;
  • при нарушении работоспособности брандмауэра все компьютеры за ним становятся полностью незащищенными либо недоступными;
  • аутентификацию с использованием IP-адреса можно обмануть использованием IP-спуфинга (атакующая система выдает себя за другую, используя ее IP-адрес);
  • отсутствует аутентификация на пользовательском уровне.
    Достоинства серверов прикладного уровня:
  • локальная сеть невидима из INTERNET;
  • при нарушении работоспособности брандмауэра пакеты перестают проходить через брандмауэр, тем самым не возникает угрозы для защищаемых им машин;
  • защита на уровне приложений позволяет осуществлять большое количество дополнительных проверок, снижая тем самым вероятность взлома с использованием дыр в программном обеспечении;
  • аутентификация на пользовательском уровне может быть реализована система немедленного предупреждения о попытке взлома.
    Недостатки серверов прикладного уровня:
  • более высокая, чем для пакетных фильтров стоимость;
  • невозможность использовании протоколов RPC и UDP;
  • производительность ниже, чем для пакетных фильтров.

Виртуальные сети

Ряд брандмауэров позволяет также организовывать виртуальные корпоративные сети (Virtual Private Network ), т.е. объединить несколько локальных сетей, включенных в INTERNET в одну виртуальную сеть. VPN позволяют организовать прозрачное для пользователей соединение локальных сетей, сохраняя секретность и целостность передаваемой информации с помощью шифрования. При этом при передаче по INTERNET шифруются не только данные пользователя, но и сетевая информация - сетевые адреса, номера портов и т.д.

Схемы подключения брандмауэров

Для подключения брандмауэров используются различные схемы. Брандмауэр может использоваться в качестве внешнего роутера, используя поддерживаемые типы устройств для подключения к внешней сети (см. рис.1). Иногда используется схема, изображенная на рис.2, однако пользоваться ей следует только в крайнем случае, поскольку требуется очень аккуратная настройка роутеров и небольшие ошибки могут образовать серьезные дыры в защите.

рис.2

Чаще всего подключение осуществляется через внешний маршрутизатор, поддерживающий два Ethernet интерфейса(так называемый dual-homed брандмауэр) (две сетевые карточки в одном компьютре) (см. рис.3).

рис.3

При этом между внешним роутером и брандмауэром имеется только один путь, по которому идет весь трафик. Обычно роутер настраивается таким образом, что брандмауэр является единственной видимой снаружи машиной. Эта схема является наиболее предпочтительной с точки зрения безопасности и надежности защиты.

Другая схема представлена на рис.4.

рис.4

При этом брандмауэром защищается только одна подсеть из нескольких выходящих из роутера. В незащищаемой брандмауэром области часто располагают серверы, которые должны быть видимы снаружи (WWW, FTP и т.д.). Большинство брандмауэров позволяет разместить эти сервера на нем самом - решение, далеко не лучшее с точки зрения загрузки машины и безопасности самого брандмауэра.

Существуют решения (см. рис.5), которые позволяют организовать для серверов, которые должны быть видимы снаружи, третью сеть; это позволяет обеспечить контроль за доступом к ним, сохраняя в то же время необходимый уровень защиты машин в основной сети.

рис.5

При этом достаточно много внимания уделяется тому, чтобы пользователи внутренней сети не могли случайно или умышленно открыть дыру в локальную сеть через эти сервера. Для повышения уровня защищенности возможно использовать в одной сети несколько брандмауэров, стоящих друг за другом.

Администрирование

Легкость администрирования является одним из ключевых аспектов в создании эффективной и надежной системы защиты. Ошибки при определении правил доступа могут образовать дыру, через которую может быть взломана система. Поэтому в большинстве брандмауэров реализованы сервисные утилиты, облегчающие ввод, удаление, просмотр набора правил. Наличие этих утилит позволяет также производить проверки на синтаксические или логические ошибки при вводе или редактирования правил. Как правило, эти утилиты позволяют просматривать информацию, сгруппированную по каким-либо критериям, например, все что относится к конкретному пользователю или сервису.

Системы сбора статистики и предупреждения об атаке

Еще одним важным компонентом брандмауэра является система сбора статистики и предупреждения об атаке. Информация обо всех событиях - отказах, входящих, выходящих соединениях, числе переданных байт, использовавшихся сервисах, времени соединения и т.д. - накапливается в файлах статистики. Многие брандмауэры позволяют гибко определять подлежащие протоколированию события, описать действия брандмауэра при атаках или попытках несанкционированного доступа - это может быть сообщение на консоль, почтовое послание администратору системы и т.д. Немедленный вывод сообщения о попытке взлома на экран консоли или администратора может помочь, если попытка оказалась успешной и атакующий уже проник в систему. В состав многих брандмауэров входят генераторы отчетов, служащие для обработки статистики. Они позволяют собрать статистику по использованию ресурсов конкретными пользователями, по использованию сервисов, отказам, источникам, с которых проводились попытки несанкционированного доступа и т.д.

