Никель металл гидридный ni mh. Всё о Ni─MH аккумуляторах: устройство, характеристики, плюсы и минусы

06.07.2019

Исследования в области никель-металлгидридных батарей начались в 1970х годах как совершенствование никель-водородных батарей, поскольку вес и объем никель-водородных батарей не удовлетворял производителей (водород в этих батареях находился под высоким давлением, что требовало прочного и тяжелого стального корпуса). Использование водорода в виде гидридов металлов позволило снизить вес и объем батарей, также снизилась и опасность взрыва батареи при перегреве.

Начиная с 1980х была существенно улучшена технология производства NiMH батарей и началось коммерческое использование в различных областях. Успеху NiNH батарей способствовала увеличенная емкость (на 40% по сравнению с NiCd), использование материалов, годных к вторичной переработке («дружественность» природной среде), а также весьма длительных срок службы, часто превышающий показатели NiCd аккумуляторов.

Преимущества и недостатки NiMH аккумуляторов

Преимущества

・ бОльшая емкость - на 40% и более, чем обычные NiCd батареи
・ намного меньшая выраженность эффекта «памяти» по сравнению с никель-кадмиевыми аккумуляторами - циклы обслуживания батареи можно проводить в 2-3 раза реже
・ простая возможность транспортировки - авиакомпании перевозят без всяких предварительных условий
・ экологически безопасны - возможна переработка

Недостатки

・ ограниченное время жизни батареи - обычно около 500-700 циклов полного заряда/разряда (хотя в зависимости от режимов работы и внутреннего устройства могут быть различия в разы).
・ эффект памяти - NiMH батареи требуют периодической тренировки (цикла полного разряда/заряда аккумулятора)
・ Относительно малый срок хранения батарей - обычно не более 3х лет при хранении в разряженном состоянии, после чего теряются основные характеристики. Хранение в прохладных условиях при частичном заряде в 40-60% замедляют процесс старения батарей.
・ Высокий саморазряд батарей
・ Ограниченная мощностная емкость - при превышении допустимых нагрузок уменьшается время жизни батарей.
・ Требуется специальное зарядное устройство со стадийным алгоритмом заряда, поскольку при заряде выделяется большое количество тепла и никель-металлгидридные батареи прохо переносят перезаряд.
・ Плохая переносимость высоких температур (свыше 25-30 по Цельсию)

Конструкция NiMH аккумуляторов и АКБ

Современные никель-металлгидридные аккумуляторы имеют внутреннюю конструкцию, схожую с конструкцией никель-кадмиевых аккумуляторов. Положительный оксидно-никелевый электрод, щелочной электролит и расчетное давление водорода совпадают в обеих аккумуляторных системах. Различны только отрицательные электроды: у никель-кадмиевых аккумуляторов – кадмиевый электрод, у никель-металлгидридных – электрод на базе сплава поглощающих водород металлов.

В современных никель-металлгидридных аккумуляторах используется состав водородоадсорбирующего сплава вида AB2 и AB5. Другие сплавы вида AB или A2B не получили широкого распространения. Что же обозначают загадочные буквы A и B в составе сплава? – Под символом A скрывается металл (или смесь металлов), при образовании гидридов которых выделяется тепло. Соответственно, символ B обозначает металл, который реагирует с водородом эндотермически.

Для отрицательных электродов типа AB5 используется смесь редкоземельных элементов группы лантана (компонент А) и никель с примесями других металлов (кобальт, алюминий, марганец) – компонент B. Для электродов типа AB2 используются титан и никель с примесями циркония, ванадия, железа, марганца, хрома.

Никель-металлгидридные аккумуляторы с электродами типа AB5 имеют большее распространение из-за лучших показателей циклируемости, несмотря на то, что аккумуляторы с электродами типа AB2 более дешевы, имеют большую емкость и лучшие мощностные показатели.

В процессе циклирования происходит колебания объема отрицательного электрода до 15-25% от исходного за счет поглощения/выделения водорода. В результате колебаний объема возникает большое количество микротрещин в материале электрода. Это явление объясняет, почему для нового никель-металлгидридного аккумулятора необходимо произвести несколько «тренировочных» циклов заряда/разряда для приведения значений мощности и емкости аккумулятора к номинальным. Также у образования микротрещин есть и отрицательная сторона – увеличивается площадь поверхности электрода, которая подвергается коррозии с расходованием электролита, что приводит к постепенному увеличению внутреннего сопротивления элемента и снижению емкости. Для уменьшения скорости коррозийных процессов рекомендуется хранить никель-металлгидридные аккумуляторы в заряженном состоянии.

