Назначение и структура канального уровня. Канальный уровень в локальных сетях

22.04.2019

Организация канального уровня

Важнейшими задачами, решаемыми канальным уровнем модели сетевого взаимодействия (иногда этот уровень называют уровнем передачи данных ), являются задачи предоставления определенных сервисов сетево­му уровню. Основным сервисом является передача данных от сетевого уровня пе­редающей вычислительной машины сетевому уровню принимающей машины. На передающей ма­шине работает процесс, который передает биты с сетевого уровня на канальный уровень для передачи их по назначению. Работа канального уров­ня заключается в передаче этих битов на принимающую маши­ну так, чтобы они могли быть переданы сетевому уровню принимающей машины. Физически данные передаются по реальным каналам передачи, как схематично пока­зано на рис. 8.1.а. Однако посредством протоколов канального уровня виртуальный путь передачи данных связывает канальные уровни пе­редающей и принимающей вычислительной машины (рис. 8.1.б ).

Рис. 8.1. Пути передачи данных: а – виртуальный; б – фактический

Протоколы канального уровня описывают, каким образом логические биты или символы, передаваемые физическим уровнем, объединяются в более крупные единицы – кадры . Обобщенная структура кадра показана на рис. 8.2. В общем случае, каждый кадр содер­жит заголовок, поле данных и трейлер (или так называемый «концевик» ). Управление кадрами – одна их главнейших функций работы канального уровня.

Рис. 8.2. Обобщенная структура кадра протокола канального уровня

Канальный уровень может предоставлять различные сервисы и их на­бор может быть разным для разных систем. Обычно рассматриваются следующие возможные вари­анты:

1) сервис без подтверждений приема кадров и без установления соединения;

2) сервис с подтверждениями приема кадров и без установления соединения;

3) сервис с подтверждениями приема кадров и с установлением соединения.

Сервис без подтверждений приема кадров и без установления соединения заключается в том, что передающая машина посылает независимые кадры принимающей машине, а принимающая машина не посылает подтверждений о приеме кадров. Никакие соединения заранее не устанавливаются и не разрываются после передачи кад­ров. Если какой-либо кадр теряется из-за помех в линии связи, то на канальном уровне не предпринимается никаких попыток восстановить его. Данный класс сервисов приемлем при очень низком уровне ошибок. В этом случае вопросы, связанные с восстановлением потерянных при передаче данных, могут быть переданы для решения верхним уровням. Этот класс сервисов также применяется в линиях связи реального вре­мени (например, при передаче речи), в которых явно предпочтительнее получить искаженные данные, чем получить их с большой задержкой. Сервис без подтверждений и без установления соединения используется на канальном уровне в большинстве локаль­ных сетей.

Следующим шагом в сторону повышения надежности является сервис с под­тверждениями приема кадров, но без установления соединения . При его использовании соединение не устанавливается, но получение каждого кадра подтверждается. Таким об­разом, отправитель знает, дошел ли кадр до пункта назначения в целостности. Если в течение установленного интервала времени подтверждения не поступает, кадр посылается вновь. Такой сервис применяется в случае низкокачественных дешевых линий связи с боль­шой вероятностью ошибок, например, в беспроводных системах.

Наиболее сложным сервисом, который может предоставлять канальный уровень, является сервис, ориентированный на установление соединения с подтверждения­ми приема кадров . При использовании этого метода источник и приемник, прежде чем пере­дать друг другу данные, устанавливают соединение. Каждый посылаемый кадр нумеруется, а канальный уровень гарантирует, что каждый посланный кадр дей­ствительно принят на другой стороне линии связи. Кроме того, гарантируется, что каждый кадр был принят всего один раз и что все кадры были получены в правильном порядке. В сервисе без установления соединения, напротив, возмож­но, что при потере подтверждения один и тот же кадр будет послан несколько раз и, следовательно, несколько раз получен. При использовании ориентированного на соединение сервиса передача дан­ных состоит из трех фаз. В первой фазе устанавливается соединение, при этом обе стороны инициализируют переменные и счетчики, необходимые для слежения за тем, какие кадры уже приняты, а какие – еще нет. Во второй фазе передаются кадры данных. Наконец, в третьей фазе соединение разрывается и при этом освобождаются все переменные, буферы и прочие ресурсы, использо­вавшиеся во время соединения.

Для предоставления сервиса сетевому уровню канальный уровень должен использовать сервисы, предоставляемые ему физическим уровнем. Физический уровень принимает необработанный поток битов и пытается передать его по на­значению. Этот поток не застрахован от ошибок. Количество принятых битов мо­жет быть меньше, равно или больше числа переданных бит. Кроме того, значения принятых битов могут отличаться от значений переданных. Канальный уровень должен обнаружить ошибки и, если нужно, исправить их.

Обычно канальный уровень разбивает поток битов на отдельные кадры и считает для каждого кадра так называемую контрольную сумму. Когда кадр прибывает в пункт назначения, его контрольная сумма подсчитывается снова. Если она отличается от содержащейся в кадре, то канальный уровень «понимает», что при переда­че кадра произошла ошибка, и принимает соответствующие меры (например, игнорирует испор­ченный кадр и посылает передающей машине сообщение об ошибке). Разбиение потока битов на отдельные кадры представляет собой не очень простую задачу. Один из способов раз­биения на кадры заключается во вставке временных интервалов между кадрами, подобно тому, как вставляются пробелы между словами в тексте. Однако сети редко предоставляют гарантии сохранения временных интервалов при передаче данных, поэтому возможно, что эти интервалы при передаче исчезнут или, на­оборот, будут добавлены новые интервалы. Поэтому для повышения надежности передачи данных предложены более совершенные методы. Среди них наиболее популярны такие методы маркировки границ кадров (формирования кадров ), как:



1) подсчет количества символов;

2) применение сигнальных байтов с символьным заполнением;

3) использование стартовых и стоповых битов с битовым заполнением;

4) использование запрещенных сигналов физического уровня.