Аутентификация

Аутентификация является одним из самых важных компонентов брандмауэров. Прежде чем пользователю будет предоставлено право воспользоваться тем или иным сервисом, необходимо убедиться, что он действительно тот, за кого он себя выдает.

Как правило, используется принцип, получивший название "что он знает" - т.е. пользователь знает некоторое секретное слово, которое он посылает серверу аутентификации в ответ на его запрос.

Одной из схем аутентификации является использование стандартных UNIX паролей. Эта схема является наиболее уязвимой с точки зрения безопасности - пароль может быть перехвачен и использован другим лицом.

Классы защищенности брандмауэров

Применительно к обработке конфиденциальной информации автоматизированные системы (АС) делятся на три группы:

  1. Многопользовательские АС, обрабатывающие информацию различных уровней конфиденциальности.
  2. Многопользовательские АС, в которых все пользователи имеют равный доступ ко всей обрабатываемой информации, расположенной на носителях разного уровня конфиденциальности.
  3. Однопользовательские АС, в которых пользователль имеет подный доступ ко всей обрабатываемой информации, расположенной на носителях разного уровня конфиденциальности.

В первой группе выделяют 5 классов защищенности АС: 1А, 1Б, 1В, 1Г, 1Д, во второй и третьей группах - по 2 класса защищенности: 2А, 2Б и 3А, 3Б сооответственно. Класс А соответствует максимальной, класс Д - минимальной защищенности АС.

Брандмауэры позволяют поддерживать безопасность объектов внутренней области, игнорируя несанкционированные запросы из внешней области, т.е. осуществляют экранирование . В результате уменьшается уязвимость внутренних объектов, поскольку первоначально сторонний нарушитель должен преодолеть брандмауэр, где защитные механизмы сконфигурированы особенно тщательно и жестко. Кроме того, экранирующая система в отличие от универсальной устроена более простым, а следовательно, более безопасным образом. На ней присутствуют только те компоненты, которые необходимы для выполнения функций экранирования. Экранирование дает также возможность контролировать информационные потоки, направленные во внешнюю область, что способствует поддержанию во внутренней области режима конфиденциальности. Помимо функций разграничения доступа, брандмауэры осуществляют регистрацию информационных потоков.

По уровню защищенности брандмауэры делятся на 5 классов. Самый низкий класс защищенности - пятый. Он применяется для безопасного взаимодействия АС класса 1Д с внешней средой, четвертый - для 1Г, третий - для 1В, второй - для 1Б, самый высокий - первый - для 1А.

Для АС класса 2Б, 3Б применяются брандмауэры не ниже пятого класса.

Для АС класса 2А, 3А в зависимости от важности обрабатываемой информации применяются брандмауэры следующих классов:

  • при обработки информации с грифом "секретно" - не ниже третьего класса;
  • при обработки информации с грифом "совершенно секретно" - не ниже второго класса;
  • при обработки информации с грифом "особой важности" - только первого класса.

Показатели защищенности сведены в табл.1.

Обозначения:

Таблица 1
Показатели защищенности Классы защищенности
5 4 3 2 1
Управление доступом (фильтрация данных и трансляция адресов) + + + + =
Идентификация и аутентификация - - + = +
Регистрация - + + + =
Администрирование: идентификация и аутентификация + = + + +
Администрирование: регистрация + + + = =
Администрирование: простота использования - - + = +
Целостность + = + + +
Восстановление + = = + =
Тестирование + + + + +
Руководство администратора защиты + = = = =
Тестовая документация + + + + +
Конструкторская (проектная) документация + = + = +

Руководство для приобретающих брандмауэр

Исследовательским подразделением компании TruSecure - лабораторией ICSA - разработан документ "Firewall Buyers Guide" (Гид покупателей межсетевого экрана). В одном из разделов этого документа дана следующая форма оценки покупателя:

