Нанд флеш что на ней записано. Сравнение типов флеш-памяти NAND

16.04.2019

В основу зарождения NAND-памяти легла появившаяся намного раньше флеш-память, используемая в твердотельных накопителях с явно меньшей скоростью работы, долговечностью и большей площадью чипа, чем у NAND-памяти. Флеш-память изобрел Fujio Masuoka в 1984 году, работая в компании Toshiba. После представления разработки Fujio Masuoka на IEEE 1984 (International Electron Devices Meeting) в Сан-Франциско (Калифорния) компания Intel в 1988 году выпустила первый коммерческий флеш-чип типа NOR. Появление NAND-типа флеш-памяти было анонсировано Toshiba в 1989 году на Международной конференции, посвященной твердотельным дискам (International Solid-State Circuits Conference).

Flash-память, типы NAND-памяти

Принципиальным отличием флеш-памяти является хранение ею одного бита информации в массиве транзисторов с плавающим затвором, называемых ячейками. Существует два типа NAND-памяти, используемой в SSD дисках – SLC и MLC. Чем же отличаются SLC и MLC типы памяти? SLC-устройства имеют одноуровневые ячейки, которые хранят в каждом транзисторе только один бит, а многоуровневые MLC могут хранить в каждой ячейке несколько бит информации. Это следствие использования разных уровней электрического заряда на плавающем затворе транзистора. Принцип кодирования (логического 0 или 1) информации во всех случаях одинаков, он будет описан нами ниже. Различается лишь строение ячейки. Глубина уровней MLC может доходить до 4-х, то есть хранить до 4-х бит информации, в то время как SLC является более простой единицей и хранит 1 бит.

Технология MLC позволяет за счет наращивания уровней существенно увеличить объем диска, оставив его физические размеры неизменными, что уменьшает себестоимость каждого гигабайта. На этом положительные качества данной технологии заканчиваются. С каждым дополнительным уровнем усложняется задача распознавания уровня сигнала, не говоря уже об уменьшении ресурса работы SSD-диска, увеличивается время поиска адреса ячейки, повышается вероятность ошибок. Контроль за ошибками осуществляется аппаратно, что в случае технологии MLC ведет к удорожанию управляющей электроники и соответственно увеличивает конечную стоимость SSD. Диски SSD, массово продающиеся на мировом рынке, используют MLC-технологию с четырехуровневой записью. При этом данные кодируются как (11), (10), (01), (00). Для SLC одноуровневая ячейка может принимать лишь значения 0 или 1.

Решения с ячейками SLC при тех же размерах и цене явно проигрывают MLC в объеме хранимой на них информации, но при этом являются более быстрыми и долговечными. Поэтому производителям приходится использовать большее количество микросхем при меньшем суммарном объеме диска, что в конечном итогу повышает цену диска SLC более чем в два раза по сравнению с такого же объема диском MLC.

Механизмы записи и чтения элементарной ячейки NAND-память

Постараемся более подробно описать работу транзистора для NAND-памяти, которым является полевой транзистор с изолированным затвором или MOSFET.

Главной особенность полевого транзистора, которая позволила его использование для хранения информации, стала возможность удерживать электрический заряд на «плавающем» затворе до 10 лет. Сам «плавающий» затвор выполнен из поликристаллического кремния и полностью окружен слоем диэлектрика, что обеспечивает ему полное отсутствие электрического контакта с элементами транзистора. Он расположен между управляющим затвором и подложкой из p-n переходов. Управляющий электрод полевого транзистора называется затвором. В данном случае проводимость p-n перехода, обусловленная электрическим сопротивлением, управляется разностью потенциалов, которая создает электрическое поле, воздействующее на состояние p-n переходов.

Немаловажными элементами транзистора являются также сток и исток. Для изменения бита записываемой информации в ячейку, напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Это позволяет некоторым электронам перейти через слой диэлектрика на плавающий затвор, обеспечив его зарядом, а значит и наполнение элементарной ячейки битом информации.

Накопленный заряд на плавающем затворе влияет на проводимость канала сток-исток, что используется при чтении.

Такая разность механизма записи и чтения явно сказывается на различном энергопотреблении этих режимов. NAND-память потребляет достаточно большой ток при записи, а при чтении затраты энергии наоборот малы. Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят на исток. Именно из таких элементарных ячеек объединенных в страницы, блоки и массивы и состоит современный твердотельный накопитель.

Срок жизни NAND-памяти

Главной особенностью NAND-памяти, позволяющей ее использование в SSD-дисках, стало ее умение хранить данные без внешнего источника энергии. Однако такая технология накладывает ограничения на число изменений логического состояния ячейки, что приводит к конечному числу циклов перезаписи этой ячейки. Это связанно с постепенным разрушением диэлектрического слоя. Данный эффект наступает намного быстрее у ячеек MLC ввиду их малого резерва изменения заряда плавающего затвора из-за конструктивных особенностей. Чтение ячейки тоже влияет на срок ее жизни, но это воздействие намного менее значительно, чем при записи/стирании, что позволяет считать циклы чтения не ограниченными, а срок жизни SSD-диска измеряется количеством возможных циклов перезаписи.

На всех SSD-дисках присутствует недоступная для стандартных операций записи/чтения часть. Она необходима как резерв в случае износа ячеек, по аналогии с магнитными накопителями HDD, который имеет резерв для замены bad-блоков. Дополнительный резерв ячеек используется динамически, и по мере физического изнашивания основных ячеек предоставляется резервная ячейка на замену.

Приведем приблизительную сравнительную таблицу основных характеристик, отличающих работу SSD-дисков с технологией SLC и дисков с ячейками MLC.

Таблица явно говорит обо всех преимуществах и недостатках этих технологий. В ней видно превосходство SLC решений над MLC, но не указан главный критерий популярности SSD-дисков – их цена. Указывать ее и нет смысла ввиду быстрого удешевления таких решений. Скажем лишь, что MLC диски хоть и уступают во всем SLC, но они более чем в два раза выигрывают в цене и могут быть компактнее при тех же объемах хранимых данных.

Структура SSD-диска: размер ячейки, страницы, блока NAND-памяти

Для более эффективного использования элементарных ячеек памяти они были объединены в массивы с несколько уровневой структурой. Одна ячейка хранящая один (для SLC) или, как правило, два (для нынешнего поколения MLC) бита данных, объединена в группу названную страницей и вмещающую 4 КБ данных.