Первый метод формирования кадров использует поле в заголовке для указа­ния количества символов в кадре. Когда канальный уровень на принимаю­щей машине видит это поле, он узнает, сколько символов последует, и таким образом определяет, где находится конец кадра. Недостаток такого метода заключается в том, что при передаче может быть искажен сам счетчик. Тогда принимающая машина потеряет синхронизацию и не сможет обнаружить начало следующего кадра. Даже если контрольная сумма не совпадет и принимающая машина «пой­мет», что кадр принят неверно, то она все равно не сможет определить, где начало следующего кадра. Запрашивать повторную передачу кадра также бесполезно, поскольку принимающая машина не «знает», сколько символов нужно пропус­тить до начала повторной передачи. По этой причине метод подсчета символов теперь практически не применяется.

Второй метод формирования кадров решает проблему восстановления син­хронизации после сбоя при помощи маркировки начала и конца каждого кадра специальными байтами. В последнее время большинство протоколов перешло на использова­ние в обоих случаях одного и того же байта, называемого флаговым . Таким образом, если приемник теряет синхронизацию, ему необходимо просто найти флаговый байт, с помощью которого он распозна­ет конец текущего кадра. Два соседних флаговых байта говорят о том, что кон­чился один кадр и начался другой. Однако этот метод иногда приводит к серьезным проблемам при передачи бинарных данных, таких как объектные коды программ или числа с плавающей запятой. В передаваемых данных вполне может встретиться последовательность, исполь­зуемая в качестве флагового байта. Возникновение такой ситуации, скорее всего, собьет синхронизацию. Одним из способов решения проблемы является добав­ление специального escape-символа (знака переключения кода – ESC ) непосред­ственно перед байтом, случайно совпавшим с флаговым байтом внутри кадра. Канальный уровень получателя вначале убирает эти escape-символы, затем переда­ет кадр на сетевой уровень. Этот метод называется символьным заполнением. Таким образом, настоящий флаг можно отличить от «случайно совпавшего» по наличию или отсутствию перед ним символа ESC. Если же и символ ESC случайно окажется среди прочих данных, то перед этим фиктивным escape-символом также вставляется настоящий. Тогда любой одиночный ESC будет частью escape-после­довательности, а двойной будет указывать на то, что служебный байт случайно оказался в потоке данных. После очищения от вставных символов байтовая последовательности в точности совпадает с исходной. Главный недостаток этого метода заключается в том, что он тесно связан с 8-битными символами. Между тем не во всех кодировках один символ соответ­ствует 8 битам. Например, кодировка UNICODE использует 16-битное кодирование.

Следующий метод позволяет использовать кадры и наборы символов, состоящие из любого количества битов. При этом каждый кадр начинается и завершается специальной последовательностью битов 01111110. Битовое заполнение аналогично символьному, при котором в кадр перед случайно встретившимся среди данных флагом вставляется escape-символ. Битовое заполнение, как и сим­вольное, является абсолютно прозрачным для сетевого уровня обеих машин. Если флаговая последовательность битов (01111110) встречается в данных пользователя, она передается в виде 011111010, но в памяти принимающего ком­пьютера сохраняется опять в исходном виде: 01111110. Благодаря битовому заполнению границы между двумя кадрами могут быть безошибочно распознаны с помощью флаговой последовательности. Таким образом, если приемная сторона потеряет границы кадров, ей нужно всего лишь оты­скать в полученном потоке битов флаговый байт, поскольку он встречается толь­ко на границах кадров и не может присутствовать в данных пользователя.

Наконец, последний из рассматриваемых методов формирования кадров приемлем только в сетях, в которых физический носитель обладает некоторой избыточностью. Например, некоторые локальные сети кодируют один бит данных двумя физическими бита­ми. Так в «манчестерском» коде бит 1 кодируется парой высокого и низкого уровней сигналов (от­рицательный перепад), а бит 0 – наоборот, парой низкого и высокого уровней (положительный перепад). В такой схеме каждый передаваемый бит данных со­держит в середине переход, благодаря чему упрощается распознавание границ битов. Комбинации уровней сигналов (низкий–низкий и высокий–высокий) не используются для передачи данных, но используются в качестве ограничителей кадров в некоторых протоколах.

Отметим, что многие современные протоколы пе­редачи данных для повышения надежности применяют комбинированные методы формирования кадра.

Канальный уровень должен выполнять ряд специфических функций, к которым относятся обработка ошибок передачи данных и управление потоком данных , исключающее «затопление» медленных прием­ников быстрыми передатчиками.

Серьезной проблемой является гарантированная доставка сетевому уровню принимающей машины всех кадров с расположением их при этом в правильном порядке. Обычно для гарантирования надежной доставки поставщику посылается ин­формация о том, что происходит на другом конце линии. Протокол требует от получателя посылать обратно специальные управляющие кадры, содержащие по­зитивные или негативные сообщения о полученных кадрах. Получив позитивное сообщение, отправитель узнает, что посланный им кадр успешно получен на другом конце линии. Негативное сообщение, напротив, означает, что с кадром что-то слу­чилось и его нужно передать снова. Кроме того, посланный кадр может из-за неисправности оборудования или какой-нибудь помехи пропасть полностью. В этом случае при­нимающая сторона его просто не получит и, соответственно, никак не прореаги­рует, а отправитель при этом может бесконечно долго ожидать положительного или отрицательного ответа. Чтобы избежать зависаний сети в случае полной потери кадров, используют­ся таймеры канального уровня. После посылки кадра включается таймер и отсчитывает интервал времени, достаточный для получения принимающей машиной этого кадра, его обработки и посылки обратно подтверждения. В нор­мальной ситуации кадр правильно принимается, а подтверждение посылается на­зад и вручается отправителю, прежде чем истечет установленный интервал вре­мени, и только после этого таймер отключается. Однако если либо кадр, либо подтверждение теряется по пути, то установлен­ный интервал времени истечет, и отправитель получит сообщение о возможной проблеме. Самым простым решением для отправителя будет послать кадр еще раз. Однако при этом возникает опасность получения одного и того же кадра не­сколько раз канальным уровнем принимающей машины и повторной передачи его сетевому уровню. Чтобы этого не случилось, необходимо последо­вательно пронумеровать отсылаемые кадры, так чтобы получатель мог отличить повторно переданные кадры от оригиналов. Вопрос управления таймерами и порядковыми номерами, гарантирующими, что каждый кадр доставлен сетевому уровню принимающей машины ровно один раз, является очень важной задачей, решае­мой канальным уровнем.

