Напряжение на концах участка цепи прямо пропорционально. Закон Ома для участка цепи

19.07.2019

Измерение сопротивления проводника: R =U/I→ 1 Ом = 1 В/1 А.

Электрическое сопротивление (R) - свойство электри­ческой цепи (проводника) противодействовать протекающему по ней электрическому току, измеряемое при постоянном напряжении на его концах отношением этого напряжения к силе тока.

Природа электрического сопротивления на основе электронных представ­лений о строении вещества: "потеря" упорядоченного движения свобод­ными заряженными частицами в проводнике при их взаимодействии с ионами кристаллической решетки.

Зависимость электрического сопротивления проводника от его длины (реостаты), поперечного сечения и материала. Удельное сопротивление материала проводника: .

Вопрос : Почему сопротивление проводника зависит от его длины, площа­ди поперечного сечения и материала?

Для провода = , где - удельная электрическая проводимость.

- (закон Ома в дифференциальной форме) - устанавливает связь между величинами для каждой точки проводника.

Демонстрация зависимости сопротивления проводника от его температуры (малый накал). Температурный коэффициент сопротивления.

Границы применимости закона Ома.

IV. Задачи:

  1. Определите электрический заряд, прошедший через попереч­ное сечение проводника сопротивлением 3 Ом при равномерном нарастании напряжения на концах проводника от 2 В до 4 В в течение 20 с.

2. Определить площадь поперечного сечения и длину проводник из алюминия, если его сопротивление 0,1 Ом, а масса 54 г.

Вопросы:

1. Объясните, позему сопротивление проволоки зависит от его материала, длины и площади поперечного сечения.

2. Как отрезать кусок провода сопротивлением 5 Ом?

3. Длину медной проволоки вытягиванием увеличили вдвое. Как измени­лось ее сопротивление?

4. Почему сопротивление кожи человека зависит от ее состояния, площади контакта, приложенного напряжения, длительности протекания тока?

5. Изменится ли сопротивление вольфрамового волоска электрической лампы, рассчитанной на 120 В, если присоединить ее к источнику тока с напряжением 4 В?

6. Высота плотины – электрическое напряжение, расход воды из отверстия у основании плотины – сила тока. Удачна ли эта аналогия?


V . § 54 Упр. 10 № 3

1. Предложите конструкцию и рассчитайте параметры реостата (материал провода, длина, площадь поперечного сечения), сопротивление которого можно плавно изменять от 0 до 100 Ом при максимальной силе электри­ческого тока до 2 А.

2. Как изменяется сопротивление проволоки при ее растяжении? Попробуйте установить эту зависимость в пределах упругих деформаций. Предложите конструкцию и рассчитайте параметры прибора (тензодатчика), пред­назначенного для измерения механического напряжения.

Дополнительная информация: Тензорезистивный эффект – изменение сопротивления материала при деформации (недавно созданные материалы из алюминия и кремния изменяют свое сопротивление при ударе почти в 900 раз).

3. Предложите конструкцию и опишите электрическую схему прибора для установления зависимости удельного сопротивления проводника от температуры (можно с реостатом).

4. Измерьте удельное сопротивление воды при комнатной температуре и при температуре кипения.

"Непосредственный опыт всегда очевиден, и из него в кратчайшее время можно извлечь пользу".

ЛАБОРАТОРНАЯ РАБОТА № 3 "ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МАТЕРИАЛА ПРОВОДНИКА"

ЦЕЛЬ РАБОТЫ: Научить учеников с заданной точностью измерять удельное сопротивление материала проводника.

ТИП УРОКА: лабораторная работа.

ОБОРУДОВАНИЕ: Источник тока, амперметр и вольтметр лабораторные, ключ, реостат, линейка ученическая, проводник на колодке, соединительные провода, штангенциркуль (микрометр).

ПЛАН УРОКА: 1. Вступительная часть 1-2 мин

2. Вводный инструктаж 5 мин

3. Выполнение работы 30 мин

4. Задание на дом 2-3 мин

II . Схема лабораторной установки на доске. Как измерить сопротивление проводника; площадь поперечного сечения проволоки; длину проводника?

Относительная и абсолютная погрешность при измерении удельного сопротивления:

III . Выполнение работы.

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

Если I - сила тока, U - напряжение, a R - сопротивление, то

I =

Этот закон носит название закона Ома , по имени ученого, его открывшего.

Часто бывает нужно регулировать силу тока в цепи. Для этого используются специальные приборы, называемые реостатами. В реостате проволока, сделанная из материала с большим удельным сопротивлением, намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться контакт. Контакт прижимается к обмотке; при его перемещении меняется длина обмотки, по которой проходит ток, и соответственно сопротивление реостата. Реостат и его условное обозначение на схемах показаны на рисунке 17.

Закон ома для полной цепи

Пусть за время t через поперечное сечение проводника пройдет электрический заряд q. Тогда работу сторонних сил при перемещении заряда можно записать так:

Аст = q.

Согласно определению силы тока

q = It.

Поэтому

Аст = It .

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых R и r , выделяется некоторое количество теплоты Q . По закону Джоуля-Ленца оно равно:

Q = I Rt + I r.

Согласно закону сохранения энергии

A = Q.

Следовательно,

= IR + I r.

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так:

I = /( R + r ).

Эту зависимость опытным путем получил Г. Ом, и называется она законом Ома для полной цепи и читается так:

Сила тока в полной цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению цепи.

При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

f 214. Ядерные силы

В состав ядра входят протоны, испытывающие взаимное кулоновское отталкивание, и нейтроны. Устойчивость ядер, не разлетающихся под действием кулоновских сил отталкивания, свидетельствует о том, что в ядрах действуют специфические силы притяжения, называемые ядерными силами. Ядерные силы не могут быть обычными силами кулоновского взаимодействия. Кулоновское взаимодействие между протоном и протоном сводится к отталкиванию, а между нейтроном и протоном, нейтроном и нейтроном отсутствует. Электрические силы зависят от заряда и малы по сравнению с ядерными. Гравитационные силы также не могут удерживать частицы в ядре, так как они слишком малы. Например, гравитационное взаимодействие двух протонов в 1036 раз меньше их кулоновского взаимодействия. В роли ядерных сил не могут выступать и силы магнитного взаимодействия. Расчеты " показывают, что энергия" магнитного взаимодействия, например протона и нейтрона в ядре атома дейтерия |Н, составляет около 0,1 МэВ, что гораздо меньше энергии связи нуклонов в ядре (2,2 МэВ).

Все это говорит о том, что ядерные силы не могут быть сведены ни к электрическим, ни к магнитным, ни к гравитационным, а представляют собой специфический вид сил.

Взаимодействие между нуклонами в ядре является примером сильных взаимодействий - взаимодействий через ядерные силы.

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

U эл =I*R элемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

X L и X C – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Нравится(0 ) Не нравится(0 )

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков.

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока , нагрузки и проводников . Источник тока обеспечивает разность потенциалов , которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока . Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке . Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.