  1. Контактная информация - адрес и ответственные лица.
  2. Бизнес-среда работы:
    • количество и расположение отдельных учреждений (зданий) предприятия;
    • указание подразделений и информации ограниченного характера и информации, для которой важна доступность данных для взаимодействия подразделений, их размещение;
    • Указание внешних партнеров, с которыми необходимо организовать взаимодействие;
    • описание сервисов, открытых публично;
    • трребования к организации удаленного доступа во внутреннее информационное пространство предприятия;
    • сервисы электронных служб, использующие публичные каналы связи (например, электронная коммерция).
  3. Планируемые изменения в бизнес-среде по перечисленным параметрам.
  4. Информационная среда:
    • количество пользовательских рабочих станций с указанием аппаратного обеспечения, системного и прикладного программного обеспечения;
    • структура сети с указанием топологии, среды передачи данных, используемых устройств и протоколов;
    • структура удаленного доступа с указанием используемых устройств, а также методов аутентификации;
    • количество серверов с указанием аппаратного обеспечения,системного и прикладного программного обеспечения;
    • существующая система поддержки информационных систем со стороны поставщиков с их указанием и границами сферы деятельности;
    • антивирусные системы и другие системы контроля программного обеспечения;
    • технология упрравления сетью и информационными системами;
    • аутентификационные технологии - список и описание.
  5. Планируемые изменения в информационной среде по перечисленням параметрам.
  6. Связь с Интернетом:
    • тип интернет-соединения;
    • существующие межсетевые экраны (если они есть);
    • Средства связи с внешней средой, используемые внутренними системами;
    • внутренние системы и сервисы, доступные извне;
    • серверы электронной коммерции и других транзакционных систем;
    • указание на наличие утвержденной политики безопасности доступа и использования Интернета.
  7. Планируемые мероприятия (для которых приобретается межсетевой экран):
    • изменение в способах доступа к Интернету и в политике безопасности предприятия;
    • появление новых протокоолов, которые необходимо поддерживать отдельно для внутренних пользователей, пользователей с удаленным доступом или специальных пользователей, доступных публично.
  8. Требуемая функциональность межсетевого экрана:
    • по контролю доступа;
    • выдаваемым сообщениям;
    • аутентификации;
    • управлению конфигурацией;
    • контролю содержимого проходящего трафика;
    • регистрационным журналам;
    • распознаванию атак;
    • сетевым опциям (количество интерфейсов, способ доступа);
    • удаленному администрированию;
    • системным требованиям (под ключ, интеграция с другими продуктами и т.д.).
  9. Прочие условия:
    • предполагаемая стоимость межсетевого экрана (сколько предприятие может потратить);
    • предполагаемая дата начала работы продукта;
    • требования к наличию у продукта сертификатов;
    • требования к предполагаемому администратору продукта и к службе поддержки;
    • специальные условия контракта (если есть);
    • другие замечания, которые не включены в данную форму.

Предполагается, что предприятие, заполнив данную форму и отправив ее производителю, позволит последнему сформировать наиболее качественное предложение для покупателя. Заполнение данной формы, впрочем, и без отправки ее кому-либо, позволит организации лучше понять, какое решение ей необходимо.

Классификация межсетевых экранов

Одним из эффективных механизмом обеспечения информационной безопасности распределенных вычислительных сетях является экранирование, выполняющее функции разграничения информационных потоков на границе защищаемой сети.

Межсетевое экранирование повышает безопасность объектов внутренней сети за счет игнорирования неавторизованных запросов из внешней среды, тем самым, обеспечивая все составляющие информационной безопасности. Кроме функций разграничения доступа, экранирование обеспечивает регистрацию информационных обменов.

Функции экранирования выполняет межсетевой экран или брандмауэр (firewall), под которым понимают программную или программно-аппаратную систему, которая выполняет контроль информационных потоков, поступающих в информационную систему и/или выходящих из нее, и обеспечивает защиту информационной системы посредством фильтрации информации. Фильтрация информации состоит в анализе информации по совокупности критериев и принятии решения о ее приеме и/или передаче.

Межсетевые экраны классифицируются по следующим признакам:

· по месту расположения в сети – на внешние и внутренние, обеспечивающие защиту соответственно от внешней сети или защиту между сегментами сети;

· по уровню фильтрации, соответствующему эталонной модели OSI/ISO.

Внешние межсетевые экраны обычно работают только с протоколом TCP/IP глобальной сети Интернет. Внутренние сетевые экраны могут поддерживать несколько протоколов, например, при использовании сетевой операционной системы Novell Netware, следует принимать во внимание протокол SPX/IPX.

Характеристика межсетевых экранов

Работа всех межсетевых экранов основана на использовании информации разных уровней модели OSI. Как правило, чем выше уровень модели OSI, на котором межсетевой экран фильтрует пакеты, тем выше обеспечиваемый им уровень защиты.