Специальные алгоритмы для работы с SSD-дисками

Ввиду ограниченности циклов записи/стирания ячеек флеш-памяти разработчикам пришлось составить правильный алгоритм работы SSD-диска, позволяющий равномерно «изнашивать» всё его запоминающее пространство. Как уже было нами отмечено, весь объем диска делится на блоки размером 512 КБ, а они в свою очередь на страницы емкостью 4 КБ, на которые осуществляются операции чтения и записи. Но как только вы записали информацию на страницу, она не может быть перезаписана до тех пор, пока не будет очищена. Проблема заключается в том, что минимальный размер записываемой информации не может быть меньше 4 КБ, а стереть данные можно минимум блоками по 512 КБ. Для этого контроллер группирует и переносит данные (этот алгоритм мы опишем ниже) для освобождения целого блока. Эта операция приводит к увеличению времени отклика и сокращению ресурс SSD, но чем-то приходится жертвовать.

Поговорим об алгоритме записи/удаления.

После запроса на запись от операционной системы, контроллер носителя определяет размер и структуру информации. При наличии достаточного числа пустых блоков выделяется новый блок, на который и копируются переданные ОС для записи данные. Однако по мере заполнения диска и уменьшению достаточного числа пустых блоков данная операция существенно усложняется. Контроллер все чаще ищет максимально подходящий (по количеству свободных страниц), частично занятый блок и переписывает его в пустой блок, совмещая его с данными, пришедшими от ОС для записи, что полностью заполняет его. Старый блок затем очищается. При таком алгоритме мы получаем один полностью заполненный блок и один пустой, который зачисляется в группу пустых блоков, доступных для записи. При запросе на запись, контроллер использует только блоки из этой группы.

В своем оснащении контроллер обычно имеет 10 каналов, в частности таким количеством каналов обладает контроллеры SSD-дисков от Intel. Весь пул микросхем равномерно закреплен за каждым каналом обмена данных. На данном этапе развития технологий работы SSD-дисков, микросхемы памяти, взаимодействующие с первым каналом, не могут пересекаться на операциях со вторым, третьим и последующими каналами, но данная проблема вполне может разрешиться в недалеком будущем. Вполне логично бы было использовать «плавающие» связи для всей памяти, размещенной на диске. Часто возникает необходимость записи очереди из мелких данных, тогда контроллер автоматически распределяет весь блок по всем каналам, но связь между ячейками сохраняется, т.к. этот кусок данных является одной логической единицей.

Операция удаления данных тоже напрямую зависит от объема и размещения удаляемых данных. Если вся информация, записана в одном блоке или в группе блоков, полностью занимая их, то блок/блоки попросту очищаются и помечаются как пустые и готовые для последующей записи с максимально возможной скоростью. Но данный идеальный случай встречается не всегда.

Если необходимо удалить не весь блок, а несколько страниц, находящихся в нем, то контроллер удаляет данные логически, не стирая их, а просто помечая данные страницы как удаленные. В дальнейшем оставшаяся информация будет скомпонована с новой, пришедшей для записи, и записана в пустой блок, а исходный блок, как уже было описано в алгоритме записи, будет полностью удален и помечен как пустой.

Зачем нужен Тримминг?

Это еще одна немаловажная технология, обеспечивающая более равномерный износ SSD-диска и более быструю работу с данными за счет команды TRIM. Она позволяет выстроить цепочку и определить приоритет освобождаемых блоков. Раньше данная операция была возложена на ОС, но современные SSD-контроллеры уже поддерживают данную функцию аппаратно в прошивках накопителей. Время выполнение операции по «зачистке» блоков связано по экспоненте со свободным объемом на диске. Чем меньше информации и больше свободного места, тем быстрее происходит «тримминг» на SSD. По мере заполнения диска до 75% функция очистки все еще не сильно выражена относительно простоя. Но, как только остаётся менее 15% свободного места, «триммирование» становится затруднительным. Естественно, часть зависимости полностью обуславливается типом информации (статичная, т.е. редко перемещаемая и в основном только читаемая, или динамическая). Согласно исследованию IBM идеальные условия работы SSD, когда он заполнен менее, чем на 75% и соотношения статической и динамической части информации 3 к 1.

TRIM является неотъемлемой частью современных твердотельных накопителей. Он обеспечивает прирост производительности при заполнении данными дисков более чем на 2/3, за счет правильной сортировки блоков и подготовке их к записи. Это позволяет сократить разницу в скорости работы нового и уже заполнено на 75% диска до 2-3%.

Не стоит забывать, что по умолчанию операционная система настроена на работу с обычным HDD диском, а значит пользователю обязательно необходимо, отключить «старые» механизмы увеличения скорости работы магнитного диска, а так же алгоритмы дефрагментации. Кроме того, важно побеспокоиться о неполном использовании всего пространства своего SSD-диска.

Для чего используется кэш-буфер на SSD-дисках?

Кэш-буфер на SSD-дисках не применяется для ускорения процедуры записи/чтения как это принято для HDD-накопителей. Его объем даже не указывается в технических спецификациях SSD основной массой производителей. Он и не может считаться обычной кэш-памятью, как мы это привыкли понимать. Кэш-память на SSD дисках используется динамически, для хранения таблиц размещения и занятости ячеек диска. Параллельно в ней может храниться временная информация со стираемых ячеек, при нехватке пустого места на диске. Таблицы представляют собой трехмерную матрицу, и являются основным помощником для контроллера SSD. Основываясь на этих данных, диск принимает решения о стирании дополнительных ячеек. В нем так же хранится информация о частоте и интенсивности использования каждого доступного блока на диске. Кроме того, здесь записаны адреса «мест», где невозможно осуществить запись, ввиду физического износа.

Контроллер SSD-диска

Очень важным и постоянно усовершенствуемым элементом SSD-накопителя является его контроллер. Главной задачей контроллера является обеспечение операций чтения и записи, но в виду массы физических особенностей SSD-накопителя, контроллер также отвечает за управление структурой размещения данных. Основываясь на матрице размещения блоков, в какие ячейки уже проводилась запись, а в какие еще нет, контроллер оптимизирует скорость записи и обеспечивает максимально длительный срок службы вашего SSD-диска. Вследствие особенностей построения NAND-памяти, работать с ее каждой ячейкой отдельно нельзя. Как мы уже говорили выше, они объединены в страницы объемом по 4 Кбайта, и записать информацию можно только полностью заняв страницу. Стирать данные можно по блокам, которые равны 512 Кбайт. Все эти ограничения накладывают определенные обязанности на правильный интеллектуальный алгоритм работы контроллера. Поэтому правильно настроенный и оптимизированный контролер может существенно изменить как скоростные показатели, так и долговечность работы SSD-диска.

