Назначить действия углам рабочего стола win xp. Рабочий стол Windows XP

21.03.2019
8.2. Блок-схемы алгоритмов

При описании алгоритмов давно и успешно используются блок-схемы (Basic Flowchart). Построение блок-схем алгоритмов регламентируется ГОСТ 19.701-90 (ИСО 5807-85) "Единая система программной документации. Схемы алгоритмов программ, данных и систем. Условные обозначения и правила выполнения" . Данный государственный стандарт составлен на основе международного стандарта "ISO 5807-85. Information processing – Documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts".

Согласно ГОСТ 19.701-90 под схемой понимается графическое представление определения, анализа или метода решения задачи. С помощью схем можно отобразить как статические, так и динамические аспекты системы. Символы, приведенные в государственном стандарте, могут использоваться в следующих типах схем :

Схемы данных – определяют последовательность обработки данных и их носители;

Схемы программ – отображают последовательность операций в программе (по сути, это и есть блок-схемы алгоритмов в традиционном понимании);

Схемы работы системы – отображают управление операциями и потоки данных в системе;

Схемы взаимодействия программ – отображают путь активации программ (модулей) и их взаимодействие с соответствующими данными;

Схемы ресурсов системы – отображают конфигурацию блоков данных и обрабатывающих блоков.

Как видно из приведенных выше типов схем, они могут использоваться не только для моделирования поведенческого аспекта, но и для задач функционального, информационного и компонентного проектирования.

При построении поведенческой модели системы используются основные принципы структурного подхода – принципы декомпозиции и иерархического упорядочения. Поведенческая модель представляет собой набор взаимосвязанных схем (диаграмм) с разным уровнем детализации, причем с каждым новым уровнем детализации система приобретает все более законченные очертания.

На схемах могут присутствовать следующие элементы графической нотации :

Символы данных – указывают на наличие данных, вид носителя или способ ввода-вывода данных;

Символы процесса – указывают операции, которые следует выполнить над данными;

Символы линий – указывают потоки данных между процессами и/или носителями данных, а также потоки управления между процессами;

Специальные символы – используются для облегчения написания и чтения схем.

Кроме деления по смысловому содержанию, каждую категорию символов (кроме специальных) делят на основные и специфические символы. Основной символ используется в тех случаях, когда точный вид процесса или носителя данных неизвестен или отсутствует необходимость в описании фактического носителя данных (процесса). Специфический символ используется в тех случаях, когда известен точный вид процесса или носителя данных и это необходимо отобразить на схеме. В следующей таблице приводятся элементы графической нотации блок-схем.

Таблица 8.1. Условные обозначения на блок-схемах

№ п/п Символ Наименование Примечания
1. СИМВОЛЫ ДАННЫХ
Основные
1.1 Данные Данные, носитель которых не определен
1.2 Запоминающее устройство (ЗУ) Данные, хранимые в виде, пригодном для автоматической обработки, носитель не определен
Специфические
1.3 ОЗУ Данные, хранящиеся в ОЗУ (оперативная память)
1.4 ЗУ с последовательным доступом Данные, хранящиеся на магнитной ленте (магнитная лента, магнитофонная кассета)
1.5 ЗУ с прямым доступом Данные, хранящиеся на жестких или гибких магнитных дисках, CD, DVD, ZIP и т.д.
1.6 Документ Данные, представляемые не в компьютерном виде (на бумаге, на пленках и т.д.)
1.7 Ручной ввод Данные, вводимые вручную с помощью клавиатуры, мыши, светового пера и т. д.
1.8 Карта Данные на перфокартах, магнитных картах, картах со считываемыми метками и т.д.
1.9 Бумажная лента Данные на бумажной ленте
1.10 Дисплей Данные, отображаемые на экране монитора, сигнальные индикаторы и т.д.
2. СИМВОЛЫ ПРОЦЕССА
Основной
2.1 Процесс Элементарная (атомарная) операция по обработке данных (например, n:=n+1)
Специфические
2.2 Предопределенный процесс (процедура) Процесс, состоящий из операций, описанных в другом месте (на другой схеме)
2.3 Ручная операция Операция, выполняемая вручную
2.4 Подготовка Подготовительные операции, выполняемые с целью модификации последующих операций (цикл с параметром )
2.5 Решение Операция с одним входом и несколькими альтернативными выходами, один из которых активизируется после проверки условия, записываемого внутри символа (операторы If-Then-Else или Case)
2.6 Параллельные действия Параллельное выполнения двух и более операций
2.7 Границы цикла Начало и конец цикла. Особенности работы цикла (инициализация, приращение, условие) записывается в начале или конце, в зависимости от того, где осуществляется его проверка (циклы с пред- или постусловием)
3. СИМВОЛЫ ЛИНИЙ
Основной
3.1 Линия Поток данных или управления
Специфические
3.2 Канал связи Передача данных по каналу связи
3.3 Пунктирная линия Альтернативная связь между двумя и более символами или для обводки комментируемого участка схемы
4. СПЕЦИАЛЬНЫЕ СИМВОЛЫ
4.1 ГОСТ Соединитель Используется для обрыва линий и их продолжения в другом месте.
Обычно используется для обозначения взаимосвязанных частей схемы на разных листах. Внутри соединителя пишется номер соединения
ИСО
4.2 Терминатор Выход во внешнюю среду или вход из внешней среды (начало и конец процесса обработки данных [в этом случае внутри пишут "начало" или "конец"], источник или пункт назначения данных, начало и конец работы предопределенного процесса)
4.3 Получатель – отправитель По функциональному назначению аналогичен символу "Терминатор"
4.4