Отрицательный электрод имеет избыточную емкость по отношению к положительному как по перезаряду, так и по переразряду для обеспечения приемлемого уровня выделения водорода. Из-за коррозии сплава постепенно уменьшается емкость по перезаряду отрицательного электрода. Как только избыточная емкость по перезаряду исчерпается, на отрицательном электроде в конце заряда начнет выделяться большое количество водорода, что приведет к стравливанию избыточного количества водорода через клапаны элемента, «выкипанию» электролита и выходу аккумулятора из строя. Поэтому для заряда никель-металлгидридных аккумуляторов необходимо специальное зарядное усройство, учитывающее специфику поведения аккумулятора для избегания опасности саморазрушения аккумуляторного элемента. При сборе батареи аккумуляторов необходимо предусмотреть хорошую вентиляцию элементов и не курить рядом с заряжающейся никель-металлгидридной батареей большой емкости.

Со временем в результате циклирования возрастает и саморазряд аккумулятора за счет появления больших пор в материале сепаратора и образовании электрического соединения между пластинами электродов. Эта проблема может быть временно решена путем нескольких циклов глубокого разряда аккумулятора с последующим полным зарядом.

При заряде никель-металлгидридных аккумуляторов выделяется достаточно большое количество тепла, особенно в конце заряда, что является одним из признаков необходимости завершения заряда. При собирании нескольких аккумуляторных элементов в батарею необходима система контроля параметров батареи (BMS), а также наличие терморазмыкающихся токопроводящих соединительных перемычек между частью аккумуляторных элементов. Также желательно соединять аккумуляторы в батарее путем точечной сварки перемычек, а не пайки.

Разряд никель-металлгидридных аккумуляторов при низких температурах лимитируется тем фактом, что эта реакция эндотермическая и на отрицательном электроде образуется вода, разбавляющая электролит, что приводит к высокой вероятности замерзания электролита. Поэтому, чем меньше температура окружающей среды, тем меньше отдаваемая мощность и емкость аккумулятора. Напротив, при повышенной температуре в процессе разряда разрядная емкость никель-металлгидридного аккумулятора будет максимальной.

Знание конструкции и принципов работы позволит с большим пониманием отнестись к процессу эксплуатации никель-металлгидридных аккумуляторов. Надеюсь, информация, почерпнутая в статье, позволит продлить жизнь вашей аккумуляторной батареи и избежать возможных опасных последствий из-за недопонимания принципов безопасного использования никель-металлгидридных аккумуляторов.

Разрядные характеристики NiMH-аккумуляторов при различных
токах разряда при температуре окружающей среды 20 °С


изображение взято с www.compress.ru/Article.aspx?id=16846&iid=781

Никель-металлгидридная батарейка Duracell

изображение взято с www.3dnews.ru/digital/1battery/index8.htm

P.P.S.
Схема перспективного направления создания биполярных аккумуляторных батарей