Итоги

На данный момент пока еще рано говорить о полной победе SSD-накопителей над магнитными дисками. Если учитывать объем и скорость работы SSD-накопителя, сравнивая их с аналогичными параметрами для традиционных HDD, то главным сдерживающим фактором перехода на твердотельные диски все еще останется их цена. Анализ нескольких последних лет показал нежелание производителей снижать цену на NAND-память. Только последние полгода можно наблюдать небольшую тенденцию по снижению цены на SSD, и то это, скорее всего, обусловлено спадом потребительского спроса, что вызвано мировым кризисом. Твердотельные накопители уже несколько лет представлены в широком ассортименте на мировом рынке, но даже такой значительный для цифровых технологий срок не смог повлиять на их конкурентоспособность по критерию «цена за ГБ хранимой информации» по отношению к магнитным дискам. Плотность записи на один магнитный диск постоянно увеличивается, что способствует выпуску все более емких моделей (на данный момент широко доступны HDD емкостью 2 ТБ). Такое распределение рынка может заставить покупателя отдать предпочтение SSD накопителю только в случае острой необходимости в скорости чтения или стойкости к вибрации/удару, но основной объем информации все равно будет храниться на классических жестких дисках.

Достоинства и недостатки SSD по сравнению с магнитными дисками HDD:

Достоинства:

  • намного большая скорость чтения;
  • полное отсутствие шума;
  • надежность ввиду отсутствия движущихся частей;
  • малое энергопотребление;
  • высокая устойчивость к вибрационным нагрузкам.

Недостатки:

  • высокая стоимость за каждый ГБ сохраняемой информации;
  • ограниченное количество циклов записи и удаления данных.

Статья прочитана 10888 раз(а)

Подписаться на наши каналы

Выбор SSD сейчас стоит на ключевом месте при сборке игрового ПК. Если раньше о твердотельном накопителе хотели, но боялись говорить из-за его стоимости, то сейчас некоторые смело переносят всю систему на этот тип диска. Поэтому, если вы решили улучшить свою систему, то вам придется узнать, что лучше: TLC или MLC? Либо есть еще какой-то вариант?

Преимущества

Давайте попробуем сначала разобраться, почему же все массово стали переходить с ЖД на твердотельный накопитель или использовать оба диска вместе.

Итак, относительно ЖД, SSD выделяются полной бесшумностью и высокой механической стойкостью. Это все вызвано тем, что они лишены движущихся элементов. Кроме того, твердотельный накопитель выделяется стабильным временем считывания файлов. Причем абсолютно не важно, где они спрятаны в системе. Диск быстро подгружает их без торможений.

Выше оказалась скорость чтения и записи. В некоторых случаях она приближается к пропускной способности небезызвестных Иногда для SSD применяют более быстрые слоты типа PCI Express, NGFF и т.п.

Следующее преимущество - это количество действий при вводе и выводе в секунду. Это реализовано благодаря одновременному запуску нескольких процессов и низкой латентности. Теперь не нужно ожидать, пока диск сделает оборот, чтобы дать доступ к данным.

Нельзя не упомянуть о низком энергопотреблении и небольшой чувствительности к внешним электромагнитным полям. Ну и, наконец, размеры SSD. Благодаря тому, что перед нами 2,5-дюймовый диск либо вовсе формата M.2, можно его поместить даже в нетбук.

Конструкция

Прежде чем разобраться, какой тип SSD лучше: TLC или MLC, нужно хотя бы приблизительно понимать, что это такое. Для этого рассмотрим конструкцию твердотельного накопителя.

Большинство стандартных моделей покрыты защитным корпусом. Если заглянуть внутрь, можно заметить контроллер. Это условно небольшой компьютер, у которого есть свои задачи. Он управляет обменом информации между устройством и ПК.

Еще одним элементом SSD стала буферная память. DDR реализована небольшим объемом, который не зависит от энергозатрат. нужна для хранения кэша. И третьим элементом является флэш-память. Она выполнена микросхемами памяти, которые уже зависят от энергопотребления. Как раз этот элемент и отвечает за то, чтобы записывать ваши личные данные.

Выбор

Прежде чем мы подробно разберем, что лучше: память TLC или MLC, немного общей информации. Помимо того что изначально выбор SSD - вещь непростая, оказывается, нам приходится разбираться в бесконечных технических характеристиках. Не всем подобная информация дается легко.

Но, к сожалению, в данном случае разобраться в типах памяти придется. Помимо основных, которые мы будем описывать дальше, есть вариации V-NAND или 3D NAND. О них также лучше вкратце знать.

Типы

Если вы когда-нибудь видели жесткий диск и твердотельный накопитель, тогда вы понимаете, что они отличаются конструктивно, а соответственно, имеют разный механизм работы. Последний вариант работает с флэш-памятью.

Она представлена специальными ячейками, которые размещают на плате в особом порядке. Все они реализованы на основе полупроводников. Отсюда и несколько типов SSD: TLC и MLC. Что лучше, каждый решает для себя самостоятельно либо же покупает устройства наобум.

Хранение памяти

Так получилось, что флэш-память на твердотельном накопителе можно реализовать за счет принципов хранения памяти. Отсюда есть две группы. В одной есть типы, основанные на принципе чтения и записи (NAND).

Есть вариант, при котором память хранится с разной технологией: SLC и MLC. Первый вариант представлен таким образом, что для одной ячейки есть лишь один бит информации. Во втором случае - 2 бита или больше.

Считается, что память TLC относится к MLC. Разница лишь в том, что для первого варианта можно хранить 2 бита, а для второго - 3 бита. Теперь осталось понять, что же это значит, и какой тип «ССД» лучше: TLC и MLC.

Преимущества

Поскольку TLC - это подвид MLC, то справедливо сказать, что второй тип преимущественный. В чем заключается его превосходство? Во-первых, у него более высокая скорость работы. Как показывает практика, он может прослужить несколько дольше. А также все его ресурсы не требуют больших затрат энергопотребления.

Но помимо этого, есть и некоторые недостатки. Главным из них, конечно же, стала стоимость устройства с MLC.

Разная ситуация

Есть и некоторые проблемы, с которыми вы можете столкнуться. Дело в том, что вышеописанные случаи - это общая ситуация. В реальности же разработчики могут хорошенько запутать покупателей. Поэтому, размышляя о том, что лучше: TLC или MLC, вы сможете увидеть:

  • Одинаковая скорость у обоих типов при подключении к SATA III. Некоторые модели могут выделиться особой скоростью на основе TLC, из-за того, что используют интерфейс PCI-E NVMe. Хотя, как показывает практика, чем дороже накопитель, тем он быстрее. И с большой вероятностью он будет основан на MLC.
  • Есть модели, при которых устройство с TLC имеет больший гарантийный срок, чем его старший «собрат».
  • Вопрос с энергопотреблением может отличаться от стандартного положения вещей. Разбираясь с тем, что лучше: TLC или MLC, присмотритесь к интерфейсам, с которыми они работают. К примеру, TLC на SATA III - намного экономней, нежели MLC с PCI-E.

Кстати, можете встретить разницу в показателях даже тогда, когда установите накопитель сначала в один порт, а потом в другой. В этом случае электропотребление может сильно отличаться.

