Настройки "глобальных параметров" драйвера для видеокарт NVidia на максимальную производительность, без потери в качестве. Программы для рендеринга

21.04.2019

Anisotropic filtering (Анизотропная фильтрация) - ставим значение Application-controlled (Управление от приложения). Проверьте значение в самом приложении. Желательно не более 8х.

Анизотропная фильтрация нужна для повышение четкости изображения 3д объектов относительно камеры (персонажа, машины и т.д). Выставляем значение Application-controlled (Управление от приложения) - это означает, что приложение будет автоматически выбирать нужный режим анизотропной фильтрации или же фильтрация управляется в самом приложении (программе, игре), чем выше значение фильтрации, тем четче будет изображение.

Для каждого приложения данный параметр можно настроить отдельно (вкладка программные настройки), получив более высокое качество, если приложение не поддерживает или некорректно обрабатывает анизотропную фильтрацию.

Antialising - Gamma correction (Сглаживание - гамма- коррекция) - ставим значение On (Вкл)

"Сглаживание гамма коррекции" сглаживает гамму при переходе от светлого тона к темному или же наоборот. Включение дает возможность сглаживать моменты, например, при "свечении" лица персонажа в лучах света (прямой пример игра с отличной игрой светлый и темных тонов). На производительность не влияет.

Antialising Mode (Сглаживание - режим) - ставим значение Application-controlled (Управление от приложения)

Очень важный параметр, включения режима сглаживания дает возможность избавления от эффекта лесенок на трехмерном объекте. Выставляем значение Application-controlled (Управление от приложения). - это означает что приложение будет автоматически выбирать нужный режим сглаживания или же сглаживание будет управляется в самом приложении (программе, игре), чем выше значение сглаживание, тем меньше эффекта лесенок будет изображение, тем ниже будет производительность приложения, тем меньше будет кадров в секунду.
Для каждого приложения данный параметр можно настроить отдельно (вкладка программные настройки), при этом вам станет доступен пункт Antialising Setting (Сглаживание - параметры), где вы сможете вручную задать уровень сглаживания от 2х до 16х. Даже если приложение не поддерживает сглаживание, это будет делать за него сам драйвер видеокарты.

Anti-aliasing Setting (Сглаживание - параметры) - автоматическое значение Application-controlled (Управление от приложения). Проверьте значение в самом приложении. Желательно не более 4х.

При включении предыдущего пункта Anti-aliasing Mode (Сглаживание - параметры) - Application-controlled (Управление от приложения) текущее значение будет неактивно, активно лишь в том случае если значение Anti-aliasing Mode (Сглаживание - параметры) - Enhance the application setting) (Замещение настроек приложения или увеличение настроек приложения).
Для каждого приложения данный параметр можно настроить отдельно (вкладка программные настройки), получив более высокое качество, если приложение не поддерживает или некорректно обрабатывает Anti-aliasing (сглаживание). Читайте пункт выше.

Anti-aliasing - Transparency (Сглаживание - прозрачность) ставим значение Off (Выкл)

Сглаживание прозрачных поверхностей, означает что объекты, не имеющую структуру будут сглаживаться. Например будет сглаживать "прозрачные" места в текстура лестницы, ведь лестницы, например, рисуют единой текстурой, использую альфа-канал для указания прозрачных и не прозрачных мест. На производительность влияет не очень сильно, но если вам производительность все же важнее, можете поставить "Выкл".
В целом же, особой разницы в качестве картинки между ситуациями, когда эта опция включена или выключена, замечено не было.

Conformant texture clamp (Соответствующая привязка текстуры) - параметр Use hardware (Используются аппаратные средства)

Как видно из названия выбор метода текстурирования, конечно же оптимальным в качестве и производительности выбираем на уровни железа - Use hardware (Используются аппаратные средства) - что естественно производительней чем софтвенный (программный) режим.

Error reporting (Сообщения об ошибках) - значение Off (Выкл)

Бессмысленный параметры, включение которого дает возможность при случае ошибки драйвера отправлять все данные о ошибке и конфигурацию ПК разработчикам NVidia.
(Один из бессмысленных параметров, выключение которого позволит сделать безлимитный доступ драйверу к коду приложения при обработке графики, естественно все ограничения снимаем значением Off (Выкл))

mipmaps (Включение масштабируемых текстур) - значение None (Нет)

Устаревшие значение работы 3д приложений. Отключаем так как приложения уже не используют данный метод, значение - None (Нет).

Maximum pre-render frames (Максимальное количество заранее подготовленных кадров) - значение 1 или 2 (выбирайте в зависимости от мощности вашего ЦП)

Максимально количество кадров после первого, которые может подготовить ЦП, для дальнейшей обработки ГП видеокарты. При одном кадре, от 1 до 8 кадров будут подготавливаться на перед, загружаться в память, нагружая ваш ЦП во время подготовки этих кадров. Ставим значение 1 или 2, это позволит капитально увеличить скорость обработки графики в реальном времени. Кол-во кадров выберете сами, но все же рекомендую не более 3. Ориентируйтесь исходя из мощность вашего ЦП (центральный процессор, не путайте с ГП - графическим процессором).

Multi-display/mixed - GPU acceleration (Ускорение нескольких дисплеев/смешанных ГП)- значение Single display performance mode (Режим однодисплейной производительности)

Проще говоря, если выставлен режим Multi display performance mode (Режим многодисплейной производительности) - то графический процессор (ГП) вашей видеокарты отрисовывает изображение для обоих портов видеокарты. А если выставлен режим Single display performance mode (Режим однодисплейной производительности), то сигнал будет идти только на один из портов.
Так что если у вас одна видеокарта и один монитор, то ставьте в обязательном порядке Single display performance mode (Режим однодисплейной производительности).
Заметьте, что когда вы установили новые драйвера на видеокарту, по умолчанию стоит режим Multi display performance mode (Режим многодисплейной производительности) это означает,что будь у вас два монитора, то подключив его к второму видеовыходу на него тоже бы шел рендеринг изображения. Теряется производительность где то на 5-15%. В общем режим Single display performance mode (Режим однодисплейной производительности) повышает производительность за счет рендеринга на один видеовыход).