Еще один важный аспект разработки канального уровня (а также более вы­соких уровней) связан с вопросом о том, что делать с отправителем, который по­стоянно желает передавать кадры быстрее, чем получатель способен их получать. Такая ситуация может возникнуть, если у передающей стороны оказывается бо­лее мощная (или менее загруженная) машина, чем у принимающей. При этом отпра­витель будет продолжает посылать кадры на высокой скорости до тех пор, пока получа­тель не окажется, как говорят, «затоплен» ими. Даже при идеально работающей линии связи в определенный момент времени получатель просто не сможет продолжать обработ­ку прибывающих кадров и начнет их терять. Для предотвраще­ния подобной ситуации чаще всего применяются два подхода. При первом, называющемся управлением потоком с обратной связью , получатель отсылает отправителю информацию, разрешающую последнему продолжить передачу или, по крайней мере, сообщающую о том, как идут дела у получателя. При втором подходе – управ­лении потоком с ограничением – в протокол встраивается механизм, ограничи­вающий скорость, с которой передатчики могут передавать данные, а обратная связь с получателем отсутствует. Известны различные схемы управления потоком с обратной связью, но большин­ство из них используют один и тот же принцип. Протокол содержит четко оп­ределенные правила, определяющие, когда отправитель может посылать следую­щий кадр. Эти правила часто запрещают пересылку кадра до тех пор, пока получатель не даст разрешения (явно либо неявно).

Протоколы канального уровня

Протоколы канального уровня определяют удобный для сетевого обмена способ представления информации, а также необходимый набор правил, позволяющий упорядочивать взаимодействие абонентов.

На канальном уровне данные рассматриваются как последовательный поток битов. Перед передачей по физическим каналам этот поток, в соответствии с принципом пакетной коммутации, разделяется на "порции", каждая из которых снабжается заголовком, содержащим некоторую служебную информацию, т.е. формируется пакет. На канальном уровне пакет называется кадром (frame).

Структура заголовка кадра зависит от набора задач, которые решает протокол. Сложность канальных протоколов во многом определяется сложностью топологии сети. Очевидно, что организовать общение всего двух абонентов существенно проще, чем упорядочивать информационный обмен в сетях, где возможно параллельное взаимодействие нескольких пар абонентов. Поэтому канальные протоколы удобно разделять на две группы:

протоколы для соединений типа "точка-точка";

протоколы для сетей сложных топологий.

Согласование протоколов канального уровня

Современные вычислительные сети часто строятся с использованием нескольких различных базовых технологий - Ethernet, Token Ring или FDDI. Такая неоднородность возникает либо при объединении уже существовавших ранее сетей, использующих в своих транспортных подсистемах различные протоколы канального уровня, либо при переходе к новым технологиям, таким, как Fast Ethernet или 100VG-AnyLAN.

Именно для образования единой транспортной системы, объединяющей несколько сетей с различными принципами передачи информации между конечными узлами, и служит сетевой уровень. Когда две или более сетей организуют совместную транспортную службу, то такой режим взаимодействия обычно называют межсетевым взаимодействием (internetworking). Для обозначения составной сети в англоязычной литературе часто также используется термин интерсеть (internetwork или internet).

Создание сложной структурированной сети, интегрирующей различные базовые технологии, может осуществляться и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Однако возможностью трансляции протоколов канального уровня обладают далеко не все типы мостов и коммутаторов, к тому же возможности эти ограничены. В частности, в объединяемых сетях должны совпадать максимальные размеры полей данных в кадрах, так как канальные протоколы, как правило, не поддерживают функции фрагментации пакетов.

Маршрутизация в сетях с произвольной топологией

Среди протоколов канального уровня некоторые обеспечивают доставку данных в сетях с произвольной топологией, но только между парой соседних узлов (например, протокол PPP), а некоторые - между любыми узлами (например, Ethernet), но при этом сеть должна иметь топологию определенного и весьма простого типа, например, древовидную.

При объединении в сеть нескольких сегментов с помощью мотов или коммутаторов продолжают действовать ограничения на ее топологию: в получившейся сети должны отсутствовать петли. Действительно, мост или его функциональный аналог - коммутатор - могут решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. В то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет существования альтернативного маршрута в дополнение к основному.

Сетевой уровень позволяет передавать данные между любыми, произвольно связанными узлами сети.

Реализация протокола сетевого уровня подразумевает наличие в сети специального устройства - маршрутизатора. Маршрутизаторы объединяют отдельные сети в общую составную сеть (рисунок 1.1). Внутренняя структура каждой сети не показана, так как она не имеет значения при рассмотрении сетевого протокола. К каждому маршрутизатору могут быть присоединены несколько сетей (по крайней мере две).

В сложных составных сетях почти всегда существует несколько альтернативных маршрутов для передачи пакетов между двумя конечными узлами. Задачу выбора маршрутов из нескольких возможных решают маршрутизаторы, а также конечные узлы.

Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения.

Маршрутизатор выбирает маршрут на основании своего представления о текущей конфигурации сети и соответствующего критерия выбора маршрута. Обычно в качестве критерия выступает время прохождения маршрута, которое в локальных сетях совпадает с длиной маршрута, измеряемой в количестве пройденных узлов маршрутизации (в глобальных сетях принимается в расчет и время передачи пакета по каждой линии связи).

Рис. 1.1. Архитектура составной сети

Сетевой уровень и модель OSI

В модели OSI, называемой также моделью взаимодействия открытых систем (Open Systems Interconnection - OSI) и разработанной Международной Организацией по Стандартам (International Organization for Standardization - ISO), средства сетевого взаимодействия делятся на семь уровней, для которых определены стандартные названия и функции.

Сетевой уровень занимает в модели OSI промежуточное положение: к его услугам обращаются протоколы прикладного уровня, сеансового уровня и уровня представления. Для выполнения своих функций сетевой уровень вызывает функции канального уровня, который в свою очередь обращается к средствам физического уровня.