Другие отличия

Вышеописанные ситуации не единственные в своем роде. Отличия в значениях параметров скорости, сроках эксплуатации и потребления энергии могут зависеть и от поколения устройства. Нетрудно догадаться, что если модель новая, то её старый образец будет несколько хуже.

Технологии производства твердотельных накопителей развиваются, а мы получаем увеличенные объемы и количества свободного пространства, повышенные показатели скорости и уменьшенные значения температур.

Как итог, сказать, какой SSD лучше: TLC или MLC - невозможно. Однозначно вы можете приобрести устаревшую модель MLC, которая заметно будет отличаться характеристиками от TLC в худшую сторону. При этом стоимость обоих устройств будет одинаковой.

Поэтому при выборе обращайте внимание на все параметры, лучше сравнивайте их сразу, чтобы потом не жалеть о покупке. Ну, и желательно сразу устанавливать себе бюджет. Так вам будет проще сгруппировать те модели, которые вам подходят и по стоимости, и по параметрам.

Идентификация

Если вы решили узнать, что лучше: SSD TLC vs MLC, уже когда приобрели твердотельный накопитель, то захотите идентифицировать тип памяти в своем устройстве. Так уже сложилось, что на самих дисках этой информации нет. Кроме того, даже установив какую-нибудь утилиту для теста, вы все равно не получите ответа. Что же в этом случае делать?

Самый простой способ - это отправиться в интернет. Тут вы сможете ввести название модели и по обзорам её проанализировать. Есть даже специальные сайты, в которых есть вся база твердотельных дисков. Там есть абсолютно вся спецификация по многим популярным моделям.

Проблемы

Но не все так гладко. Возможно, кто-то из пользователей сталкивался с SSD от компании Silicon Power Slim. Это довольно популярная модель, которая на рынке уже более 3 лет. В момент своего появления она выделилась низкой стоимостью.

Хотя эта история запутанная и долгая, вкратце стоит о ней знать. Дешевизна этого диска была продиктована выбором новой платформы от тайваньской компании. Она была революционной. Это было сразу понятно по характеристикам устройств. Но было несколько проблем.

Во-первых, компания не позаботилась о том, чтобы перевести все свои модели на эту новую платформу, поэтому часть дисков продавались на устаревшей базе. Во-вторых, из-за желания стать популярным разработчику пришлось вносить постоянные изменения.

В итоге некоторые модели поменяли тип памяти и даже объем. В упаковке с SSD на 120 Гб мог находиться диск на 60 Гб. А указание микросхемы MLC совсем не означало то, что пользователь получит диск именно на основе этого типа. В результате: огромное количество недовольных владельцев, которые получили медленную память.

Производители

Как ни странно, но разработчиков, которые сами бы производили и продавали диски, мало. Это вызвано тем, что далеко не все фирмы могут иметь нужные ресурсы. Отсюда большое количество компаний, которые закупают отдельные детали, а у себя в офисе просто собирают все в кучу и лепят наклейку.

Самостоятельное производство организовано у единиц. Они заботятся о продукте, потому что им не все равно, какие отзывы получает их детище.

Над памятью работают следующие крупные производители:

  • Intel.
  • Micron.
  • Samsung.
  • Toshiba.
  • SanDisk.
  • Hynix.

Первые две компании выбрали себе одинаковые технологии производства. Это вызвано тем, что они используют совместное предприятие.

Другие варианты

Если вам уже стало понятно, что лучше: TLC или MLC, остается разобраться с еще одним типом памяти. Иногда в обзорах твердотельных накопителей можно встретить непонятные обозначения: V-NAND, 3D-NAND и т.п. Это еще один эксперимент, который предлагает производитель. Изготовлен такой диск по иным технологиям.

В этом случае ячейки памяти размещают не в один слой, а в несколько. Причем память используется именно TLC и MLC. Этот факт не во всех случаях указывается, но вы должны понимать, что сами микросхемы относятся к уже знакомому типу.

Если говорить о производительности, то можно сказать, что 3D-NAND немного лучше. Во-первых, это связано с низкой стоимостью и большими возможностями. Во-вторых, многослойное размещение более надежное и эффективное. Это можно доказать тестированием двух моделей: «плоской» и «объемной» MLC.

Выводы

Ответить на вопрос о том, что лучше для системы: TLC или MLC - невозможно. Очень часто, когда пользователи задают подобный вопрос, попадаешь в неловкое положение. Ну ведь сложно понять, какие цели и задачи преследует покупатель. Возможно ему нужна суперпроизводительная система. Тогда ему однозначно нужен диск с MLC.

А вдруг ему нужен обычный рабочий ПК. В этом случае может ему и вовсе не понадобится твердотельный накопитель. Все это индивидуальные проблемы, которые каждый должен решать самостоятельно.

#Тип_чипов #3D_MLC_(Multi_Level_Cell) MLC_(Multi_Level_Cell) #3D_TLC_(Triple_Level_Cell) #TLC_(Triple_Level_Cell)

В современных SSD наиболее распространены три типа чипов памяти : SLC, MLC и TLC.

SLC – Single Level Cell – ячейка с одним уровнем. Имеет высокую производительность, низкое потребление электроэнергии, наибольшую скорость записи и количество . Такой тип памяти обычно используется в серверах высокого уровня, поскольку стоимость на их основе велика.

MLC - Multi Level Cell – ячейка с несколькими уровнями. Обладает меньшей стоимостью, по сравнению с SLC, однако обладает меньшей выносливостью и меньшим количеством . Является хорошим решением для коммерческих и рабочих платформ - имеет хорошее соотношение цена/скорость работы.

EMLC - Enterprise Multi Level Cell – ячейка, аналогичная по структуре обычной MLC, но с увеличенным ресурсом по . По надежности eMLC находится между SLC и MLC, при этом цена не сильно выше, чем у последней. Типичное применение - рабочие станции и серверы среднего класса.

TLC - Three Level Cell – ячейка с тремя уровнями. Обладает большей плотностью, но меньшей выносливостью, медленной скоростью чтения и записи и меньшим количеством по сравнению с SLC и MLC. До настоящего момента, память типа TLC использовалась в основном в flash-накопителях (флешках), однако совершенствование технологий производства сделало возможным его использование и в стандартных SSD.

Все описанные выше типы ячеек памяти относятся к планарному типу, то есть 2D. Их недостатком является то, что для увеличения плотности в каждом отдельном чипе приходится уменьшать техпроцесс, и из-за ряда физических ограничений делать это до бесконечности не получится. Для преодоления этого были разработаны 3D ячейки памяти. Такие ячейки представляет собой цилиндр:

Таким образом появляется возможность разместить большее количество ячеек памяти на одном слое микросхемы. Такие ячейки называются 3D V-NAND и 3D TLC. Что касается емкости и надежности, то она соответствует ячейкам TLC.