Texture filtering - Anisotropic sample optimization (Фильтрация Текстур - анизотропная оптимизация по выборке) - значение Off (Выкл)

Фильтрация текстур - Анизотропная оптимизация, данный параметр выставляется значением Off, так как данный параметр увеличивает производительность в 3D приложениях за счет ухудшения конечной картинки при рендеринге видеокартой. Но так как мы стремимся к скорости без потери качества, то нам этот параметр не нужен. (Если в параметре Texture filtering (Фильтрация текстур - качество) выставлено - Hight quality (Высокое качество), то данный параметр будет неактивен, выключен.)

Texture filtering - Negative LOD bias (Фильтрация текстур - отрицательное отклонение УД) - значение Clamp (Привязка)

Фильтрация текстур с использованием негатива с масштабируемым уровнем детализации, выставляем значение Clamp (Привязка), что позволит оптимизировать текстурные процедуры путем привязки. Это позволит получить дополнительные 2-3 ФПС в производительности рендеринга, без потери качества. Увеличивает производительности в 3д приложениях.

Texture filtering (Фильтрация текстур - качество) - значение Quality (Качество) или Hight quality (Высокое качество). (Выбирайте в зависимости от мощности вашей видеокарты)

Фильтрация текстур, позволяет улучшить качество картинки, четкость изображения без понижения производительности в рендеринге, соответственно ставим значение Hight quality (Высокое качество). На производительность практически не влияет.

Texture filtering - Trilinear optimization (Фильтрация текстур - трилинейная оптимизация) - значение Off (Выкл)

Фильтрация текстур - трилинейная оптимизация, данный параметр выставляется значением Off, если параметр Texture filtering - Quality (Фильтрация текстур - качество) стоит на значении High quality (Высокое качество), то данный параметр будет неактивен.
О параметре Texture filtering - Trilinear optimization (Фильтрация текстур - трилинейная оптимизация) хочу отметить, что он увеличивает производительность в 3д приложениях за счет ухудшения конечной картинки при рендеринге видеокартой. Но так как мы стремимся к скорости без потери качества, то нам этот параметр не нужен, к тому же Trilinear filtering (Трилинейная фильтрация) намного старше и у неё есть свои минусы, так же как и у двулинейной (билинейной) фильтрации. Тем более Anisotropic filtering (Анизотропная фильтрация) "практически" включает в себя оба этих метода фильтрации текстур с некоторой доработкой.

Threaded optimization (Потоковая оптимизация) - значение On (Вкл). (Включайте только если у вас многоядерный процессор, если нет, поставьте "Авто")

Оптимизация драйвера видеокарты под многоядерные процессоры, лакомый кусочек для обладателей 2х - 4х ядерных процессоров. По умолчание значение стоит Auto (Авто), но судя по проведенным тестам в приложениях автоматически выставлялось Off (Выкл), но так как мы стремимся увеличить производительность, то выставляем значение On (Вкл). Увеличивает производительности в 3д приложениях.

Triple buffering (Тройная буферизация) - значение Off (Выкл)

Тройная буферизация экрана, буферизирует несколько кадров при вертикальной синхронизации, что позволяет более плавно сгладить переход кадров, тем самым снижает производительность в 3д приложениях. Ставим значение Off (Выкл), тем самым отключая ненужную буферизацию. На производительность влияет негативно.

Vertical sync (Вертикальный синхроимпульс - значение Force off (Отключить)

Вертикальная синхронизация кадров, через вертикальный синхроимпульс синхронизируется количество кадров в секунду с частотой обновления вашего монитора, тем самым убирая некий эффект "разрыва картинки" (на экране это будет выглядеть, например, при резком повороте камеры, будто верхняя часть экрана чуть уехала в сторону, по отношению к нижней), при быстрой смене кадров. При этом, за частую сильно падает FPS (кол-во кадров в секунду), оно не столь значительно падает, только если у вас монитор обновляется с частотой выше 100-120 Гц в секунду, но даже при такой частоте все равно FPS снижается на 10-15%. Ставим значение Off (Выкл), тем самым отключая ненужную вертикальную синхронизацию. На производительность влияет негативно.

Ambient occlusion - Значение "Выкл"

Ambient occlusion модель затенения, используемая в трёхмерной графике и позволяющая добавить реалистичности изображению за счёт вычисления интенсивности света, доходящего до точки поверхности.
Ambient occlusion чаще всего вычисляется путём построения лучей, исходящих из точки поверхности во всех направлениях, с последующей их проверкой на пересечение с другими объектами.
Этот процесс очень прилично нагружает видеокарту , так что смотрите сами, если видеокарта мощная, можете включить. А если нет, то лучше выключить.
В целом же, на мой взгляд, не стоит этот эффект того, что поедает =) Особой разницы вы все равно не увидите, она есть, но минимальна и заметна только, если внимательно присматриваться и знать, что искать =)

Переводим... Перевести Китайский (упрощенное письмо) Китайский (традиционное письмо) Английский Французский Немецкий Итальянский Португальский Русский Испанский Турецкий

К сожалению, мы не можем перевести эту информацию прямо сейчас - пожалуйста, повторите попытку позже.

Введение

В этом примере демонстрируется создание текстуры в OpenGL* 4.3, подчиненная область которой обновляется ядром С OpenCL™, выполняющимся на ГП Intel® Processor Graphics под управлением Microsoft Windows*. Одним из назначений такой технологии могут быть приложения компьютерного зрения в реальном времени, где необходимо запускать детектор определенных элементов изображения в OpenCL, но в реальном времени выводить готовое изображение с четко отмеченными детекторами на экран. В этом случае нужен доступ ко всем возможностям языка С ядра OpenCL, а также возможности рендеринга API OpenGL для совместимости с существующим конвейером рендеринга. Еще один пример использования такой технологии: если динамически создаваемые в OpenCL процедурные текстуры используются для рендеринга трехмерных объектов на сцене. И наконец, представьте себе постобработку изображения в OpenCL после рендеринга сцены с помощью 3D конвейера. Это может быть полезно для преобразования цветов, изменения разрешения или выполнения сжатия в определенных сценариях.