Рассмотрим коротко основные функции уровней модели OSI.

Физический уровень выполняет передачу битов по физическим каналам, таким, как коаксиальный кабель, витая пара или оптоволоконный кабель. На этом уровне определяются характеристики физических сред передачи данных и параметров электрических сигналов.

Канальный уровень обеспечивает передачу кадра данных между любыми узлами в сетях с типовой топологией либо между двумя соседними узлами в сетях с произвольной топологией. В протоколах канального уровня заложена определенная структура связей между компьютерами и способы их адресации. Адреса, используемые на канальном уровне в локальных сетях, часто называют МАС-адресами.

Сетевой уровень обеспечивает доставку данных между любыми двумя узлами в сети с произвольной топологией, при этом он не берет на себя никаких обязательств по надежности передачи данных.

Транспортный уровень обеспечивает передачу данных между любыми узлами сети с требуемым уровнем надежности. Для этого на транспортном уровне имеются средства установления соединения, нумерации, буферизации и упорядочивания пакетов.

Сеансовый уровень предоставляет средства управления диалогом, позволяющие фиксировать, какая из взаимодействующих сторон является активной в настоящий момент, а также предоставляет средства синхронизации в рамках процедуры обмена сообщениями.

Уровень представления. В отличии от нижележащих уровней, которые имеют дело с надежной и эффективной передачей битов от отправителя к получателю, уровень представления имеет дело с внешним представлением данных. На этом уровне могут выполняться различные виды преобразования данных, такие как компрессия и декомпрессия, шифровка и дешифровка данных.

Прикладной уровень - это в сущности набор разнообразных сетевых сервисов, предоставляемых конечным пользователям и приложениям. Примерами таких сервисов являются, например, электронная почта, передача файлов, подключение удаленных терминалов к компьютеру по сети.

При построении транспортной подсистемы наибольший интерес представляют функции физического, канального и сетевого уровней, тесно связанные с используемым в данной сети оборудованием: сетевыми адаптерами, концентраторами, мостами, коммутаторами, маршрутизаторами. Функции прикладного и сеансового уровней, а также уровня представления реализуются операционными системами и системными приложениями конечных узлов. Транспортный уровень выступает посредником между этими двумя группами протоколов.

Функции сетевого уровня

Протоколы канального уровня не позволяют строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Для того, чтобы, с одной стороны, сохранить простоту процедур передачи пакетов для типовых топологий, а с другой стороны, допустить использование произвольных топологий, вводится дополнительный сетевой уровень.

Прежде, чем приступить к рассмотрению функций сетевого уровня, уточним, что понимается под термином "сеть". В протоколах сетевого уровня термин "сеть" означает совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи пакетов общую базовую сетевую технологию. Внутри сети сегменты не разделяются маршрутизаторами, иначе это была бы не одна сеть, а несколько сетей. Маршрутизатор соединят несколько сетей в интерсеть.

Основная идея введения сетевого уровня состоит в том, чтобы оставить технологии, используемые в объединяемых сетях в неизменном в виде, но добавить в кадры канального уровня дополнительную информацию - заголовок сетевого уровня, на основании которой можно было бы находить адресата в сети с любой базовой технологией. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть.

Заголовок сетевого уровня должен содержать адрес назначения и другую информацию, необходимую для успешного перехода пакета из сети одного типа в сеть другого типа. К такой информации может относиться, например:

номер фрагмента пакета, нужный для успешного проведения операций сборки-разборки фрагментов при соединении сетей с разными максимальными размерами кадров канального уровня,

время жизни пакета, указывающее, как долго он путешествует по интерсети, это время может использоваться для уничтожения "заблудившихся" пакетов,

информация о наличии и о состоянии связей между сетями, помогающая узлам сети и маршрутизаторам рационально выбирать межсетевые маршруты,

информация о загруженности сетей, также помогающая согласовать темп посылки пакетов в сеть конечными узлами с реальными возможностями линий связи на пути следования пакетов,

качество сервиса - критерий выбора маршрута при межсетевых передачах - например, узел-отправитель может потребовать передать пакет с максимальной надежностью, возможно в ущерб времени доставки.

В качестве адресов отправителя и получателя в составной сети используется не МАС-адрес, а пара чисел - номер сети и номер компьютера в данной сети. В канальных протоколах поле "номер сети" обычно отсутствует - предполагается, что все узлы принадлежат одной сети. Явная нумерация сетей позволяет протоколам сетевого уровня составлять точную карту межсетевых связей и выбирать рациональные маршруты при любой их топологии, используя альтернативные маршруты, если они имеются, что не умеют делать мосты.

Таким образом, внутри сети доставка сообщений регулируется канальным уровнем. А вот доставкой пакетов между сетями занимается сетевой уровень.

Существует два подхода к назначению номера узла в заголовке сетевого пакета. Первый основан на использовании для каждого узла нового адреса, отличного от того, который использовался на канальном уровне. Преимуществом такого подхода является его универсальность и гибкость - каков бы ни был формат адреса на канальном уровне, формат адреса узла на сетевом уровне выбирается единым. Однако, здесь имеются и некоторые неудобства, связанные с необходимостью заново нумеровать узлы, причем чаще всего вручную.

Второй подход состоит в использовании на сетевом уровне того же адреса узла, что был дан ему на канальном уровне. Это избавляет администратора от дополнительной работы по присвоению новых адресов, снимает необходимость в установлении соответствия между сетевым и канальным адресом одного и того же узла, но может породить сложную задачу интерпретации адреса узла при соединении сетей с разными форматами адресов.

Канальный уровень (Data Link Layer) определяет правила доступа к физической среде и управляет передачей информации по каналу, осуществляя формирование сигнала о начале передачи и организуя начало и собственно передачу информации с созданием сигнала окончания передачи и последующим переводом канала в пассивное состояние. В процессе передачи выполняется проверка принимаемой информации и исправление возникающих ошибок, отключение канала при возникновении неисправности, а также формирование сообщений о возникновении неустранимых ошибок для вышестоящего уровня с восстановлением передачи по окончании ремонта техники. В ряде случаев данный уровень осуществляет слежение за скоростью обмена и окончанием информационных блоков, а также управляет физической цепью при ее мультиплексорном использовании.