схема взятя с Биполярные свинцово-кислотные батареи

Сравнительная таблица параметров различных типов аккумуляторов

NiCd NiMH Lead Acid Li-ion Li-ion polymer Reusable
Alkaline
Энергетическая плотность (W*час/кг) 45-80 60-120 30-50 110-160 100-130 80 (начальная)
Внутреннее сопротивление
(включая внутренние схемы), мОм
100-200
при 6В
200-300
при 6В
<100
при 12В
150-250
при 7.2В
200-300
при 7.2В
200-2000
при 6В
Число циклов заряда/разряда (при снижении до 80% от начальной емкости) 1500 300-500 200-300 500-1000 300-500 50
(до 50%)
Время быстрого заряда 1 час типовое 2-4 часа 8-16 часа 2-4 часа 2-4 часа 2-3 часа
Устойчивость к перезаряду средняя низкая высокая очень низкая низкая средняя
Саморазряд / месяц (при комнатной температуре) 20% 30% 5% 10% ~10% 0.3%
Напряжение элемента (номинальное) 1.25В 1.25В 3.6В 3.6В 1.5В
Ток нагрузки
- пиковый
- оптимальный
20C
1C
5C
0.5C и ниже
5C
0.2C
>2C
1C и ниже
>2C
1C и ниже
0.5C
0.2C и ниже
Температура при эксплуатации (только разряд) -40 to
60°C
-20 to
60°C
-20 to
60°C
-20 to
60°C
0 to
60°C
0 to
65°C
Требования к обслуживанию Через 30 – 60 дней Через 60 – 90 дней Через 3 – 6 месяцев Не требуется Не требуется Не требуется
Типовая цена
(US$, только для сравнения)
$50
(7.2В)
$60
(7.2В)
$25
(6В)
$100
(7.2В)
$100
(7.2В)
$5
(9В)
Цена на цикл (US$) $0.04 $0.12 $0.10 $0.14 $0.29 $0.10-0.50
Начало коммерческого использования 1950 1990 1970 1991 1999 1992

таблица взята с

Правильный уход и эксплуатация быстрозарядных
никель-металлгидридных аккумуляторов для моделизма

Качество никель-металл-гидридных аккумуляторов типоразмера Sub С (L 43 мм 0 23 мм) (далее - Ni-MH аккумуляторов), применяемых в моделизме, постоянно возрастает. Низкое внутреннее сопротивление делает возможным увеличение тока разряда аккумуляторов. Длительный опыт эксплуатации Ni-MH аккумуляторов нашими пилотами на различных соревнованиях привел нас к оптимизации опыта, накопленного в лабораторных исследованиях и на соревнованиях. На сегодняшний день ведущими производителями интересующих нас аккумуляторов являются фирмы SANYO и GP.

Типовая емкость лучших Ni-MH аккумуляторов, продаваемых этими фирмами, лежит в пределах 3700 mAh, это указано на этикетках, однако фирмы, занимающиеся селекцией аккумуляторов, находят аккумуляторы, имеющие емкость до 3800 mAh!

Хранение

Хранить Ni-MH аккумуляторы допускается только полностью заряженными. Никогда не храните Ваши NiMH аккумуляторы разряженными длительное время (5 дней и более). Такое длительное хранение в разряженном виде увеличивает внутреннее сопротивление и. соответственно, уменьшает емкость аккумуляторов.

Уравнительный разряд

Аккумуляторы, и особенно новые Ni-MH аккумуляторы, необходимо по возможности чаще подвергать уравнительному разряду. Уравнительный, или балансировочный, разряд дает возможность уменьшить так называемый производственный разброс Ni-MH аккумуляторов. Производственный разброс Ni-MH аккумуляторов означает изготовление одним производителем одних и тех же аккумуляторов, с небольшим (±2-5%) разбросом в электрических параметрах аккумуляторов (емкость, внутреннее сопротивление, напряжение разряда). Этот разброс является допустимым для производства, однако нежелателен и даже смертельно вреден для Ni-MH аккумуляторов при длительной эксплуатации, так как при покупке "россыпью", к примеру, блока из шести Ni-MH аккумуляторов для авиамодели, мы покупаем не абсолютно одинаковые по емкости "банки", а сталкиваемся с этим вот технологическим разбросом, при котором "Ni-MH аккумуляторы емкостью 3000 mAh. по данным на этикетках, имеют на самом деле реальную емкость от 3300 до 3000 mAh в одном блоке. Это как повезет! Обычно разброс составляет 100-150 mAh. И вот при заряде такого блока большим током (4-6 ампер, что является обычным и как рекомендуют производители аккумуляторов) с помощью автоматического зарядного устройства "банки" с меньшей емкостью немного перезаряжаются, а те, что имеют большую емкость - немного недозаряжаются.

При разряде происходит обратный процесс - "банки" с меньшей емкостью немного переразряжаются, а те, что имеют большую емкость, - немного недоразряжаются.

От разряда к разряду эта разница становится все заметнее, и обычно после 35-40 циклов заряд-разряд происходит заметное уменьшение емкости и напряжения блока аккумуляторов по причине перезаряда и переразряда самого "малоемкого" аккумулятора в блоке.