В этом примере показано обновление в OpenCL текстуры, созданной в OpenGL. Такие же рекомендации применяются для обновления объекта вертексного буфера или внеэкранного кадрового буфера, который может использоваться в автономном конвейере обработки изображений.

Расширение общего доступа к поверхностям определяется в спецификации расширений OpenCL строкой cl _ khr _ gl _ sharing . Мы также используем расширение cl _ khr _ gl _ event , которое поддерживается ГП Intel.

Мотивация

Назначение этого учебного руководства в том, чтобы ознакомить читателей с возможностью создания поверхностей, общих для OpenCL и OpenGL. Также вы сможете лучше понять работу API, соображения производительности различных путей создания текстур в API OpenGL, в частности на ГП Intel, а также разницу между таким подходом и использованием дискретных ГП.

Основной принцип

Для создания текстур OpenGL и доступа к ним как к изображениям OpenCL с наивысшей производительностью ГП Intel не следует создавать объект пиксельного буфера (РВО) OpenGL. Объекты PBO не обладают преимуществами производительности на ГП Intel. Кроме того, они создают по крайней мере одну дополнительную линейную копию данных, которые затем копируются в формат текстур, используемый в ГП для рендеринга. Во-вторых, вместо использования glFinish () для синхронизации между OpenCL и OpenGL мы можем использовать механизм неявной синхронизации, поскольку ГП Intel поддерживает расширение cl _ khr _ gl _ event .

ГП Intel® с общей физической памятью

ГП Intel® и ЦП вместе используют общую память. Их взаимоотношение показано на рисунке 1. Существует несколько архитектурных механизмов (не показанных на этом рисунке), расширяющих возможности подсистемы памяти. Например, для повышения производительности подсистемы памяти применяются иерархии кэша, сэмплеры, элементарные операции, очереди чтения и записи.

Рисунок 1. Взаимоотношения между ЦП, ГП Intel ® и основной памятью. Обратите внимание, что ЦП и ГП используют общий пул памяти (в отличие от дискретных ГП с собственной выделенной памятью, управление которой осуществляет драйвер)

Почему не следует использовать объекты пиксельного буфера (РВО) с ГП Intel

«Основное преимущество использования объекта буфера для промежуточного хранения данных текстуры состоит в том, что передача из объекта буфера в текстуру не должна обязательно происходить немедленно, если она происходит до момента, когда данные требуются шейдеру. Это позволяет осуществлять передачу параллельно с выполнением приложения. Если же данные находятся в памяти приложения, то семантика glTexSubImage 2 D () требует, чтобы перед возвратом функции была создана копия данных , благодаря чему исключается параллельная передача. Преимущество такого подхода состоит в том, что приложение может свободно изменять данные, переданные в функцию, сразу после возврата функции».

Обратите внимание, что смысл этого вызова API заключается в общем доступе между памятью приложения (т. е. памятью ЦП) и ГП, а не в общем доступе между двумя API, каждый из которых выполняет свой поток команд на одном и том же устройстве и одной и той же физической памяти, как показано на рисунке 1.

Использование объектов PBO на самом деле приводит к снижению производительности на устройствах, где используется общая физическая память. Во-первых, объект РВО - это дополнительная промежуточная область, что означает увеличение объема памяти, потребляемого приложением. Во-вторых, данные в РВО хранятся в линейном виде, а если данные требуются в сегментированном виде, как, например, в текстурах OpenGL или в изображениях OpenCL, то приходится преобразовывать данные в нужный формат. И наконец, копирование между двумя API занимает определенное время, что также отрицательно сказывается на производительности приложения.

В случае общего доступа с дискретным ГП использование объектов РВО вполне целесообразно: можно запустить передачу DMA, работающую асинхронно по отношению к ЦП. Без РВО семантика OpenGL требует синхронной записи и дожидается возвращения результата, что также снижает производительность. В нашем случае нет передачи данных из ЦП в подсистему памяти ГП.

В каких случаях можно использовать РВО при общем доступе к поверхностям?

Существуют сценарии, когда имеет смысл применять объекты РВО. Например, если не существует подходящего формата поверхностей, совместимого с OpenGL и OpenCL согласно таблице 9.4 в спецификации расширений OpenCL. В этом случае можно создать РВО и предоставить к нему общий доступ для API, связанных с общим доступом к буферу. Тем не менее старайтесь избегать таких сценариев, чтобы не допустить снижения производительности, о котором было сказано выше. Если это необходимо, см. пример Максима Шевцова, ссылка на который приводится в разделе справочных материалов.

Синхронизация между OpenCL™ и OpenGL*

Во время выполнения важно добиться наивысшей производительности OpenCL и OpenGL. В спецификации сказано следующее:

«Перед вызовом объектов clEnqueueAcquireGLObjects приложение должно убедиться в завершении всех отложенных операций GL , располагающих доступом к объектам, указанным в mem _ objects . Чтобы сделать это с сохранением переносимости, можно выполнить и дождаться завершения команды glFinish для всех контекстов GL с отложенными ссылками на эти объекты. В разных реализациях могут быть доступны более эффективные методы синхронизации. Например, на некоторых платформах может оказаться достаточно вызвать glFlush , или же синхронизация может быть неявной внутри потока, или могут быть поддерживаемые данным поставщиком расширения, позволяющие разграничивать поток команд GL и дожидаться завершения каждой части в очереди команд CL . Обратите внимание, что в данный момент единственным методом синхронизации, поддерживающим перенос между различными реализациями OpenGL , является glFinish ».