Вам понадобится

  • - трафарет для черчения блок-схем;
  • - механический карандаш;
  • - ластик;
  • - бумага;
  • - компьютер с доступом в интернет.

Инструкция

Начало и конец алгоритма обозначаются овалами. Внутри них помещают, соответственно, слова «Начало» и «Конец». От овала, символизирующего начало алгоритма, исходит одна стрелка вниз, к , символизирующему конец алгоритма, приходит стрелка сверху.

Шаги, соответствующие действиям, не связанным с вводом-выводом, обозначаются при помощи прямоугольников. Пример такого действия - вычисление и присвоение результата той или иной переменной. Стрелка от предыдущего шага приходит к прямоугольнику сверху, а снизу от него исходит стрелка к следующему шагу.

Для обозначения шагов, соответствующих операциям ввода-вывода, используются параллелограммы. Такие операции бывают двух видов: присвоение поступивших откуда-либо данных переменной и вывод данных из переменной в файл, порт, на , принтер и т.п.

Ветвления обозначаются ромбами. В верхний угол ромба приходит стрелка от предыдущего шага, а из его боковых углов исходят стрелки, как «Нет» и «Да». Они приходят, соответственно, к шагам, выполняемым при несоблюдении и соблюдении условия. Нижний угол ромба оставляется свободным. Само (например, равенство, строгое или нестрогое) внутри ромба.

Прямоугольник, боковые стенки которого двойные, олицетворяет переход к подпрограмме. После того как в подпрограмме встретился оператор возврата, продолжается выполнение основной программы. Внутри указывается название подпрограммы. Блок-схемы всех подпрограмм помещаются под блок-схемой основной программы либо на отдельных страницах.

Если вы желаете составлять блок-схемы в электронном виде, воспользуйтесь -приложением под названием Flowchart. При желании можно также освоить особые языки программирования, в которых сам процесс программирования заключается в составлении блок-схемы. Таких языков два: Дракон и HiAsm.

Источники:

  • как начертить блок схему

Блок-схема является вариантом формализованной записи алгоритма или процесса. Каждый шаг алгоритма в данном представлении изображается в виде блоков различной формы, которые соединены между собой линиями. В блок-схеме можно отобразить все этапы решения любой задачи, начиная с ввода исходных данных, обработки операторами, выполнения цикличных и условных функций, и заканчивая операциями вывода результирующих значений.

Инструкция

Как правило, вначале алгоритма производится ввод исходных данных для решения поставленной задачи. Нарисуйте параллелограмм ниже линии так, чтобы он непрерывным продолжением схемы. В параллелограмме напишите производимое действие, обычно это операции данных с экрана (Read nInp) или других устройств. Важно, что введенные вами переменных в данном шаге будут использоваться в дальнейшем во всем теле блок-схемы.

Выполнение одной или группы операций, любая обработка данных (изменение значения или формы представления) обозначается в виде прямоугольника. Нарисуйте данную фигуру в нужном месте алгоритма при составлении блок-схемы. Внутри прямоугольника запишите производимые действия , например, операция присваивания записывается следующим образом: mOut = 10*nInp b + 5. Далее также для продолжения блок-схемы нарисуйте линию вниз.