На физическом уровне просто пересылаются биты и при этом не учитывается, что физическая среда передачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другая задача канального уровня – реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay.

Таким образом, канальный уровень обеспечивает создание, передачу и прием информационных блоков, преобразуя последовательность битовых потоков в наборы битов, называемые кадрами данных, обслуживая запросы сетевого уровня и используя для передачи и приема кадров сервис физического уровня. Первоначально этот уровень был создан как функционально единый уровень, решающий задачи:

При передаче - собственно передачи кадра данных с сетевого уровня на физический уровень и обеспечения безошибочной передачи по физическому уровню кадров с одной системы на другую;


При приеме - перераспределения несмонтированных битов из физического уровня в кадры для более высоких уровней.

Функции канального уровня, как правило, реализуются программно-аппаратно.

Со временем возникла необходимость разделения канального уровня на два подуровня – уровень управления логической связью (Logical Link Control, LLC) и уровень управления доступом к физической среде (Media Access Control, MAC).

Подуровень MAC работает с физическими адресами, которые называются МАС-адресами. В сетях Ethernet и Token Ring МАС-адреса представляют собой шестнадцатиричные числа, записанные в микросхему сетевого адаптера. МАС-адрес сети Ethernet (иногда его называют адресом Ethernet) – это 12 шестнадцатиричных цифр, каждая пара из которых отделена двоеточием. Эти 12 шестнадцатеричных цифр представляют двоичное число длиной 48 бит (или 6 байт). Первые три байта содержат код производителя, присвоенный организацией IEEE. Последние три байта присваиваются производителем. МАС-адрес, или физический адрес, иногда называют адресом устройства. Он отличается от логического адреса,т.е. IP-адреса в сети ТСР/IР тем, что его нельзя изменить. Логический адрес присваивается программным обеспечением, изменить его очень просто. Оба адреса служат для идентификации компьютера в сети.

На подуровне LLC определяется логическая топология сети. Она может не совпадать с физической топологией. Подуровень LLC отвечает за связь (или интерфейс) между подуровнем MAC и расположенным выше сетевым уровнем, преобразуя биты и байты, полученные с уровня MAC, в формат, требуемый сетевым устройствам.



В локальных сетях протоколы канального уровня поддерживаются мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов. В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с определенной топологией связей, именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся "общая шина", "кольцо" и "звезда", а также структуры, полученные из них с помощью мостов и коммутаторов. Во всех этих конфигурациях адрес назначения имеет локальный смысл для данной сети и не изменяется при прохождении кадра от узла-источника к узлу назначения. Возможность передавать данные между локальными сетями разных технологий связана с тем, что в этих технологиях используются адреса одинакового формата, к тому же производители сетевых адаптеров обеспечивают уникальность адресов независимо от технологии. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

В территориально-распределенных сетях, т.е. сетях уровня WAN, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов "точка-точка" (как часто называют такие протоколы) могут служить широко распространенные протоколы канального уровня PPP и LAP-B, ответственные за доставку кадра непосредственному узлу-соседу. Адрес в этом случае не имеет принципиального значения, а на первый план выходит способность протокола восстанавливать искаженные и утерянные кадры, так как плохое качество территориальных каналов, особенно коммутируемых телефонных, часто требует выполнения подобных действий.

Если же перечисленные выше условия не соблюдаются, например связи между сегментами Ethernet имеют петлевидную структуру, либо объединяемые сети используют различные способы адресации, как в сетях Ethernet и X.25, то протокол канального уровня не может в одиночку справиться с задачей передачи кадра между узлами и требует помощи протокола сетевого уровня. Именно так организованы сети X.25. Таким образом, когда в сетях уровня WAN функции канального уровня в чистом виде выделить трудно, то они объединяются с функциями сетевого уровня в одном и том же протоколе. Примерами такого подхода могут служить протоколы технологий ATM и frame relay.

На канальном уровне используются такие протоколы, как широко известный для последовательных соединений протокол ISO High-level DataLink Conrol (HDLC), протоколы ITU-T Link Access Procedures Balanced (LAPB), Link Access Procedures on the D-channel (LAPD) и Link Access Procedures to Frame Mode Bearer Services (LAPF), протоколы IEEE 802.2 LLC (тип I и тип II), обеспечивающий MAC для сред локальных сетей 802.Х, а также протоколы Ethernet, Token ring, FDDI, X.25 и FR.

В целом канальный уровень представляет весьма мощный и законченный набор функций по пересылке сообщений между узлами сети, допуская в ряде случаев работу поверх него непосредственно протоколов прикладного уровня или приложений без привлечения протоколов сетевого и транспортного уровней. Тем не менее, для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня недостаточно. Для этого следует использовать в рамках модели OSI следующие два уровня модели - сетевой и транспортный .

Таблица 4.3 показывает структуру протоколов технологии FDDI в проекции на эталонную модель OSI. Определены протоколы физического уровня и подуров­ня MAC канального уровня.

Таблица 4.3. Структура протоколов в технологии FDDI

Физический уровень разделен на два подуровня: независящий от среды под­уровень PHY (Physical Media Independent) и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management). Подуровень PMD обеспечива­ет передачу данных от одной станции к другой по конкретной физической среде, а подуровень PHY выполняет кодирование и декодирование данных, циркули­рующих между подуровнем MAC и подуровнем PMD, а также обеспечивает тактирование информационных сигналов.

Применительно к технологии ATM физический уровень делится на два под­уровня: подуровень согласования с системой передачи (Transmission Convergen­ce, ТС) и подуровень физической среды (Physical Medium - РМ). Подуровень согласования с системой передачи выполняет упаковку ячеек, поступающих с верхнего уровня модели ATM, в передаваемые транспортные кадры. Например, если ячейки ATM передаются через канал ЕЗ (34 Мбит/с), они должны упако­вываться в поле данных кадра ЕЗ. В случае, когда ячейки передаются напрямую по физической линии без использования транспортных кадров, упаковка ячеек не требуется. На этом уровне выполняется также подсчет контрольной суммы и т. д. Подуровень физической среды регламентирует скорость передачи данных и отвечает за синхронизацию между передачей и приемом. В табл. 4.4 перечисле­ны подуровни физического уровня ATM.