Для наибольшей переносимости, согласно спецификации, нужно вызывать glFinish () , но это блокирующий вызов! На ГП Intel будет эффективнее использовать неявную синхронизацию или объекты синхронизации между OpenCL и OpenGL с расширением cl _ khr _ gl _ events . Подробнее это будет описано ниже. Использование неявной синхронизации не является обязательным. В образце кода содержатся закомментированные фрагменты, которые можно задействовать, если нужно использовать неявную синхронизацию.

Обзор общего доступа к поверхностям для OpenCL и OpenGL

Сначала опишем этапы, необходимые для поддержки общего доступа к поверхностям при инициализации, выполнении и завершении работы. Затем более подробно опишем API и синтаксис языка. И наконец, мы расскажем, как можно развить эти идеи, чтобы охватить другие форматы текстур, выходящие за рамки данного примера. Мы используем общедоступную библиотеку freeglut для управления окнами, а также библиотеку glew . Использование этих библиотек является стандартной практикой в образцах приложений OpenGL, поэтому мы не будем описывать их подробнее.

Инициализация

  1. OpenCL:
    1. Создайте контекст, передающий соответствующие параметры устройства.
    2. Создайте очередь на устройстве и контекст, поддерживающий обмен данными между OpenGL и OpenCL.
  2. OpenGL: Создайте текстуру OpenGL, доступ к которой нужно предоставить для OpenCL.
  3. OpenCL: С помощью дескриптора OpenGL, созданного на шаге 2, создайте общую поверхность посредством расширения OpenCL.

Шаги 1 и 2 можно поменять местами. Шаг 3 должен следовать за шагами 1 и 2.

Запись на общую поверхность в OpenCL

  1. Заблокируйте поверхность для монопольного доступа OpenCL.
  2. Запишите на эту поверхность через ядро C OpenCL. При работе с данными текстур необходимо использовать функции чтения или записи изображения и соответствующим образом передавать изображение.
  3. Разблокируйте поверхность, чтобы предоставить OpenGL доступ к ней на чтение или запись.

Шаги 1, 2 и 3 должны следовать в указанном порядке.

Цикл

Эта статья посвящена общему доступу к ресурсам между ЦП и ГП. Цикл рендеринга использует простой проход через программируемый шейдер вертексов и пикселей для создания текстурной карты для двух треугольников, образующих вместе четырехугольник. Этот четырехугольник не занимает полный экран, чтобы был виден цвет фона.

Завершение работы

  1. Очистка состояния OpenCL
  2. Очистка состояния OpenGL

Подробные сведения об общем доступе к поверхностям OpenGL и OpenCL

В этом разделе приводятся подробные сведения об этапах, описанных в предыдущем разделе.

Инициализация

  1. OpenCL:
    1. Выдайте запрос, чтобы определить, поддерживаются ли расширения; завершение и выход, если не поддерживаются.

      Не все реализации OpenCL поддерживают общий доступ к поверхностям OpenCL и OpenGL, поэтому сначала нужно определить, есть ли вообще в системе нужное расширение. Мы последовательно перебираем платформы, чтобы найти строку расширения для платформы, поддерживающей общий доступ к поверхностям. Внимательное изучение спецификации показывает, что это расширение платформы, а не устройства. Затем мы создаем контекст, который нужно будет опросить, чтобы определить, какие из наших устройств в контексте поддерживают общий доступ к контексту OpenGL.

      Этот пример поддерживается только на ГП Intel, но можно без особых усилий реализовать поддержку и других ГП. Нужное нам расширение - cl _ khr _ gl _ sharing . Вот соответствующий фрагмент кода. char extension_string; memset(extension_string, "

Вопрос одного из пользователей

Доброго времени суток. Можно ли как-то повысить производительность видеокарты NVIDIA (GeForce), то бишь увеличить FPS? Видеокарта у меня уже довольно старая, а запустить парочку игр - желание не преодолимое ...

Здравствуйте!

99% вопросов по поводу производительности видеокарты задают любители игр. Именно в играх, если видеокарта устарела и не тянет, вы начнете замечать притормаживания, картинка дергается, идет рывками, и играть становится очень не комфортно.

Чтобы увеличить количество FPS (это кол-во кадров в секунду, чем выше этот параметр - тем лучше!), выдаваемое видеокартой, можно прибегнуть к разным способам: разогнать видеокарту, уменьшить качество графики в настройках игры, задать оптимальные параметры драйвера видеокарты (с прицелом на производительность ). Вот о тонкой настройки видеокарты, я и напишу пару строк в этой статье...

Примечание! Возможно вам будут интересны следующие статьи по теме:

  • ускорение видеокарты AMD -
  • ускорение видеокарты IntelHD -
  • как узнать и повысить FPS в играх - несколько способов:

Тонкая настройка драйвера видеокарты NVIDIA // для повышения производительности

Важная заметка!

Многие пользователи трактуют и понимают понятие "производительность" совсем по разному. В этой статье я буду отталкиваться от параметра FPS (именно в нем мерить производительность). Чем выше FPS - тем выше производительность!

Чтобы измерить текущее количество FPS в вашей игре - рекомендую воспользоваться программой FRAPS (о ней я рассказывал в этой статье: ).

Задайте в настройках FRAPS кнопку для показа количества FPS - и в верхнем углу экрана, после запуска игры, вы увидите значение этого параметра. Кстати, рекомендую его запомнить, чтобы сравнить с показателем, который будет после нашей настройки видеокарты...

В левом углу экрана FRAPS показывает желтыми цифрами количество кадров в секунду - то есть FPS!

Как войти в панель управления NVIDIA

Первое, что нужно сделать - это войти в панель управления и настроек NVIDIA (GeForce). Сделать это можно разными путями: например, самый простой, это щелкнуть в любом месте рабочего стола правой кнопкой, и во всплывшем контекстном меню выбрать нужную ссылку (см. скриншот ниже).

Как войти в панель управления NVIDIA // GeForce - Способ №1: с рабочего стола

Еще один способ - это зайти в панель управления Windows, затем открыть раздел "Оборудование и звук" , в этом разделе должна быть заветная ссылка (см. скрин ниже).