Важной составляющей любого алгоритма и соответственно блок-схемы являются условные и цикличные операторы. У данных операторов один вход и два и или более альтернативных выхода. После вычисления условия, заданного оператором, дальнейший переход осуществляется лишь по одному пути. Нарисуйте вход в элемент в виде линии входящей в верхнюю вершину элемента.

Для задания оператора условия нарисуйте от данной линии ромб. Внутри фигуры укажите само условие и проведите линии, указывающие дальнейший переход в зависимости от его выполнения. Условие задается в общем случае операциями сравнения (>, <, =). Переход по линии вниз осуществляется при истинном условии, назад – при ложном. Укажите около выходных линий фигуры результаты условия (true, false). Невыполнение условия (false) возвращает к определенному шагу выше по телу алгоритма. Проведите линии под прямым углом от выхода с условия и до нужного оператора.

Цикличный оператор обозначается прямоугольниками со скошенными углами. Причем для рисования данного оператора используются две пограничные фигуры. Начало цикла задается фигурой со скошенными верхними углами, конец цикла – фигурой со скошенными нижними углами. В фигуре начала цикла укажите условие работы цикла и между пограничных фигур нарисуйте операторы цикла.

В завершении блок-схемы должен быть указан вывод результирующих данных на носители или на экран. Оператор вывода рисуется аналогично оператору ввода. Изобразите параллелограмм и внутри него операции вывода с использованием выходных переменных.

Блок-схема является универсальной формой выражения алгоритма, которая затем может быть переведена на любой язык программирования. Она создается в виде, пригодном для чтения человеком. Это позволяет проверить правильность составления алгоритма вручную.

Инструкция

На конце каждой из линий, соединяющих элементы блок-схемы друг с другом, наносите . Это позволит точнее определить очередность выполнения действий, особенно, если алгоритм является разветвленным.

На этом уроке мы на практике разберём: как составлять алгоритмы различных типов , а также как «читать» алгоритм по готовой блок-схеме .

Возможны следующие ситуации: в тот момент, когда мы подошли к дороге горел красный или зелёный свет. Если горел зелёный свет, то можно переходить дорогу. Если же горел красный свет, то необходимо дождаться зелёного - и уже тогда переходить дорогу.

Таким образом, алгоритм имеет следующий вид:

  1. Подойти к светофору.
  2. Посмотреть на его свет.
  3. Если горит зелёный, то перейти дорогу.
  4. Если горит красный, то подождать, пока загорится зелёный, и уже тогда перейти дорогу.

Блок-схема данного алгоритма имеет вид:

Рис. 3. Блок-схема к примеру 2.

Составление циклических алгоритмов

Рассмотрим пример на составление циклического алгоритма. Мы уже несколько раз обсуждали перевод чисел из десятичной системы в двоичную. Теперь пришло время чётко сформулировать этот алгоритм.

Напомним, что его принцип состоит в делении числа на 2 и записей остатков, получающихся при делении.

Пример 3. Составить алгоритм перевода чисел из десятичной системы в двоичную.

То есть, алгоритм будет выглядеть так:

  1. Если число равно 0 или 1, то это и будет его двоичное представление.
  2. Если число больше 1, то мы делим его на 2.
  3. Полученный остаток от деления записываем в последний разряд двоичного представления числа.
  4. Если полученное частное равно 1, то его дописываем в первый разряд двоичного представления числа и прекращаем вычисления.
  5. Если же полученное частное больше 1, то мы заменяем исходное число на него и возвращаемся в пункт 2).

Блок-схема этого алгоритма выглядит следующим образом:

Рис. 4. Блок-схема к примеру 3.

Примечание: подумайте, можно ли как-то упростить приведенную блок-схему.

«Чтение» алгоритмов

Пример 4. По заданной блок-схеме выполнить действия алгоритма для числа 23.

Рис. 5. Блок-схема к примеру 4.

На этом уроке мы разобрали примеры составления алгоритмов, а также пример «чтения алгоритма» по готовой блок-схеме.

На следующем уроке мы обсудим игры и выигрышные стратегии.

Как убить Кощея?

Наверное, все помнят из детства сказку, в которой рассказывается о местонахождении смерти Кощея Бессмертного: «Смерть моя - на конце иглы, которая в яйце, яйцо - в утке, утка - в зайце, заяц в сундуке сидит, сундук на крепкий замок закрыт и закопан под самым большим дубом на острове Буяне, посреди моря-океяна …»

Рис. 6. Кощей Бессмертный и Василиса Премудрая ().