Таблица 4.4. Подуровни физического уровня ATM

В настоящее время существуют три организации, определяющие физический уровень технологии ATM: ANSI, ITU/CCITT и Форум ATM.

Стандарт ANSI T1.624 определяет три спецификации физического уровня для одномодового оптоволоконного кабеля, основанные на технологии SONET: STS-1 (51.84 Мбит/с), STS-Зс (155.52 Мбит/с) и STS-12c (622.08 Мбит/с). Кроме того, этот стандарт определяет работу на скорости 44.736 Мбит/с (DS3) с использованием протокола PLCP (Physical Layer Convergence Protocol, прото­кол согласования с физическим уровнем) из стандарта IEEE 802.6.



Рекомендация 1.432 комитета ITU определяет две спецификации физиче­ского уровня, основанные на синхронной цифровой иерархии SDH; STM-1 (155.52 Мбит/с) и STM-4 (622.08 Мбит/с). Ввиду того, что уровни STM-1 и STM-4 соответствуют уровням STS-3d и STS-12c технологии SONET, взаимо­действие между ними организуется достаточно просто. Помимо того, комитет ITU стандартизировал дополнительные спецификации физического уровня: DS1 (1.544 Мбит/с), Е1 (2.048 Мбит/с), DS2 (6.312 Мбит/с), ЕЗ (34.368 Мбит/с), DS3 (44.736 Мбит/с) с использованием PLCP и Е4 (139.264 Мбит/с).

Форум ATM определил четыре спецификации физического уровня для тех­нологии ATM: DS3 (44.736 Мбит/с), 100 Мбит/с, 155 Мбит/с и 622 Мбит/с.

Канальный уровень обеспечивает надежную передачу данных через физический канал. Канальный уровень оперирует блоками данных, называемыми кадрами (frame). В локальных сетях используется разделяемая среда передачи. Основ­ным назначением канального уровня является прием кадра из сети и отправка его в сеть. При выполнении этой задачи канальный уровень осуществляет:

q физическую адресацию передаваемых сообщений;

q соблюдение правил использования физического канала;

q выявление неисправностей;

q управление потоками информации.

В технологии ATM канальному уровню модели OSI соответствует уровень ATM. Вместо прямой адресации по мере прохождения ячеек с информацией через коммутаторы ATM в заголовках ячеек происходит преобразование иден­тификаторов виртуальных путей и каналов. Добавляется также новая функция: мультиплексирование н демультиплексирование ячеек.

Для доступа к среде в локальных сетях используются два метода:

q метод случайного доступа;

q метод маркерного доступа.

Метод случайного доступа основан на том, что любая станция сети пытается получить доступ к каналу передачи в необходимый для нее момент времени. Если канал занят, станция повторяет попытки доступа до его освобождения. Примером реализации этого метода является технология Ethernet.

Метод маркерного доступа применяется в сетях Token Ring, ArcNet, FDDI и l00VG-AnyLan. Он основан на передаче от одной станции сети к другой маркера доступа. При получении маркера станция имеет право передать свою инфор­мацию.

Особенностью этих методов является то, что все станции участвуют в пере­даче на равных основаниях.

Технология ATM для доступа к среде передачи использует метод фиксиро­ванных слотов. Большинство реализаций транспортного механизма применяют транспортные кадры определенного размера, в которые упаковываются ячейки ATM.

Канальный уровень обеспечивает правильность передачи каждого кадра, до­бавляя к кадру его контрольную сумму. Получатель кадра проверяет достовер­ность полученных данных путем сравнения вычисленной и переданной с кадром контрольных сумм. Тем не менее, такая схема применяется не всегда. Например, в технологии ATM формирование поля проверки ошибок в заголовке ячейки на передающей стороне, а также обнаружение ошибок и их исправление на прием­ной стороне, реализованы на физическом уровне.

Функции канального уровня реализуются установленными в компьютерах сетевыми адаптерами и соответствующими драйверами, а также различным ком­муникационным оборудованием: мостами, коммутаторами, маршрутизаторами. Эти устройства должны:

q Формировать кадры. При этом происходит формирование заголовка и размещение данных, поступивших с более высокого уровня. Кадры могут быть информационными и служебными.

q Анализировать и обрабатывать кадры.

q Принимать кадры из сети и отправлять кадры в сеть. В технологии ATM на этом уровне формируется и удаляется заголовок ячейки.

IEEE (Institute of Electrical and Electronics Engineers, Институт электротех­ники и электроники) предложил другой, широко используемый, вариант модели OSI. IEEE-модель отличается тем, что в локальных сетях канальный уровень разделяется на два подуровня:

q Уровень управления логическим каналом (Logical Link Control - LLC);

q Уровень доступа к среде (Media Access Layer - MAC).

Уровень LLC отвечает за достоверную передачу кадров между станциями сети и взаимодействие с сетевым уровнем. МАС-уровень лежит ниже LLC-уровня и обеспечивает доступ к каналу передачи данных. Уровень LLC дает более высоким уровням возможность управлять качеством услуг. LLC обеспечивает сервис трех типов:

q Сервис без подтверждения доставки и установления соединения. Он не гарантирует доставку кадров. Этот вид сервиса называют дейтаграммным. Он чаще применяется в приложениях, использующих протоколы более высоких уровней, которые сами обеспечивают защиту от ошибок и под­держивают потоковую передачу данных;

q Сервис с установлением соединения, способный обеспечить надежный обмен кадрами;

q Сервис без установления соединения с подтверждением доставки.

Главной функцией МАС-уровня является обеспечение доступа к каналу. На этом уровне формируется физический адрес устройства, подсоединенного к ка­налу. Этот физический адрес также называется МАС-адресом. Каждое устройст­во сети идентифицируется этим уникальным адресом, который присваивается всем сетевым интерфейсам устройства. МАС-адрес позволяет выполнять точечную адресацию кадров, групповую и широковещательную. При передаче данных в сети отправитель указывает МАС-адрес получателя в передаваемом кадре.