Количество состояний ячейки, в зависимости от типа памяти
Физически, все три типа технологий памяти состоят из одинаковых транзисторов, единственным отличием является то, что они хранят в себе различное количество зарядов. Все три работают одинаково: при появлении напряжения ячейка переходит из состояния «выключено» в состояние «включено». SLC использует два отдельных значения напряжения для представления одного бита информации на ячейку и двух логических уровней (0 и 1). MLC использует четыре отдельных значения напряжения для представления четырех логических состояний (00, 01, 10, 11) или двух битов. TLC использует восемь отдельных значений напряжения для представления восьми логических состояний (000, 001, 010, 011, 100, 101, 110, 111) или трех битов информации.

Поскольку в SLC используется только два значения напряжения, они могут сильнее отличаться друг от друга, уменьшая потенциальную возможность некорректно интерпретировать текущее состояние ячейки и позволяя использовать стандартные условия коррекции ошибки . Вероятность ошибок чтения увеличивается при использовании TLC NAND, поэтому такой тип памяти требует большего объема ECC (Error Correction Code – код коррекции ошибок) при исчерпании ресурса NAND, поскольку в TLC приходится корректировать сразу три бита информации, в отличие от одного для SLC и двух для MLC.

2017-05-25 Дата последнего изменения: 2018-10-10

В статье рассматриваются: Особенности применения микросхем NAND FLASH , методы разметки страниц и управления плохими блоками. Рекомендации по программированию на программаторах.

CОДЕРЖАНИЕ:

1. ТЕОРИЯ

1.1. Отличие микросхем NAND FLASH от обычных микросхем

Если не вникать в тонкости технологий, то отличие микросхем NAND от других микросхем памяти заключается в следующем:

  • Микросхемы NAND имеют очень большой объем .
  • Микросхемы NAND могут иметь плохие (сбойные) блоки .
  • Размер страницы записи не является степенью 2 .
  • Запись в микросхему осуществляется только страницами , стирание - минимум блоками .

Есть еще несколько отличий, но первые две особенности являются ключевыми. Больше всего проблем доставляет наличие плохих блоков .

1.2. Организация микросхем NAND FLASH

Более подробно об организации и структуре микросхем NAND можно прочитать в специальной литературе, мы же отметим, что:

  • Микросхемы NAND организованы в страницы (pages ), страницы в блоки (bloks ), блоки в логические модули (lun ).
  • Размер страницы NAND не кратен степени 2 .
  • Страница состоит из основной и запасной (spare ) областей.

По замыслу разработчиков NAND в основной области должны находятся сами данные , а в запасной (резервной) области - маркеры плохих блоков , контрольные суммы основной области, прочая служебная информация .

Если говорят о размере страницы микросхемы NAND 512 байт или байт, то речь идет о размере основной области страницы, без учета запасной .

1.3. Способы использования запасной области страницы

Еще раз напомним, что по замыслу разработчиков NAND микросхем в запасной области должны находится: маркеры плохих блоков , контрольные суммы основной области данных, прочая служебная информация.

Большинство разработчиков описывает только место расположения маркеров плохих блоков в поставляемых микросхемах. По остальным аспектам использования запасной области даются общие рекомендации и алгоритм вычисления ЕСС, обычно по Хэмингу. Samsung идут несколько дальше, разработав рекомендации с названием "Запасная область флэш-памяти NAND. Стандарт назначения " ("NAND Flash Spare Area. Assignment Standard", 27. April. 2005, Memory Division, Samsung Electronics Co., Ltd).

Итак, этот стандарт предполагает следующее использование запасной области:

Для микросхем с размером страницы 2048+64 бай т основная и запасная область страницы разбивается на 4 фрагмента (сектора) каждая:

Область Размер (байт) Фрагмент
Основная 512 Сектор 1
512 Сектор 2
512 Сектор 3
512 Сектор 4
Запасная 16 Сектор 1
16 Сектор 2
16 Сектор 3
16 Сектор 4

Каждому фрагменту их основной области ставится в соответствие фрагмент запасной области .

Использование запасной области (для каждого из четырех фрагментов)
у микросхем с размером страницы 2048+64 байт:
Смещение
(байт)
Размер
(байт)
Назначение Описание
Маркер плохого блока
Зарезервировано
Логический номер сектора
Зарезервировано для номера сектора
Зарезервировано
ECC код для основной области страницы
ECC код для логического номера сектора
Зарезервировано

Но это не единственный "стандарт" для распределения памяти страниц, только нам известны их несколько десятков, например:

  • "NAND FLASH management under WinCE 5.0 ", NXP;
  • "Bad Block Management for NAND Flash using NX2LP ", December 15, 2006, Cypress Semiconductor;
  • "OLPC NAND Bad Block Management ", OLPC.

1.4. Образ NAND и двоичный образ

Вы можете столкнуться с двумя вариантами образа для записи :

  1. Двоичный файл не разбитый на страницы и без запасной области .
    Такой вариант возможен если вы - разработчик устройства с использованием NAND или получили такой файл от разработчика. Такой образ подходит для записи в микросхемы со страницами любого объема и любым распределением запасной области, только нужно знать каким методом будет формироваться запасная область.
  2. Образ, считанный из другой микросхемы (образца), содержащий запасную область с разметкой плохих блоков, служебной информацией и контрольными кодами.
    Такой образ можно записать только в микросхему с точно такими же размерами страниц и блоков.

Те специалисты, которые занимаются ремонтом различной аппаратуры, чаще сталкиваются со вторым случаем. В таком случае часто бывает затруднительно определить использованный способ распределения запасной области и метод управления плохими блоками.

1.5. Заводская маркировка плохих блоков

Единственное что более или менее стандартизовано, так это заводская маркировка плохих блоков .

  • Плохие блоки маркируются на 0-й или 1-й странице для микросхем с размером страницы менее 4К.
  • Для страниц 4К и более , маркировка может находиться на последней странице блока.
  • Сам маркер плохих блоков располагается в запасной области страницы в 5-м байте для маленьких страниц (512 байт) и в 0-м байте для больших (2K).
  • Маркер плохого блока может иметь значение 0x00 или 0xF0 для маленьких страниц и 0x00 для больши х.
  • Хорошие блоки всегда маркируются 0xFF .
  • В любом случае значение отличное от 0xFF программатор воспринимает как маркер плохого блока .
  • Как правило, в современных NAND плохой блок полностью заполнен значением 0x00 .

Есть одна проблема: плохой блок можно стереть . Таким способом можно потерять информацию о плохих блоках микросхемы.

Однако, если микросхема уже работала в устройстве, далеко не всегда используется такая методика маркировки плохих блоков. Иногда даже информация о плохих блоках не хранится в памяти NAND. Но, чаще всего, если даже разработчик программного обеспечения устройства использует иную схему управления плохими блоками, заводскую разметку предпочитает не стирать.