Межсетевые экраны разделяют на четыре типа:

· шлюзы сеансового уровня;

· шлюзы прикладного уровня;

Таблица 4.5.1. Типы межсетевых экранов и уровни модели ISO OSI

Межсетевые экраны с фильтрацией пакетов представляют собой маршрутизаторы или работающие на сервере программы, сконфигурированные таким образом, чтобы фильтровать входящие и исходящие пакеты. Поэтому такие экраны называют иногда пакетными фильтрами. Фильтрация осуществляется путем анализа IP-адреса источника и приемника, а также портов входящих TCP- и UDP-пакетов и сравнением их со сконфигурированной таблицей правил. Эти межсетевые экраны просты в использовании, дешевы, оказывают минимальное влияние на производительность вычислительной системы. Основным недостатком является их уязвимость при подмене адресов IP. Кроме того, они сложны при конфигурировании: для их установки требуется знание сетевых, транспортных и прикладных протоколов.

Шлюзы сеансового уровня контролируют допустимость сеанса связи. Они следят за подтверждением связи между авторизованным клиентом и внешним хостом (и наоборот), определяя, является ли запрашиваемый сеанс связи допустимым. При фильтрации пакетов шлюз сеансового уровня основывается на информации, содержащейся в заголовках пакетов сеансового уровня протокола TCP, т. е. функционирует на два уровня выше, чем межсетевой экран с фильтрацией пакетов. Кроме того, указанные системы обычно имеют функцию трансляции сетевых адресов, которая скрывает внутренние IP-адреса, тем самым, исключая подмену IP-адреса. Однако в таких межсетевых экранах отсутствует контроль содержимого пакетов, генерируемых различными службами. Для исключения указанного недостатка применяются шлюзы прикладного уровня.

Шлюзы прикладного уровня проверяют содержимое каждого проходящего через шлюз пакета и могут фильтровать отдельные виды команд или информации в протоколах прикладного уровня, которые им поручено обслуживать. Это более совершенный и надежный тип межсетевого экрана, использующий программы-посредники (proxies) прикладного уровня или агенты. Агенты составляются для конкретных служб сети Интернет (HTTP, FTP, Telnet и т. д.) и служат для проверки сетевых пакетов на наличие достоверных данных.

Шлюзы прикладного уровня снижают уровень производительности системы из-за повторной обработки в программе-посреднике. Это незаметно при работе в Интернет при работе по низкоскоростным каналам, но существенно при работе во внутренней сети.

Межсетевые экраны экспертного уровня сочетают в себе элементы всех трех описанных выше категорий. Как и межсетевые экраны с фильтрацией пакетов, они работают на сетевом уровне модели OSI, фильтруя входящие и исходящие пакеты на основе проверки IP-адресов и номеров портов. Межсетевые экраны экспертного уровня также выполняют функции шлюза сеансового уровня, определяя, относятся ли пакеты к соответствующему сеансу. И, наконец, брандмауэры экспертного уровня берут на себя функции шлюза прикладного уровня, оценивая содержимое каждого пакета в соответствии с политикой безопасности, выработанной в конкретной организации.

Вместо применения связанных с приложениями программ-посредников, брандмауэры экспертного уровня используют специальные алгоритмы распознавания и обработки данных на уровне приложений. С помощью этих алгоритмов пакеты сравниваются с известными шаблонами данных, что теоретически должно обеспечить более эффективную фильтрацию пакетов.

Выводы по теме

1. Межсетевое экранирование повышает безопасность объектов внутренней сети за счет игнорирования неавторизованных запросов из внешней среды, тем самым, обеспечивая все составляющие информационной безопасности. Кроме функций разграничения доступа экранирование обеспечивает регистрацию информационных обменов.

2. Функции экранирования выполняет межсетевой экран или брандмауэр (firewall), под которым понимают программную или программно-аппаратную систему, которая выполняет контроль информационных потоков, поступающих в информационную систему и/или выходящих из нее, и обеспечивает защиту информационной системы посредством фильтрации информации.

3. Межсетевые экраны классифицируются по следующим признакам: по месту расположения в сети и по уровню фильтрации, соответствующему эталонной модели OSI/ISO.

4. Внешние межсетевые экраны обычно работают только с протоколом TCP/IP глобальной сети Интернет. Внутренние сетевые экраны могут поддерживать несколько протоколов.

5. Межсетевые экраны разделяют на четыре типа:

· межсетевые экраны с фильтрацией пакетов;

· шлюзы сеансового уровня;

· шлюзы прикладного уровня;

· межсетевые экраны экспертного уровня.

6. Наиболее комплексно задачу экранирования решают межсетевые экраны экспертного уровня, которые сочетают в себе элементы всех типов межсетевых экранов.

Вопросы для самоконтроля

1. В чем заключается механизм межсетевого экранирования?

2. Дайте определение межсетевого экрана.

3. Принцип функционирования межсетевых экранов с фильтрацией пакетов.

4. На уровне каких протоколов работает шлюз сеансового уровня?

5. В чем особенность межсетевых экранов экспертного уровня?