Способ №2 - через панель управления Windows // панель управления NVIDIA

Если такой ссылки на настройки NVIDIA у вас нет - то вероятнее всего у вас просто не установлены драйвера. Многие пользователи, например, после установки Windows вообще не обновляют драйвера, и пользуются теми, что установила сама Windows... В принципе, ничего плохого в этом нет - просто вам будут недоступны многие функции, в том числе и тонкая настройка видеокарты.

утилиты для поиска и обновления драйверов -

Быстрая настройка NVIDIA с упором на производительность

В панели управления видеокартой откройте раздел "Параметры 3D/Регулировка настроек изображения" , далее поставьте ползунок в режим "Пользовательские настройки с упором на производительность" и двиньте его до конца в левую часть (см. показательный скриншот ниже).

После чего сохраните настройки и попробуйте запустить игру снова. Как правило, даже такая простая настойка помогает поднять количество FPS.

Глобальные параметры

Гораздо более продуктивно настроить видеокарту поможет раздел "Управление параметрами 3D" , где все основные параметры можно задать в ручном режиме.

Для повышения FPS в играх, нужно задать следующее:

  1. Анизотропная фильтрация : влияет на производительность видеокарты очень сильно, поэтому ее отключаем.
  2. Сглаживание прозрачности : помогает сделать в играх более качественную картинку воды (например). Ресурсов "ест" прилично, поэтому так же отключаем. Да и вообще, все сглаживания можно отключить !
  3. Тройная буферизация : выключаем;
  4. Вертикальная синхронизация (V-Sync) : параметр, в некоторых играх, влияет очень сильно на количество выдаваемых кадров, поэтому выключаем;
  5. Включить масштабируемые текстуры : нет;
  6. Ограничение расширения : выключаем;
  7. Режим управления электропитанием : ставим режим максимальной производительности;
  8. Максимальное количество заранее подготовленных кадров : 1;
  9. Ускорение нескольких дисплеев/смешанных ГП : Режим однодисплейной производительности;
  10. Фильтрация текстур (анизотропная оптимизация по выборке): выключаем;
  11. Фильтрация текстур (отрицательное отклонение УД): привязка;
  12. Фильтрация текстур (качество): ставим ползунок на производительность;
  13. Фильтрация текстур (трилинейная оптимизация): выключаем;
  14. Фильтрация текстур (анизотропная оптимизация фильтрацией): выключаем;
  15. Вертикальный синхроимпульс : ставим адаптивный;
  16. Потоковая оптимизация : выключаем;
  17. PhysX : ЦП.

Замечание! Некоторые режимы и параметры, перечисленные выше, могут отсутствовать в ваших настройках (либо называться несколько иначе ("трудности" перевода )). Все зависит от модели вашей видеокарты и версии драйвера (пример, как выглядит эта вкладка, показан на скриншоте ниже).

Панель управления NVIDIA: глобальные настройки

После введенных настроек не забудьте их сохранить, в некоторых случаях желательно перезагрузить компьютер, и только потом переходить к тестам (замеру FPS). Довольно часто производительность видеокарты вырастает существенно: до 15-20% (согласитесь, что без разгона и каких-то не было рискованных дел - ускорить на такой процент, весьма не плохо)!

Важно! Картинка в игре может несколько ухудшиться. Но такова плата: видеокарта начинает работать быстрее, экономя на качестве (ведь фильтры и сглаживания мы все отключили...). Но хочу заметить, что обычно, картинка хоть и становится хуже, но далеко не на столько, чтобы серьезно помешать вам приятно провести время за любимой игрой...

Программные настройки

Если у вас тормозит какая-то конкретная игра (а с остальными все в норме) - то есть смысл изменять не глобальные параметры, а параметры для отдельно взятого приложения! Дабы в настройках NVIDIA для этого есть специальная вкладка. Таким образом, с низким качеством графики у вас будет запускаться какая-то одна конкретная игра, а не все.

Сами параметры в этой вкладке нужно задавать аналогично тем, которые я приводил чуть выше.

Панель управления NVIDIA: программные настройки

Чтобы ускорить работу игр на вашем компьютере, дополнительно посоветую следующее:

На этом у меня всё, за дельные советы и дополнения - отдельное мерси. Удачи!

Производительность любой видеокарты можно увеличить не только изменением аппаратной части, но и программной. В первом случае речь идет о ее разгоне, однако это может плохо закончиться для самой карты. Поэтому изменение программного обеспечения как является самым оптимальным вариантом. Он позволяет "безболезненно" для чипа повысить его производительность. Но перед тем как настроить видеокарту Nvidia, нужно точно узнать ее модель.

Определение модели графики

Определить модель используемой в системе видеокарты можно разными способами. Самый простой из них:

  1. Кликам по рабочему столу правой кнопкой мышки, выбираем самый нижний пункт "Разрешение экрана".
  2. Жмем на "Дополнительные параметры".
  3. В появившемся окне будет выведена информация о видеокарте. Вкладка "Адаптер" покажет название модели.

Также точно определить модель позволит программа Aida64. Она распространяется платно в интернете, но есть и бесплатная версия с урезанными функциями. Нам бесплатная версия вполне подойдет. Скачайте ее с официального сайта и установите. Запустите, и во вкладке "Графический процессор" будет указана модель вашей карты.

Установка правильного драйвера

Перед тем как настроить видеокарту Nvidia, обязательно нужно установить соответствующий драйвер. Мы узнали модель нашей графики, поэтому теперь сможем скачать для нее нужный драйвер. Обязательно качать его нужно с официального сайта. Где, выбрав раздел "Поддержка", необходимо кликнуть на "Драйверы". Там нужно указать "Тип продукта" (в нашем случае GeForce), операционную систему, а также серию и семейство. Все это мы знаем из названия видеокарты, которое только что определили.

Скачиваете драйвер и устанавливаете его - в этом нет ничего сложного. Как минимум, если ранее стоял неправильный или устаревший драйвер, то новое программное обеспечение уже может повысить производительность вашей графики.