1.6. Управление плохими блоками

Разработчики NAND микросхем предлагают использовать следующие схемы управления плохими блоками:

  • Пропуск плохих блоков
  • Использование запасной области

Также к методам управления плохими блоками иногда относят использование коррекции ошибок (ECC). Необходимо отметить, что использование коррекции одиночных ошибок не избавляет от множественных ошибок и все равно вынуждает использовать одну из приведенных выше схем. Кроме этого, большинство NAND микросхем имеют гарантировано бессбойную область, в которой не появляются плохие блоки. Бессбойная область, как правило, располагается в начале микросхемы.

Указанные методы управления плохими блоками хорошо описаны в технической документации производителей NAND и широко обсуждены в литературе по использованию NAND . Однако коротко напомним их суть:

Пропуск плохих блоков:
Если текущий блок оказался сбойным он пропускается и информация пишется в следующий свободный блок. Эта схема универсальна, проста в реализации, однако несколько проблематична для случаев, когда плохие блоки появляются в процессе эксплуатации. Для полноценной работы этой схемы логический номер блока должен хранится внутри блока (стандарт назначения запасной области от Самсунг, собственно это и предполагает). При работе по этой схеме контроллер должен где-то хранить таблицу соответствия логических номеров блоков их физическим номерам иначе доступ к памяти будет сильно замедлен.

Поэтому логическим развитием является схема использования запасной области :
По этому методу весь объем памяти разбивается на две части: основная и резервная. При появлении сбойного блока в основной памяти он заменяется блоком из запасной памяти, а в таблице переназначения блоков делается соответствующая запись. Таблица переназначения хранится или в гарантировано бессбойном блоке или в нескольких экземплярах. Формат таблицы разный, хранится она в разных местах. Опять таки Самсунг описывает стандарт на формат и расположение таблицы, но ему мало кто следует.

2. ПРАКТИКА

2.1. Сканирование плохих блоков микросхемы NAND

Программатор ChipStar позволяет быстро сканировать микросхему NAND на наличие плохих блоков в соответствии с заводской маркировкой плохих блоков.

Выберите пункт меню "Микросхема|Искать плохие блоки ", микросхема будет проверена на наличие плохих блоков. Результат показан в виде таблицы.

Это действие необходимо выполнить только в том случае, если вы хотите просто просмотреть список плохих блоков. Во всех остальных случаях поиск плохих блоков выполняется автоматически, когда это необходимо.

2.2. Плохие блоки в образе NAND

При считывании образа микросхемы NAND программатор дополнительно сохраняет информацию о размере страницы и блока микросхемы. Информация сохраняется в отдельном файле. Так если вы считали и сохранили образ микросхемы в файле <имя_файла>.nbin программа создаст еще один файл: <имя_файла>.cfs . При открытии файла <имя_файла>.nbin файл <имя_файла>.cfs так же будет считан. В файле <имя_файла>.cfs записывается информация о размере страницы и блока микросхемы. После считывания микросхемы или открытия файла типа .nbin , производится фоновое сканирование образа на наличие плохих блоков исходя из информации о размере страницы и блока.

Параметры NAND и информацию о плохих блоках можно посмотреть в закладке "NAND " редактора программатора:

Двоичный образ NAND можно просматривать в закладке "Основная память ":

В режиме редактора NAND запасная область страницы выделяется более тусклым цветом , так же становятся доступны кнопки перемещения по страницам, блокам и быстрого перехода в начало запасной области текущей страницы. В строке статуса редактора кроме адреса курсора дополнительно отображается номер страницы и номер блока в которых находится курсор. Все это позволяет более удобно просмотреть содержимое микросхемы.

2.3.Стирание NAND

По умолчанию программатор не стирает плохие блоки, но если отключить опцию "Проверка и пропуск плохих блоков " плохие блоки могут быть стерты и разметка плохих блоков может быть потеряна. Отключать эту опцию нужно только в случае необходимости.

Пропускаются только плохие блоки помеченные в соответствии с заводской маркировкой. Если в устройстве используется иная маркировка плохих блоков, то они будут стерты, поскольку программное обеспечение программатора их не увидит. Для работы с нестандартными разметками плохих блоков программатор может использовать внешние плагины.

2.4. Тестирование микросхемы на отсутствие записи

По умолчанию программатор игнорирует все плохие блоки при проверке, но если отключить опцию "Сканирование и пропуск плохих блоков " плохие блоки будут проверены что, естественно, приведет к ошибкам тестирования.

2.5. Запись готового образа в микросхему

Запись образа NAND в микросхему несколько отличается от обычных FLASH микросхем. Прежде всего должны совпадать размеры страниц образа и целевой микросхемы. Если используется управление плохими блоками должны совпадать размеры блоков образа и микросхемы.

Программное обеспечение всех программаторов ChipStar поддерживает три метода управления плохими блоками встроенными средствами и неограниченное количество с помощью плагинов. Кроме того, можно задать количество записываемых блоков в начале микросхемы, что фактически является четвертым способом управления плохими блоками.

Способ 1: игнорирование плохих блоков

Простое копирование с игнорированием плохих блоков (плохие блоки пишутся так же, как нормальные).

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 1
плохой
Блок
чистый
Блок 1
ложный
Блок 2
хороший
Блок
чистый
Блок 2
хороший
Блок 3
хороший
Блок
плохой
Блок 3
сбойный
Блок 4
хороший
Блок
чистый
Блок 4
хороший
Граница записи
Блок 5
хороший
Блок
чистый
Блок
чистый

Наиболее хорошо подходит для копирования микросхем NAND , не вникая в ее внутреннюю структуру, при условии, что записываемая микросхема не содержит плохих блоков . Если в исходном образе присутствовали плохие блоки , в итоге образуются ложные плохие блоки . Появление ложных плохих блоков не скажется на функционировании устройства. Однако, если микросхема уже содержит плохие блоки, при попытке записи в такую микросхему появятся сбойные блоки с непредсказуемыми последствиями. Совет: можно попытаться стереть микросхему полностью, включая плохие блоки, затем выполнить копирование. Если запись в плохой блок завершится успешно (такое часто бывает), ваше устройство будет функционировать правильно, в дальнейшем программное обеспечение устройства выявит плохой блок и заменит его хорошим в соответствии со своим алгоритмом работы.

Способ 2: обход плохих блоков

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 1
плохой
Блок
чистый
Блок
чистый
Блок 2
хороший
Блок
чистый
Блок 2
хороший
Блок 3
хороший
Блок
плохой
Блок
плохой
Блок 4
хороший
Блок
чистый
Блок 4
хороший
Граница записи
Блок 5
хороший
Блок
чистый
Блок
чистый

При обходе плохих блоков не записываются плохие блоки из исходного образа и не пишется информация в плохие блоки микросхемы . Это не самая лучшая политика копирования, но она безопасна в отношении плохих блоков микросхемы: не теряется информация о плохих блоках микросхемы и не появляются ложные плохие блоки . В ряде случаев такая политика копирования может помочь восстановить работоспособность неизвестного устройства.