Предположим, вместо Ивана-царевича бороться с Кощеем был брошен Иван-дурак. Давайте поможем Василисе Премудрой составить такой алгоритм, чтобы даже Иван-дурак смог убить Кощея.

  1. Конечно же, сначала необходимо разыскать остров Буян (на такие вещи, будем считать, Иван-дурак способен).
  2. Поскольку сундук закопан под самым большим дубом, то сначала необходимо найти самый большой дуб на острове.
  3. Затем нужно выкопать сам сундук.
  4. Прежде чем доставать зайца, необходимо сломать крепкий замок.
  5. Теперь уже можно достать зайца.
  6. Из зайца нужно достать утку.
  7. Из утки достать яйцо.
  8. Разбить яйцо и достать иголку.
  9. Иголку поломать.

Это тоже линейный алгоритм, хотя и более длинный, чем алгоритм запуска программы Paint.

Его блок-схема выглядит так:

Рис. 7. Блок-схема.

На распутье…

И снова обратимся к сказочным персонажам в поисках примеров различных алгоритмов. Когда речь идёт об алгоритмах с ветвлениями, то, конечно, нельзя не вспомнить о богатыре, стоящем на распутье возле камня.

Рис. 8. Богатырь на распутье ().

На камне написано:

«Направо пойдёшь - коня потеряешь, себя спасёшь; налево пойдёшь - себя потеряешь, коня спасёшь; прямо пойдёшь - и себя и коня потеряешь».

Попробуем составить алгоритм действий, который составил автор надписи на камне для путников?

  1. Если мы пойдём направо, то потеряем коня. Если же мы не пойдём направо, то у нас остаётся два варианта (мы считаем, что назад возвращаться путник не будет): пойти прямо и налево.
  2. В случае, если мы пойдём налево, то потеряем себя, а коня спасём.
  3. Если же мы пойдём прямо, то потеряем и себя, и коня.

Блок-схема этого алгоритма выглядит так:

Рис. 9. Блок-схема.

Репка

Русские народные сказки не оставили нас и без циклического алгоритма. И, как ни странно, спрятался он в одной из самых незамысловатых сказок - «Репке».

Рис. 10. Репка.

Вспомним сюжет сказки: дед тянет-потянет - вытянуть не может. Затем на помощь к деду по очереди подходят новые персонажи - и так до тех пор, пока не приходит мышка.

Попытаемся составить алгоритм действий всех персонажей сказки для того, чтобы они всё-таки смогли вытянуть Репку.

  1. Изначально к Репке подошёл дед и попытался вытянуть.
  2. Поскольку вытянуть Репку не получилось, то понадобилась помощь следующего персонажа.
  3. И так происходит до тех пор, пока не появилась мышка (или, другими словами, до тех пор, пока Репку не вытащили).

В виде блок-схемы этот алгоритм выглядит следующим образом:

Рис. 11. Блок-схема.

  1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2012
  2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2010.
  3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. - М.: БИНОМ. Лаборатория знаний, 2010.
  1. Интернет портал «Сообщество взаимопомощи учителей» ().
  2. Интернет портал «Nsportal.ru» ().
  3. Интернет портал «Фестиваль педагогических идей» ().
  1. §3.3, 3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса);
  2. Постарайся самостоятельно составить линейный алгоритм из 5-6 фигур;
  3. Составь блок-схему циклического алгоритма выполнения домашнего задания;

Схема это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части . Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД) , частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» . Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985 .

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

Терминатор начала и конца работы функции

Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.

Операции ввода и вывода данных

В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.

Выполнение операций над данными

В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.

Блок, иллюстрирующий ветвление алгоритма

Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.

Вызов внешней процедуры

Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.

Начало и конец цикла

Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).

Подготовка данных

Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.

Соединитель

В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.

Комментарий

Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.


Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того .

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком , как и сортировка вставками , использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.


Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием ), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap ). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).


Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива , поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort , … .

Блок-схемой будем называть такое графическое представление алгоритма, когда отдельные действия (или команды) представляются в виде геометрических фигур – блоков . Внутри блоков указывается информация о действиях, подлежащих выполнению. Связь между блоками изображают с помощью линий, называемых линиями связи , обозначающих передачу управления.