Как настроить драйверы видеокарты Nvidia?

С установкой нового драйвера автоматически устанавливается программа настройки. Там мы можем изменять параметры, выбирать режим работы видеокарты в играх или при просмотре видео и т. д. И если не знаете, как правильно настроить видеокарту Nvidia, то эта программа обязательно поможет.

Обычно центр управления Nvidia открывается с рабочего стола. Жмем правой кнопкой по рабочему столу и выбираем "Панель управления Nvidia". Там нам необходимо выбрать пункт "Управление 3D-параметрами". В этом разделе находятся ключевые такие как фильтрация текстур, буферизация, синхронизация и т. д.

Анизотропная оптимизация

Самый первый параметр называется "Анизотропная оптимизация", и при его активации повышается четкость 3D-объектов. Чем выше будет значение фильтрации, тем будет выше четкость объектов в приложении 3D (игре), однако это будет требовать немного больше ресурсов графики. Обычно данный параметр настраивается в самой игре, однако можно его отключить в настройках видеокарты, и тогда он будет игнорироваться в играх.

Стоит отметить, что фильтрация текстур хоть и оказывает влияние на производительность, но небольшое. Другие параметры влияют сильнее.

Фильтрации и оптимизации

Трилинейная оптимизация - эту опцию нужно установить на значение "Выкл". Ее выключение позволяет драйверу понижать качество трилинейной фильтрации, и это оказывает хорошее влияние на увеличение производительности. Данная фильтрация представляет собой более совершенный вариант билинейной. Но отключение этой опции скажется на визуальной составляющей игры или другого 3D-приложения.

Также обращаем внимание на опцию Она имеет настройку: 2x, 4x, 8x, 16x. Чем выше будет значение, тем более естественно будут выглядеть текстуры в игре. Но, как уже поняли, более высокое значение предполагает больший ресурс графики.

Тройная буферизация - одна из разновидности двойной буферизации. Технология позволяет избежать или, как минимум, уменьшить количество артефактов графики. Стоит установить значение этого параметра на "Выкл", чтобы слегка увеличить производительность.

В опции "Фильтрация текстур" будут доступны варианты выбора "Качество" и "Производительность". Выбираем "Производительность" - это снизит качество фильтрации текстур, но прибавит в скорости обработки.

Это самые основные настройки, которые позволяют добиться более высокой скорости обработки данных видеокартой. Есть и второстепенные:

  1. Вертикальный синхроимпульс - выбираем значение "Адаптивный".
  2. PhysX - ЦП.
  3. Управление электропитанием - выбираем режим для максимальной производительности.
  4. Сглаживание - выключено.
  5. Потоковая оптимизация - включено.

После того как настроить производительность видеокарты Nvidia удалось, все изменения нужно сохранить. Сразу отметим, что на разных моделях видеокарт эти настройки могут называться или выглядеть немного по-разному, также количество опций для выборки может быть больше или меньше. Однако идея в целом заключается в том, чтобы отключить указанные выше технологии.

Заключение

Да, качество картинки в играх сильно упадет, но чем-то приходится жертвовать. Пользователи, которые знают, как настроить видеокарту Nvidia GeForce, никогда не отрубают все опции сразу. И вы тоже сразу не отключайте все указанные выше параметры. Испытывайте их по одному и смотрите, насколько сильно поднимается FPS в игре, исчезают ли "фризы" и "тормоза". Если после отключения двух-трех параметров вы сможете добиться нормальной работы игры без зависаний, то отключать остальные параметры в ущерб графике не стоит.

Теперь вы знаете, как правильно настроить видеокарту Nvidia, и сможете это сделать самостоятельно.

  • Перевод

Привет, меня зовут Тони Элбрект (Tony Albrecht), я один из разработчиков новой команды Render Strike Team под управлением Sustainability Initiative в League of Legends . Моей команде поручили внести усовершенствования в движок рендеринга LoL , и мы с радостью принялись за работу. В этой статье я расскажу, как движок работает сейчас . Надеюсь, она заложит хороший фундамент, на основании которого я позже смогу рассказывать об вносимых нами изменениях. Эта статья станет для меня хорошим предлогом самому поэтапно изучить процесс рендеринга, чтобы мы, как команда, полностью понимали, что же происходит внутри.

Я подробно объясню, как LoL выстраивает и отображает каждый отдельный кадр игры (не забывайте, что на самых мощных машинах это происходит более 100 в секунду). Рассказ в основном будет техническим, но я надеюсь, что его легко будет усвоить даже тем, кто не имеет опыта в рендеринге. Для ясности я пропущу некоторые сложные моменты, но если вы захотите узнать подробности, то напишите об этом в комментариях [к оригиналу статьи].

Сначала я немного расскажу об имеющихся у нас графических библиотеках. League должна работать как можно эффективнее на широком диапазоне платформ. На самом деле, сейчас Windows XP является четвёртой по популярности версией ОС, в которой запускают игру (популярнее только Windows 7, 10 и 8). На Windows XP ежемесячно играют в десять миллионов сессий игры, поэтому для сохранения обратной совместимости нам нужно поддерживать DirectX 9 и приходится использовать только функции, которые он предоставляет. Также мы используем сопоставимый набор функций OpenGL 1.5 на машинах с OS X (скоро положение изменится).

Итак, давайте приступим! Для начала мы узнаем, как же компьютеры на самом деле отрисовывают изображения.

Рендеринг для начинающих

В большинстве компьютеров есть ЦП (центральный процессор) и ГП (графический процессор). ЦП выполняет логику и вычисления игры, а ГП получает данные треугольников и текстур от ЦП и отображает их на экране как пиксели. Небольшие программы ГП, называемые шейдерами, позволяют влиять на способ выполнения рендеринга. Например, можно изменить способ наложения текстур на треугольники или дать ГП команду выполнять расчёты для каждого тексела в текстуре. Таким образом, мы можем просто накладывать текстуру на треугольник, добавлять или умножать несколько текстур на треугольнике, или выполнять более сложные процессы, такие как рельефное текстурирование, расчёт освещения, отражений или даже высокореалистичных шейдеров кожи . Все видимые объекты рисуются в неотображаемом буфере кадра, который отображается только после завершения всего рендеринга.