Кроме того, МАС-уровень должен согласовывать дуплексный режим работы уровня LLC с физическим уровнем. Для этого он буферизует кадры для переда­чи их по назначению в момент получения доступа к среде.

Функции протоколов канального уровня различаются в зависимости от того, предназначен ли данный протокол для передачи информации в локальных или в глобальных сетях. Протоколы канального уровня в локальных сетях ориен­тируются на использование разделяемой между компьютерами среды передачи данных. Поэтому в этих протоколах имеется подуровень доступа к разделяемой среде. Хотя канальный уровень локальной сети и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он делает это только в сети с совершенно определенной топологией связей, а именно, с той топологией, для которой он был разработан. К типовым топологиям, поддерживаемым протоко­лами канального уровня локальных сетей, относятся: общая шина, кольцо и звезда.

Использование разделяемой среды делает процедуры управления потоком кадров ненужными в локальных сетях. Локальная сеть базовой топологии не может переполниться кадрами, так как узлы сети не могут начать отправку но­вого кадра до приема предыдущего кадра станцией назначения.

Еще одной особенностью протоколов канального уровня локальных сетей яв­ляется широкое использование дейтаграммного метода доставки данных. Это объясняется хорошим качеством каналов связи, редко искажающим биты в пе­редаваемых кадрах.

Примерами протоколов канального уровня для локальных сетей являются Token Ring, Ethernet, Fast Ethernet, l00VG-AnyLAN, FDDI.

В глобальных сетях, которые редко обладают регулярной топологией, каналь­ный уровень обеспечивает обмен сообщениями между двумя соседними ком­пьютерами, соединенными отдельной линией связи. К таким протоколам типа «точка-точка» относятся РРР, SLIP, LAP-B и LAP-D. Эти протоколы не исполь­зуют подуровень доступа к среде, но требуют процедур управления потоком кадров, так как промежуточные коммутаторы могут переполняться при слишком высокой интенсивности трафика.

Кроме того, из-за высокой степени зашумленности глобальных каналов связи в этих протоколах широко используются методы передачи данных с предвари­тельным установлением соединения и повторной передачей кадров при их иска­жениях и потерях.

В технологии ATM соединение реализуется механизмом виртуальных кана­лов и виртуальных путей, регламентированных на уровне ATM. Каждое соеди­нение имеет свои идентификаторы виртуального канала и виртуального пути. При этом один виртуальный путь может состоять из нескольких виртуальных каналов при необходимости передачи трафика от различных пользователей.

Канальный уровень (Data Link) обеспечивает обмен данными через общую локальную среду. Он находится между сетевым и физическим уровнями модели OSI. Поэтому Канальный уровень должен предоставлять сервис вышележащему уровню, взаимодействуя с сетевым протоколом и обеспечивая инкапсулированным в кадр пакетам доступ к сетевой среде. В то же время, канальный уровень управляет процессом размещения передаваемых данных в физической среде. Поэтому канальный уровень разделен на 2 подуровня: верхний подуровень логической передачи данных LLC – Logical Link Control, являющийся общим для всех технологий, и нижний подуровень управления доступом к среде MAC – Media Access Control (рис.4.1). Кроме того, на канальном уровне обнаруживают ошибки в передаваемых данных.

Рис. 4.1. Подуровни канального уровня

Взаимодействие узлов локальных сетей происходит на основе протоколов канального уровня. Международным институтом инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers – IEEE) было разработано семейство стандартов 802.х, которое регламентирует функционирование нижних уровней (канального и физического) семиуровневой модели ISO/OSI. Ряд этих протоколов являются общими для всех технологий, например, стандарт 802.2, другие протоколы (например, 802.3, 802.5) определяют особенности технологий локальных сетей.

На подуровне LLC существует несколько процедур, которые позволяют устанавливать или не устанавливать связь перед передачей кадров, содержащих данные, восстанавливать или не восстанавливать кадры при их потере или обнаружении ошибок. Этот подуровень реализует связь с протоколами сетевого уровня. Связь с сетевым уровнем и определение логических процедур передачи кадров по сети реализует протокол 802.2. Протокол 802.1 дает общие определения локальных вычислительных сетей, связь с моделью ISO/OSI. Существуют также модификации этого протокола, которые будут рассмотрены позже.

Подуровень МАС определяет особенности доступа к физической среде при использовании различных технологий локальных сетей. Протоколы МАС-уровня ориентированы на совместное использование физической среды абонентами. Разделяемая среда (shared media) используется в таких широко распространенных в локальных сетях технологиях как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI. Использование разделяемой между пользователями среды улучшает загрузку канала связи, удешевляет сеть, но ограничивает скорость передачи данных между двумя узлами.

Каждой технологии МАС-уровня соответствует несколько вариантов (спецификаций ) протоколов физического уровня (рис.4.1). Так протоколу 802.3 , описывающему наиболее известную технологию Ethernet , соответствуют спецификации физического уровня: 10 Base - T , 10 Base - FB , 10 Base - FL . Спецификация 10Base-T предусматривает построение локальной сети на основе использования неэкранированной витой пары UTP не ниже 3 категории и концентратора (hub). Спецификации 10Base-FB, 10Base-FL используют волоконно-оптические кабели. В более ранних спецификациях 10Base-5 и 10Base-2 применялся “толстый” и “тонкий” коаксиальные кабели.

Протоколу Fast Ethernet (802.3u) соответствуют следующие спецификации физического уровня:

100Base-T4, где используется четыре витых пары кабеля UTP не ниже 3 категории;

100Base-TX – применяется две пары кабеля UTP не ниже 5 категории;

100Base-FX – используется два волокна многомодового оптического кабеля.