Уравнительный разряд не исключает вышеописанный эффект, однако позволяет продлить срок нормальной эксплуатации аккумуляторов примерно до 50-70 циклов до начала проявления этого эффекта.

В чем суть уравнительного разряда: необходимо разрядить заряженные аккумуляторы, каждую "банку" отдельно, своим разрядным резистором номиналом от 2 до 5 Ом и мощностью 0,25-0,5 Вт, в течение 15-24 часов. Номинал всех используемых сопротивлений для всех резисторов должен быть одинаковым. Разряд происходит почти до нулевого напряжения на аккумуляторах, однако не стоит беспокоиться, поскольку этот режим вполне допустим для Ni-MH аккумуляторов, вопреки распространенному мнению. Разряженные таким образом аккумуляторы имеют одинаковую остаточную емкость.

Если Вы не имеете возможности сделать уравнительный разряд, существует другой метод продления жизни Ваших источников тока. Это так называемый уравнительный заряд.

Суть метода: разряженные обычными способами аккумуляторы заряжают при помощи обычного "ночного" зарядного устройства или иным, без автоматической отсечки заряда, током, равным 1/10 емкости аккумуляторов. Пример: при емкости аккумуляторов 3000 mAh ток заряда составляет 300 тА. Время заряда составляет 16-22 часа. При этом все ""банки" блока набирают свою максимальную емкость, и самое главное, что при таком небольшом токе заряда аккумуляторы не перезаряжаются, так как для них это приемлемый режим. Через 12-14 часов заряда аккумуляторы немного нагреваются, однако это нормально. Заряженные таким образом аккумуляторы набирают максимальную существующую емкость. В таком состоянии их можно оставить на хранение.

Есть и третий путь - использование аккумуляторов, отобранных (селектированных) фирмами.

В чем суть селекции? Фирма закупает у производителя большое количество аккумуляторов россыпью, после чего каждый аккумулятор заряжается и разряжается в специальных многоканальных зарядных устройствах, подключенных к компьютеру для считывания электрических параметров заряда-разряда.

Компьютер фиксирует:

  • Ток заряда (обычно он равен 4-6 ампер).
  • Время заряда, ток разряда (обычно его величина 20 или 30 ампер).
  • Время разряда до напряжения 1, 0,9, 0,85 или 0.75 В. Напряжение зависит от тока разряда, используемого фирмой в процессе селекции и типа аккумулятора.

Высчитывается емкость аккумулятора при достижении соответствующих напряжений разряда. Определяется среднее напряжение разряда. Швейцарская фирма ORION сообщает нам еще и величину отданной энергии в джоулях. Полученные данные распечатываются на маленькие этикетки, которые клеятся на свой аккумулятор. Компьютер отбирает аккумуляторы по их параметрам в блоки по заданному количеству "банок" в блоке. Основной критерий селекции - емкость и среднее напряжение разряда.

Последние несколько лет все уважающие себя фирмы применяют в дополнение к селекции разработанный в 1995 г. фирмой GM RACING так блок Ni-MH аккумуляторов 6 штук - 7,2 V называемый VIS-процесс (Voltage Increasing System) - система повышения напряжения. В чем суть этого процесса? Новый аккумулятор зажимают между двумя мощными контактами и прошивают одним импульсным разрядом, имеющим напряжение 60-80 вольт и ток в сотни ампер. После такого шокового электрического удара немного уменьшается (на 3-5%) внутреннее сопротивление аккумулятора и соответственно на столько же возрастает напряжение разряда и емкость. После чего проходит обычная процедура селекции. На срок жизни аккумулятора этот процесс практически не влияет, однако этих трех-пяти процентов бывает достаточно для получения преимущества в гонке.

К сожалению,VIS-обработка работает до 5 первых циклов, после чего сходит на нет и ее необходимо повторять. Для рядовых моделистов это, как правило, невозможно, однако для особо упорных в продаже есть индивидуальные VIS-устройства стоимостью S 350-400. Обычно фирмы разделяют отобранные в процессе селекции блоки аккумуляторов на три категории, отличающиеся по емкости и напряжению. Их обычные торговые названия: самая базовая – SPORT, RACING, CLUB, затем - TEAM и лучшая - FACTORY TEAM, WORLD TEAM или CHAMPION. Названия придумывают фирмы. Нужно отдать должное фирмам-"селекционерам": к примеру, для отбора одного блока из шести штук аккумуляторов самой простой селекции необходимо "перелопатить" около 1000 (!!!) аккумуляторов!