Давайте рассмотрим пример. Вот изображение Гарена (Garen), состоящее из 6 336 треугольников, составляющих «проволочный» каркас и сплошную бестекстурную модель. Эта модель создана нашими художниками и экспортирована в формат, который движок League может загружать и анимировать. (Заметьте, что у Гарена неплоское затенение: это ограничение приложения, используемого для исследования рендеринга).

Эта модель без текстуры не только скучная, но и не отображает узнаваемого Гарена. Чтобы вдохнуть в Гарена жизнь, нужно нанести текстуру.

Перед загрузкой текстуры Гарена хранятся на диске в виде файлов DDS или TGA, которые сами по себе выглядят как сцена из ужастика. После правильного наложения на модель у нас получится вот такой результат:

У нас уже начинает что-то получаться. Шейдер, рендерящий наши сетки со скиннингом, не просто наносит текстуру, но мы рассмотрим это позже.

Это были основы, но LoL нужно рендерить гораздо больше, чем модель и текстуру персонажа. Давайте рассмотрим этапы, составляющие рендеринг следующей сцены:

Этап рендеринга 0: туман войны

Прежде чем начинать прорисовку частей сцены, нужно сначала подготовить туман войны и тени (у-у-у, «туман и тени», как зловеще!). Туман войны хранится центральным процессором как сетка размером 128x128, которая потом масштабируется до квадратной текстуры 512x512 (подробнее об этом можно почитать в статье «A Story of Fog and War»). Затем мы размываем эту текстуру и наносим её для затемнения соответствующих областей игры и мини-карты.


Этап рендеринга 1: тени

Тени - неотъемлемая часть 3D-сцены. Без них объекты будут казаться плоскими. Для создания теней, которые выглядят, как отбрасываемые миньоном или чемпионом, нам нужно рендерить их из точки источника света. Расстояние от источника света до отбрасывающего тень персонажа хранится для каждого пикселя в компонентах RGB, и мы обнуляем компонент альфа-прозрачности. Это можно увидеть ниже. Слева у нас есть поле высоты теней в RGB осаждаемой башни, миньонов и двух чемпионов. Справа у нас есть только компонент альфа-прозрачности. Эти текстуры обрезаны для более чёткого отображения деталей теней - миньоны внизу, башня и чемпионы - наверху.


В конце мы размываем тени, чтобы придать им красивую плавную границу (вместе с недавно добавленной оптимизацией , повышающей частоту кадров). В результате мы получаем текстуру, которую можно наложить на статичную геометрию для получения эффекта теней.

Этап рендеринга 2: статичная геометрия

Имея подготовленные текстуры тумана войны и теней, мы начинаем отрисовывать в кадре остальную часть сцены. В первую очередь статичную геометрию (она называется так, потому что неподвижна). Эта геометрия сочетает информацию тумана войны и теней со своей основной текстурой, что даёт нам следующую сцену:

Заметьте, что тени миньонов и туман войны заползают на края сцены. Рендерер Ущелья призывателей (Summoner"s Rift) не рендерит динамических теней для статичной геометрии. Поскольку основной источник света не перемещается, мы запекаем тени статичных сеток на их текстурах. Это даёт художникам больше контроля над внешним видом карты, а также позволяет повысить производительность (не требуется рендеринг теней статичных сеток). Тени отбрасывают только миньоны, башни и чемпионы.

Этап рендеринга 3: сетки со скиннингом

Итак, у нас есть рельеф и тени, поэтому мы можем начать накладывать на них объекты. Сначала накладываются миньоны, чемпионы и башни, т.е. все объекты с подвижными шарнирами, которые должны реалистично двигаться.

Каждая анимированная сетка состоит из скелета (каркаса из иерархически соединённых костей) и из сетки треугольников (см. выше изображение Гарена). Каждая вершина каждого треугольника привязана к одной-четырём костям, поэтому при перемещении костей вершины перемещаются с ними как кожа (skin). Поэтому их называют «сетками со скиннингом». Наши талантливые художники создают анимации и сетки для всех объектов, а потом экспортируют их в формат, который загружается в League при запуске игры.


На изображениях выше показаны все кости сетки Гарена. На изображении слева показаны все его кости (с названиями). На изображении справа голубым показаны выбранные вершины, а жёлтыми линиями показаны связи с костями, управляющие их положением.

Шейдеры сеток со скиннингом не просто рисуют сетки со скиннингом в буфер кадра, они также рендерят в другой буфер их отмасштабированную глубину, которую мы позже используем для отрисовки контуров. Кроме того, шейдеры скиннинга выполняют расчёт отражений Френеля, излучаемого освещения, вычисляют отражения и изменяют освещение для тумана войны.

Этап рендеринга 4: контуры (очерчивание)

По умолчанию очерчивание для сеток со скиннингом включено, что обеспечивает более чёткие контуры. Это позволяет выделить сетки со скиннингом на фоне, особенно в областях с низким контрастом. На изображениях ниже очерчивание отключено (слева) и включено (справа).


Контуры создаются получением отмасштабированной глубины из предыдущего этапа и её обработкой оператором Собеля для извлечения грани, которую мы рендерим на сетке со скиннингом. Эта операция выполняется отдельно для каждой сетки. Также существует метод возврата, использующий буфер шаблонов для графических процессоров, которые не могут выполнять рендеринг нескольких объектов одновременно.

Этап рендеринга 5: трава

Чтобы определить, что задействуется при рендеринге воды и травы, давайте посмотрим на другую сцену.

Вот кадр без воды и травы, просто статичная фоновая геометрия и несколько сеток со скиннингом.

Заметьте, что тени травы уже являются частью текстуры статичного рельефа и не рендерятся динамически. Затем мы добавляем траву:

Пучки травы на самом деле являются сетками со скиннингом. Это позволяет нам анимировать их при прохождении по ним персонажей и придать приятное колыхание от ветерка в Ущелье призывателей.