Способ 3: пропуск плохих блоков

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 1
плохой

Блок
чистый
Блок 2
хороший
Блок 2
хороший
Блок
чистый
Блок 3
хороший
Блок 3
хороший
Блок
плохой
Блок
плохой
Блок 4
хороший
Блок
чистый
Блок 4
хороший
Граница записи
Блок 5
хороший
Блок
чистый
Блок
чистый

Запись с пропуском плохих блоков предполагает что в устройстве используется именно такой алгоритм управления плохими блоками, а не какой-либо другой. При этих условиях гарантировано правильное копирование информации.

Способ 4: запись только гарантированно бессбойной области

Исходный образ Микросхема
(исходное состояние)
Микросхема
(результат)
Блок 0
хороший
Блок
чистый
Блок 0
хороший
Блок 2
хороший
Блок
чистый
Блок 1
хороший
Граница записи
Блок
плохой
Блок
чистый
Блок
чистый
Блок 3
хороший
Блок
плохой
Блок
плохой
Блок 4
хороший
Блок
чистый
Блок
чистый
Блок 5
хороший

Блок
чистый

Блок
чистый

В большинстве современных NAND микросхем первые блоки (как минимум один) гарантированно не имеют сбоев. Во многих устройствах в начале микросхемы располагается код загрузчика и операционной системы устройства. Часто бывает достаточно копирования только этих областей.

В диалоге настроек режимов записи укажите записываемый размер в блоках.

Другие способы управления плохими блоками

Программное обеспечение программаторов ChipStar поддерживает любые алгоритмы управления плохими блоками NAND при помощи внешних плагинов. При наличии установленных плагинов описания дополнительных методов появляются в списке "Управление плохими блоками NAND ". Настроить параметры выбранного метода можно нажав кнопку "Внешний плагин ".

Использование кодов, исправляющих ошибки (ECC)

Использование кодов, исправляющих ошибки позволяет восстанавливать одиночные ошибки на странице NAND.

Могут быть использованы разные алгоритмы, восстанавливающие одиночные ошибке в секторе. В зависимости от алгоритма ECC , может быть восстановлено разное количество ошибок на сектор (512+16 байт). Под термином "одиночные " понимается ошибка только в одном бите данных. Для NAND с размером страницы 512+16 байт понятие "сектор " и "страница " совпадают. Для NAND с большим размером страниц программатор ChipStar использует схему разметки страницы на сектора, как описано . В установках записи или верификации можно указать, сколько ошибок на сектор может исправлять используемый в вашем устройстве алгоритм. Соответственно, микросхемы с допустимым количеством ошибок не будут забракованы, информация о количестве исправимых ошибок выводится в окне статистики:

Информацию о количестве допустимых ошибок на сектор для каждой конкретной микросхемы можно уточнить в документации на микросхему. Все вновь добавляемые микросхемы NAND вносятся в базу данных программатора с учетом количества допустимых ошибок.

При самостоятельном добавлении микросхем:

  • если поддерживается ONFI , то допустимое количество ошибок на сектор считывается из таблицы параметров микросхемы и устанавливается в нужное значение.
  • если микросхема не поддерживает ONFI , пользователь должен установить значение самостоятельно , используя документацию на микросхему.

Для новых микросхем NAND производства Samsung значение допустимого количества ошибок на сектор закодировано в составе идентификатора микросхемы. Поэтому, для таких микросхем допустимое количество ошибок на сектор также будет установлено правильно.

При считывании содержимого микросхемы с целью его дальнейшего сохранения или копирования, одиночные ошибки не могут быть достоверно выявлены . Полученный образ может быть затем отдельно подвергнут анализу на ошибки путем вычисления проверочных кодов ECC внешним приложением, при условии, что точно известен используемый алгоритм и разметка страницы .

Программное обеспечение программатора ChipStar предлагает косвенный статистический способ выявления и устранения одиночных ошибок. Способ позволяет выявить только неустойчивые ошибки с не гарантированной достоверностью. Для выполнения чтения с выявлением ошибок нужно выбрать режим "Выборочное чтение " и на закладке "NAND" отметить флажок "Включить режим исправления ошибок "

Можно настроить количество повторов чтения для сравнения и общее количество повторов чтения при ошибке. Следует иметь в виду, что использование данного способа существо замедляет процесс чтения.

Статистический алгоритм выявления ошибок работает следующим образом:

  1. Страница NAND считывается несколько раз подряд (не менее трех).
  2. Считанные данные побайтно сравниваются.
  3. Если ошибок сравнения не выявлено, предполагается, что страница не содержит ошибок.
  4. Если обнаружены ошибки при сравнении, страница считывается еще несколько раз.
  5. По каждой ошибке подсчитывается количество считанных единиц и нулей .
  6. Правильным значением ("0" или "1") считается, то, которых оказалось больше.

Алгоритм хорошо работает в том случае, если вероятность ошибки в конкретном бите микросхемы меньше 0.5. При чтении микросхемы ведется подсчет "исправленных" ошибок и вероятности правильного чтения.

2.6. Преобразование двоичного образа в образ NAND

Все описанное выше больше касалось копирования NAND и записи по образцу микросхемы, однако часто бывает нужно записать исходный бинарный образ программы в чистую микросхему . Перед записью нужно преобразовать двоичный образ в образ NAND, добавив к каждой странице запасную область и правильно заполнив ее. Для этого откройте ваш двоичный файл, выберите пункт меню " ". Появится диалог:

Задайте режим преобразования в формат NAND: "Образ двоичный... ", укажите размер страницы и блока NAND или выберите необходимую микросхему. Выберите формат запасной области. Программатор поддерживает простое заполнение области значениями FF встроенными средствами и другие способы при помощи плагинов. Вместе с программатором поставляется плагин, реализующий назначения запасной области, рекомендованный Самсунг.

Если вам необходимо реализовать какой-либо иной вариант распределения - сообщите нам, и мы подготовим соответствующий плагин, либо вы можете реализовать необходимый плагин самостоятельно.

2.7. Совместимость с образами NAND, считанными другими программаторами

Если у вас есть образ NAND , считанный другим программатором или полученный из другого источника, его нужно преобразовать в формат, пригодный для записи программатором ChipStar .