"Банки", не прошедшие отбор, собирают в блоки для неответственного применения (любители, начинающие, стартовое оборудование, тестовые и прикаточные блоки). Цена селектированных аккумуляторов может отличаться о г "россыпи" в два-три раза, однако здесь есть за что платить больше.

Обычно хорошо отобранные аккумуляторы изнашиваются в блоке практически равномерно. Это, однако, не исключает необходимость уравнительных разрядов, но делать это можно через 10-12 циклов. И в завершение темы селекции хочется отметить, что для своих фирменных гонщиков, задача которых - победа на соревнованиях именно на данных аккумуляторах данной фирмы (реклама - двигатель торговли), отбираются лучшие блоки из лучшей селекции, а там, поверьте, еще есть разница в блоках. То же самое касается и электродвигателей и резины, но это уже другая тема.

Условия заряда

За один - два дня до соревнований аккумуляторы необходимо по возможности разрядить током 5-10 ампер. В крайнем случае, сделайте уравнительный разряд. В таком состоянии их можно брать с собой на соревнования. По возможности заряжайте ваш аккумулятор непосредственно перед использованием. Оптимальная температура аккумулятора перед использованием - 40°-50°С. Ni-MH аккумуляторы имеют высокий саморазряд и теряют 2-5% заряженной емкости за несколько часов хранения. Помните, что внутреннее сопротивление аккумуляторов растет при их остывании. Использовать аккумуляторы желательно один раз в день, это идеальные условия их эксплуатации. Однако такую возможность имеют не многие, поэтому желательно использовать аккумуляторы хотя бы с 3-4-часовым перерывом.

В любом случае Вы должны знать, что первый за день цикл - самый лучший и по отдаче тока, и по величине напряжения. Как говорится: если Вас интересует результат.

Мы рекомендуем заряжать неселектированные (купленные "россыпью") аккумуляторы током, равным емкости. Пример: при емкости аккумулятора 3000 мАп ток заряда 3 ампера. Селектированные аккумуляторы могут заряжаться током в 1.5-2 раза больше емкости аккумулятора. Пример: при емкости аккумулятора 3000 мАп ток заряда 4,5-6 А. Температура заряжаемых аккумуляторов никогда не должна превышать 60°. при температуре от 45° и выше резко сокращается срок жизни аккумулятора.

Никогда не начинайте процесс заряда, если аккумулятор еще горячий или теплый!

Очень важно применять при заряде Ваших аккумуляторов большими токами (3-6 А) автоматические зарядные устройства, которые прекращают процесс заряда аккумуляторов, используя так называемый дельта-пик-эффект (Delta Peack). В чем суть этого метода? Ni-MH и Ni-Cd аккумуляторы необходимо заряжать только стабильным током, одинаковым по своей величине, на протяжении всего заряда. При этом, по мере заряда, напряжение на аккумуляторах будет расти. Когда процесс заряда подходит к концу, химическая реакция восстановления, проходящая внутри аккумуляторов, будет проходить с постоянным увеличением выхода газов, образуемых в процессе хим. реакции заряда. Одновременно увеличивается и внутреннее сопротивление в аккумуляторах. А поскольку ток заряда неизменен, а сопротивление возрастает, то напряжение аккумулятора, следуя закону Ома начинает уменьшаться. Вот этот самый момент уменьшения напряжения и называют дельта-пик, и зарядные устройства отключают заряд, отследив своим пик-детектором именно падение напряжения на аккумуляторах.

Эта величина очень незначительная - 8-12 милливольт для NiMH аккумулятора и 15-25 милливольт для Ni-Cd аккумулятора. Бывают случаи (особенно при заряде на дешевых зарядных устройствах), когда пик-детектор срабатывает и прекращает заряд уже через 1-2 минуты после начала заряда. Это объясняется специфическим эффектом, возникающим при заряде большим током, полностью разряженных аккумуляторов. При этом в начале заряда напряжение на аккумуляторах падает, а не растет! Это происходит первые 1-4 минуты и наблюдается у аккумуляторов, применявшихся уже большое количество циклов. Вам нужно только лерестартовать Bаше зарядное устройство.