Этап рендеринга 6: вода

После травы мы рендерим воду с помощью полупрозрачных сеток со слегка анимированными текстурами воды. Затем мы добавляем листья кувшинок, рябь вокруг камней и у берега, насекомых. Все эти объекты анимированы, чтобы внести в сцену ощущение жизни.

Для усиления эффекта воды (он может быть слишком слабым) я сохранил прозрачность воды и проигнорировал геометрию под ней. Это подчеркнуло эффекты воды, чтобы мы могли лучше учитывать их в анализе.

Выделив всю рябь как «проволочные» каркасы, мы получим:

Теперь мы чётко можем видеть эффекты воды по берегам реки, а также вокруг камней и кувшинок.

При нормальном рендеринге и анимации вода выглядит следующим образом:

Этап рендеринга 7: декали

После наложения травы и воды мы добавляем декали - простые геометрические элементы с плоским текстурированием, которые накладываются поверх рельефа, например, индикатор дальности действия башни на рисунке ниже.

Этап рендеринга 8: особые контуры

Здесь мы имеем дело с более толстыми контурами, включаемыми через события мыши или особыми состояниями активации, как в случае контура башни на рисунке ниже. Это делается почти так же, как создавались контуры сеток со скиннингом, но здесь мы ещё и размываем контуры, чтобы сделать их более толстыми. Такое выделение заметно ещё сильнее, потому что выполняется в процессе рендеринга позже и может перекрывать уже наложенные эффекты.

Этап рендеринга 9: частицы

Следующая стадия - одна из самых важных: частицы. Я уже писал о частицах в этой статье . Каждое заклинание, бафф и эффект - это система частиц, которую нужно анимировать и обновлять. В рассматриваемой нами сцене не так много действия, как, например, в командном бою «5 на 5», но всё равно здесь довольно много отображаемых частиц.

Если мы рассмотрим только частицы (отключив всю фоновую сцену), то получим следующую картину:

Отрендерив треугольники, составляющие частицы, фиолетовыми контурами (без текстур, только геометрию), мы получим следующее:

Если отрисовывать частицы нормально, то мы получим более знакомый вид.

Этап рендеринга 10: эффекты постобработки

Итак, базовые части сцены уже отрендерены и мы можем придать ей немного больше «блеска». Делается это в два этапа. Сначала мы выполняем проход сглаживания (anti-alias, AA). Он помогает сгладить зазубренные края, делая весь кадр более чётким. В статичном изображении этот эффект почти незаметен, но он сильно помогает в устранении «мерцания пикселей», которое может возникать при перемещении высококонтастных граней по экрану. В LoL мы используем алгоритм сглаживания с быстрой аппроксимацией Fast Approximate Anti-Aliasing (FXAA).

Изображение слева - это миньон до FXAA, а справа - после сглаживания. Заметьте, как сглаживаются края объекта.

После завершения прохода FXAA мы выполняем проход гамма-коррекции, позволяющий отрегулировать яркость сцены. В качестве оптимизации мы недавно добавили эффект снижения насыщенности экрана смерти в проход гамма-коррекции , что позволило избавиться от необходимости замены всех шейдеров текущих видимых сеток для вариантов смертей, у которых раньше насыщенность снижалась отдельно.

Этап рендеринга 11: урон и полоски здоровья

Затем мы рендерим все игровые индикаторы: полоски здоровья, текст урона, экранный текст, а также все полноэкранные эффекты, не относящиеся к постобработке, такие как эффект урона на изображении ниже.

Этап рендеринга 12: интерфейс

И, наконец, отрисовывается интерфейс пользователя. Все тексты, значки и предметы отрисовываются на экране как отдельные текстуры, перекрывая всё, находящееся под ними. В анализируемом нами случае на отрисовку интерфейса потребовалось примерно 1 000 треугольников - около 300 на мини-карту и 700 - на всё остальное.

Собираем всё вместе


И мы получаем полностью отрендеренную сцену. Во всей сцене содержится около 200 000 треугольников, 90 000 из них используется под частицы. 28 миллионов пикселей отрисовываются за 695 вызовов отрисовки. Чтобы в игру можно было играть, вся эта работа должна выполняться как можно быстрее. Чтобы достичь 60 и более кадров в секунду, все этапы нужно пройти менее чем за 16,66 миллисекунд. И это только расчёты на стороне графического процессора: вся игровая логика, обработка ввода игрока, столкновения, обработка частиц, анимации и отправка команд на рендеринг тоже должны выполняться за это же время в центральном процессоре. Если вы играете с 300 fps, то всё происходит меньше чем за 3,3 миллисекунды!

Зачем выполнять рефакторинг рендерера?

Теперь вы должны представлять сложности, связанные с рендерингом единственного кадра игры League . Но это только сторона вывода данных: то, что вы видите на экране - это результат тысяч вызовов функций нашего движка рендеринга. Он постоянно изменяется и эволюционирует, чтобы лучше соответствовать современным потребностям рендеринга. Это привело к тому, что в базе кода League сосуществуют разные формы кода рендеринга, потому что нам нужно учитывать новое и поддерживать старое оборудование. Например, Ущелье призывателей (Summoner’s Rift) выполняет рендеринг немного иначе, чем Воющая бездна (Howling Abyss) и Проклятый лес (Twisted Treeline). Существуют части рендерера, оставшиеся от старых версий League , и части, которые пока так и не раскрыли весь свой потенциал. Задача команды Render Strike Team - взять весь код рендеринга и произвести его рефакторинг , чтобы весь рендеринг выполнялся через один и тот же интерфейс. Если мы хорошо выполним свою задачу, то игроки совершенно не заметят разницы (кроме, возможно, небольшого увеличения скорости в разных моментах). Но после того, как мы закончим, у нас появится отличная возможность вносить одновременные изменения во все игровые режимы rendering Добавить метки