Существует Государственный стандарт, определяющий правила создания блок-схем. Конфигурация блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19.701-90 "Схемы алгоритмов и программ". В табл. 2.1 приведены обозначения некоторых элементов, которых будет вполне достаточно для изображения алгоритмов при выполнении студенческих работ.

Правила составления блок-схем:

    Каждая блок-схема должна иметь блок «Начало » и один блок «Конец ».

    «Начало » должно быть соединено с блоком «Конец » линиями потока по каждой из имеющихся на блок-схеме ветвей.

    В блок-схеме не должно быть блоков, кроме блока «Конец », из которых не выходит линия потока, равно как и блоков, из которых управление передается «в никуда».

    Блоки должны быть пронумерованы. Нумерация блоков осуществляется сверху вниз и слева направо, номер блока ставится вверху слева, в разрыве его начертания.

    Блоки связываются между собой линиями потока, определяющими последовательность выполнения блоков. Линии потоков должны идти параллельно границам листа. Если линии идут справа налево или снизу вверх , то стрелки в конце линии обязательны , в противном случае их можно не ставить.

    По отношению к блокам линии могут быть входящими и выходящими . Одна и та же линия потока является выходящей для одного блока и входящей для другого.

    От блока «Начало » в отличие от всех остальных блоков линия потока только выходит, так как этот блок – первый в блок-схеме.

    Блок «Конец » имеет только вход, так как это последний блок в блок-схеме.

    Для простоты чтения желательно, чтобы линия потока входила в блок «Процесс» сверху, а выходила снизу.

    Чтобы не загромождать блок-схему сложными пересекающимися линиями, линии потока можно разрывать. При этом в месте разрыва ставятся соединители , внутри которых указываются номера соединяемых блоков. В блок-схеме не должно быть разрывов, не помеченных соединителями.

    Чтобы не загромождать блок, можно информацию о данных, об обозначениях переменных и т.п. размещать в комментариях к блоку.

Название блока

Обозначение блока

Назначение блока

Терминатор

Начало/Конец программы или подпрограммы

Обработка данных (вычислительное действие или последовательность вычислительных действий)

Ветвление, выбор, проверка условия. В блоке указывается условие или вопрос, который определяет дальнейшее направление выполнения алгоритма

Подготовка

Заголовок счетного цикла

Предопределенный процесс

Обращение к процедуре

Ввод/Вывод данных


Типы алгоритмов

Тип алгоритма определяется характером решаемой в соответствии с его командами задачи. Различают три типа алгоритмов: линейные, разветвляющиеся, циклические.

Линейный алгоритм состоит из упорядоченной последовательности действий, не зависящей от значений исходных данных, при этом каждая команда выполняется только один раз строго после той команды, которая ей предшествует.

Таким, например, является алгоритм вычисления по простейшим безальтернативным формулам, не имеющий ограничений на значения входящих в эти формулы переменных. Как правило, линейные процессы являются составной частью более сложного алгоритма.

Разветвляющимися называются алгоритмы, в которых в зависимости от значения какого-то выражения или от выполнения некоторого логического условия дальнейшие действия могут производиться по одному из нескольких направлений.

Каждое из возможных направлений дальнейших действий называется ветвью .

В блок-схемах разветвление реализуется специальным блоком «Решение» . Этот блок предусматривает возможность двух выходов. В самом блоке «Решение» записывается логическое условие, от выполнения которого зависят дальнейшие действия.

Различают несколько видов разветвляющихся алгоритмов.

1. «Обход» – такое разветвление, когда одна из ветвей не содержит ни одного оператора, т.е. как бы обходит несколько действий другой ветви.

2. «Разветвление» – такой тип разветвления, когда в каждой из ветвей содержится некоторый набор действий.

3. «Множественный выбор» – особый тип разветвления, когда каждая из нескольких ветвей содержит некоторый набор действий. Выбор направления зависит от значения некоторого выражения.

Циклические алгоритмы применяются в тех случаях, когда требуется реализовать многократно повторяющиеся однотипные вычисления. Цикл – это последовательность действий, которая может выполняться многократно, т.е. более одного раза.

Различают:

      циклы с известным числом повторений (или со счетчиком);

      циклы с неизвестным числом повторений (циклы с предусловием и циклы с постусловием).

В любом цикле должна быть переменная, которая управляет выходом из цикла, т.е. определяет число повторений цикла.

Последовательность действий, которая должна выполняться на каждом шаге цикла (т.е. при каждом повторении цикла), называется телом цикла или рабочей частью цикла .