Помимо Ethernet и Fast Ethernet на МАС уровне используется еще ряд технологий: Gigabit Ethernet со скоростью передачи 1000 Мбит/c – стандарты 802.3z и 802.3ab; 10Gigabit Ethernet со скоростью передачи 10000 Мбит/c – стандарт 802.3ае, а также ряд других. Например, протокол 802.5 описывает технологию сетей Token Ring, где в качестве физической среды используется экранированная витая пара STP, с помощью которой все станции сети соединяются в кольцевую структуру. В отличие от технологии Ethernet в сетях с передачей маркера (Token Ring) реализуется не случайный, а детерминированный доступ к среде с помощью кадра специального формата – маркера (token). Сети Token Ring позволяют передавать данные по кольцу со скоростями либо 4 Мбит/c, либо 16 Мбит/c. По сравнению с Ethernet технология Token Ring более сложная и надежная, однако, Token Ring не совместима с новыми технологиями Fast Ethernet, Gigabit Ethernet, 10Gigabit Ethernet. Технологии Ethernet и совместимые с ними и рассматриваются в настоящем курсе лекций.

Передаваемый в сеть пакет инкапсулируется в поле данных кадра протокола LLC, формат которого приведен на рис.4.2.

Рис. 4.2. Формат кадра LLC

Флаги определяют границы кадра LLC. В поле данных (Data) размещаются пакеты сетевых протоколов. Поле адреса точки входа службы назначения (DSAP – Destination Service Access Point) и адреса точки входа службы источника (SSAP – Source Service Access Point) длиной по 1 байту адресуют службу верхнего уровня, которая передает и принимает пакет данных. Например, служба IP имеет значение SAP равное 0х6. Обычно это одинаковые адреса. Адреса DSAP и SSAP могут различаться только в том случае, если служба имеет несколько адресов точек входа. Таким образом, адреса DSAP и SSAP не являются адресами узла назначения и узла источника, да и не могут быть таковыми, поскольку поле длиной 1 байт позволяет адресовать только 256 точек, а узлов в сети может быть очень много.

Поле управления (Control) имеет длину 1 или 2 байта в зависимости от того, какой тип кадра передается: информационный (Information), управляющий (Supervisory), ненумерованный (Unnumbered). У первых двух длина поля Control составляет 2 байта, у ненумерованного – 1 байт. Тип кадра определяется процедурой управления логическим каналом LLC. Стандартом 802.2 предусмотрено 3 типа таких процедур:

LLC1 – процедура без установления соединения и подтверждения;

LLC2 – процедура с установлением соединения и подтверждением;

LLC3 – процедура без установления соединения, но с подтверждением.

Процедура LLC 1 используется при дейтаграммном режиме передачи данных. Для передачи данных используются ненумерованные кадры. Восстановление принятых с ошибками данных производят протоколы верхних уровней, например, протокол транспортного уровня. В дейтаграммном режиме функционирует, например, протокол IP.

Процедура LLC 2 перед началом передачи данных устанавливает соединение, послав соответствующий запрос и получив подтверждение, после чего передаются данные. Процедура позволяет восстанавливать потерянные и исправлять ошибочные данные, используя режим скользящего окна. Для этих целей она использует все три типа кадров (информационные, управляющие, ненумерованные). Данная процедура более сложная и менее быстродействующая по сравнению с LLC1, поэтому она используется в локальных сетях значительно реже, чем LLC1, например, протоколом NetBIOS/NetBEUI.

Широкое применение процедура, подобная LLC2, получила в глобальных сетях для надежной передачи данных по ненадежным линиям связи. Например, она используется в протоколе LAP-B сетей Х.25, в протоколе LAP-D сетей ISDN, в протоколе LAP-M сетей с модемами, частично – в протоколе LAP-F сетей Frame Relay.

Процедура LLC3 используется в системах управления технологическими процессами, когда необходимо высокое быстродействие и знание того, дошла ли управляющая информация до объекта.

Таким образом, наиболее широкое распространение в локальных сетях получила процедура LLC1, в которой используются только ненумерованные типы кадров.

На передающей стороне кадр LLC уровня передается на МАС-уровень, где инкапсулируется в кадр соответствующей технологии данного уровня. При этом флаги кадра LLC отбрасываются. Технология Ethernet предусматривает кадры четырех форматов, которые незначительно отличаются друг от друга. На рис.4.3 приведен наиболее распространенный формат кадра 802.3/LLC.

Рис.4.3. Формат кадра Ethernet 802.3/LLC

Преамбула кадра состоит из семи байт 10101010, необходимых для вхождения приемника в режим синхронизации. Начальный ограничитель кадра (Start of Frame Delimiter - SFD) – 10101011 вместе с преамбулой в итоге составляют 8 байт. Далее следуют физические адреса узла назначения (DA – Destination Address) и узла источника (SA – Source Address). В технологиях Ethernet физические адреса получили название МАС-адресов. Они содержат по 48 двоичных разрядов и представляются в шестнадцатеричной системе. В локальных сетях адресация узлов производится на основе МАС-адресов, которые «прошиты» в ПЗУ сетевых карт.

Адрес, состоящий из всех единиц FFFFFFFFFFFF, является широковещательным адресом (broadcast), когда передаваемая в кадре информация предназначена всем узлам локальной сети.

Младшие 24 разряда МАС-адреса (6 шестнадцатеричных разрядов) задают уникальный номер оборудования, например, номер сетевой карты. Следующие 22 разряда, за исключением двух старших, задают идентификатор производителя оборудования. Старший бит равный 0 указывает на то, что адрес является индивидуальным, а равный 1 – адрес является групповым. Второй старший бит равный 0 указывает, что идентификатор задан централизованно комитетом IEEE. В стандартной аппаратуре Ethernet идентификатор всегда задан централизованно. Несмотря на то, что в МАС-адресе выделена старшая и младшая части, МАС-адрес считается плоским (flat).

Поле L (рис.4.3) определяет длину поля данных Data, которое может быть от 46 до 1497 байт (в информационных кадрах процедуры LLC2 – до 1496 байт, поскольку поле Control – 2 байта). Если поле данных меньше 46 байт, то оно дополняется до 46 байт.

Поле контрольной суммы (FCS – Frame Check Sequence) длиной в 4 байта позволяет определить наличие ошибок в полученном кадре, за счет использования алгоритма проверки на основе циклического кода.