Для этого выполните следующие действия:

  • Откройте ваш файл, выберите пункт меню "Правка|Переключить режим NAND редактора ". Появится диалог, как показано выше.
  • Задайте режим преобразования в формат NAND : "Образ уже NAND... ", укажите размер страницы и блока NAND или выберите необходимую микросхему. Нажмите "Продолжить ".
  • В редакторе появится закладка "NAND " и начнется сканирование образа на плохие блоки.
  • Полученный файл можно сохранить в формате NAND , файл получит расширение .nbin по умолчанию.

Привет друзья! На днях один наш постоянный читатель задал хороший вопрос. Он спросил, к ак узнать, сколько ещё времени проработает его или к ак узнать рабочий ресурс его SSD. Также на прошлой неделе другими пользователями были заданы ещё вопросы на эту тему, например:

Какой тип флэш-памяти для SSD лучше: NAND, 3D NAND, 3D V-NAND и NOR ?

Как узнать, из каких чипов памяти состоит купленный SSD ( SLC, MLC или TLC ) и какая память лучше?

Что такое - количество циклов перезаписи или TBW?

На все эти интересные вопросы мы ответим в сегодняшней статье.

Как узнать, сколько времени проработает ваш твердотельный накопитель SSD

Не побоюсь повториться и скажу, что в компьютере важно всё, в том числе и твердотельный накопитель. Перед его покупкой обязательно узнайте производительность и срок службы своего будущего SSD. Начинающему пользователю здесь легко запутаться, так как вместо срока службы SSD, в интернете все твердят о каком-то количестве циклов перезаписи . Объясню. Ц икл перезаписи, это перезапись всего объёма (всех ячеек) твердотельного диска, но контроллер равномерно перезаписывает ячейки. Для нашего удобства производители указывают (рассчитывают по формуле) не циклы перезаписи, а суммарный объем данных в терабайтах, который можно записать на накопитель . Называется такой объём - TBW (Total Bytes Written - Всего байт написано ). Ч ем больше объём диска, тем больше у него TBW. Зная TBW, вы можете точно рассчитать срок службы своего твердотельника. Лимит TBW может отличаться на разных SSD в разы!

  • Ресурс перезаписи SSD или TBW можно узнать только на официальном сайте производителя устройства, но далеко не все производители указывают такие данные, поэтому твердотельный накопитель лучше приобрести у тех производителей, которые его указывают.

Производительность и срок службы SSD зависят от двух слагаемых - типа чипов флеш-памяти NAND: (SLC, MLC, TLC) и контроллера с прошивкой. Именно от них напрямую зависит и цена накопителя.

В твердотельных накопителях существует два основных типа Flash-памяти: NOR и NAND . Технология NAND является более быстрой и она дешевле. Память NAND на сегодняшний день усовершенствовали. Появилась память 3D NAND и 3D V- NAND. Если брать рынок предлагаемых на данный момент на рынке SSD, то 5 процентов принадлежит 3D V-NAND, 15 процентов 3D NAND, остальные 80 процентов NAND. Д анные эти с погрешностью, но небольшой.

В свою очередь Flash-память: NAND может иметь три типа чипов памяти: SLC, MLC и TLC. На сегодняшний день в основном продаются SSD на основе флеш-памяти MLC и TLC. По TLC и MLC предлагаемых SSD на рынке 50 на 50. У памяти TLC лимит TBW меньше.

  1. SLC - Single Level Cell - является самой старой и быстрой из трех технологий. Имеет высокую производительность, низкое потребление электроэнергии, наибольшую скорость записи и большой лимит TBW (суммарный объем данных, который можно записать на накопитель). Стоимость твердотельника на основе чипов памяти SLC очень дорогая и с ней очень трудно найти современный SSD.
  2. MLC - Multi Level Cell – обладает меньшей стоимостью, меньшей скоростью работы и меньшим TBW .
  3. TLC - Three Level Cell – обладает ещё меньшей стоимостью, меньшей скоростью работы и меньшим TBW, по сравнению с чипами MLC . Память TLC всегда широко использовалась в обычных флешках, но с приходом новых технологий удалось использовать её и в твердотельных накопителях.

В какой программе можно увидеть тип памяти твердотельного накопителя: TLC и MLC

Показать тип памяти SSD сможет программа AIDA64, официальный сайт разработчика https://www.aida64.com/

В главном окне программы выбираем «Хранение данных»,

затем выбираем модель SSD, например у меня в системе установлено три SSD и я выберу первый - Samsung 850 Evo 250GB. Как видим, тип флеш-памяти накопителя TLC.

У второго накопителя Kingston SHSS37A/240G тип флеш-памяти MLC.

Как узнать ресурс твердотельного накопителя

Для примера узнаем ресурс Kingston SHSS37A/240G.

Переходим на официальный сайт изготовителя устройства https://www.hyperxgaming.com/ru

Выбираем «Твердотельные накопители» --> «Savage».

Ёмкость 240 Гб

и видим суммарный объем данных (TBW) , который можно записать на накопитель Kingston SHSS37A объёмом 240 Гб - 306 Тб.

Давайте сравним его с накопителем Samsung 850 Evo 250GB.

Переходим на официальный сайт изготовителя http://www.samsung.com/ru/ssd/all-ssd/

Отмечаем пункт - Накопитель SSD 850 Evo Sata III.

Ёмкость 240 Гб и жмём левой кнопкой мыши на изображение SSD.

«Показать все характеристики»

Видим в самом низу показатель. Ресурс записи: 75 Тб.

Получается, что у SSD Kingston SHSS37A/240G ресурс количества циклов перезаписи TBW больше в четыре раза.

Если у вас SSD-накопитель OCZ, то идём на сайт https://ocz.com/us/ssd/

Как узнать суммарный объем данных, который уже записан на твердотельный накопитель

Для этого воспользуемся программой CrystalDiskInfo.

В главном окне программы выберем мой SSD Samsung 850 Evo 250GB. В пункте «Всего хост-записей» видим объем записанных на накопитель данных 41,088 ТБ. Если сравнить эту цифру с указанным на официальном сайте Ресурсе записи: 75 Тб, то можно сделать вывод, что на SSD можно ещё записать 33 ТБ данных.

В случае с SSD Kingston SHSS37A/240G, программа CrystalDiskInfo не может показать суммарный объем записанных на накопитель данных.

В этом случае воспользуемся программой SSD - Z.

Официальный сайт разработчика http://aezay.dk/aezay/ssdz/

Скачиваем и запускаем программу.

В главном окне, в пункте «Bytes Written» видим объем записанных на накопитель данных 43,902 ТБ.

Если сравнить эту цифру с указанным на официальном сайте Ресурсе записи: 306 Тб, то можно сделать вывод, что на SSD можно ещё записать 262 ТБ данных.

CrystalDiskInfo начиная с версии 7_0_5 может работать с новыми дисками, использующими новейший новый протокол NVM Express (Toshiba OCZ RD400, Samsung 950 PRO, Samsung SM951). Предыдущая версия программы такие диски тупо не видела.