Силовые Ni-MH аккумуляторы можно разряжать током от 6 до 13 раз большим, чем емкость аккумулятора. Пример: при емкости аккумулятора 3000 мАп ток разряда может быть 18-40 А. Помните: чем большим током Вы разряжаете аккумулятор, тем сильнее сокращаете срок его жизни. В любом случае Вы должны знать, что первые незначительные признаки ухудшения разрядных характеристик аккумуляторов (уменьшение напряжения при разряде, "вялый" разгон модели) наступают уже к 20-му циклу заряд-разряд. Для тех режимов эксплуатации, которые необходимы в моделизме, это неизбежно. Однако эта информация касается скорее профессионалов или тех, кто одержим идеей победы. Для остальных же эти изменения будут незаметны, поверьте!

Силовые аккумуляторы можно безбоязненно паять. Мощность паяльника должна быть не менее 50 Вт. Естественно, не грейте на них паяльники, но медные перемычки можно смело паять.

Кстати: при использовании на модели силовых проводов сечением 2,5-4 мм" было бы неразумным применение в качестве перемычек полоски меди с большим сечением. Однако применяемые в моделизме перемычки производства ведущих фирм имеют сечение 6-10 мм. Видимо, это делается для увеличения конструкционной прочности блока спаиваемых аккумуляторов. Для пайки применяйте паяльную кислоту, так как канифоль не дает необходимого качества и скорости (лишнее время нагрева) пайки. Естественно, после пайки кислотой места пайки необходимо промыть каким-нибудь растворителем или хотя бы хорошенько протереть.

Использованные материалы: инструкция в каталоге GM RACING, материалы журнала КС CAR ACTION, инструкции к аккумуляторам фирм KEIL, ORION, TRINITY.

Всё о Ni─MH аккумуляторах: устройство, характеристики, плюсы и минусы

Никель-металлогидридные (Ni─MH) аккумуляторы относятся к группе щелочных. Это химические источники тока, в которых в роли анода выступает водородный металлогидридный электрод, катода ─ оксид никеля, а электролитом является щёлочь гидроксид калия (KOH). Ni─MH аккумуляторы имеют конструкцию, аналогичную Ni─Cd аккумуляторам. По протекающим в них процессам они похожи на никель-водородные аккумуляторы. По своей удельной энергоёмкости никель─металлогидридные превосходят оба этих типа. В этой статье мы подробно разберём устройство и характеристики Ni─MH аккумуляторы, также их плюсы и минусы.

Никель-металлогидридные начали создавать ещё в середине прошлого века. Они разрабатывались с учётом преодолеть те недостатки, которые имели . Во время проводимых исследований учёные разработали новые никель─водородные батареи, применяемые в космической технике. Им удалось разработать новый способ накопления водорода. В новом типе аккумуляторов водород собирался в определённых материалах, а точнее сплавах некоторых металлов. Эти сплавы могли накапливать объем водорода, в тысячу раз превышающий их собственный объем. В состав сплавов входили 2 или более металлов. Один из них накапливал водород, а другой выступал в роли катализатора, который обеспечивал переход атомов водорода в металлическую решётку.


В Ni─MH аккумуляторах могут использоваться различные комбинации металлов. В результате есть возможности по изменению свойств сплава. Для создания никель─металлогидридных аккумуляторов был налажен выпуск сплавов, которые работают в условиях комнатной температуры и при низком давлении водорода. Разработка различных сплавов и совершенствование технологии производства Ni─MH аккумуляторов ведётся по настоящее время. Современные образцы аккумуляторов этого типа обеспечивают до 2 тысяч циклов заряд-разряд. При этом ёмкость минусового электрода снижается не больше, чем на 30 процентов. Такой результат достигается при использовании сплавов никеля с различными редкоземельными металлами.

В 1975 году Билл получил патент на сплав LaNi5. Это был первый образец никель─металлогидридного аккумулятора, где этот сплав был в роли активного вещества. Что касается более ранних экземпляров из других металлогидридных сплавов, то там не была обеспечена требуемая ёмкость.

Промышленный выпуск Ni─MH аккумуляторов был организован лишь в середине восьмидесятых годов, когда был получен сплав состава La─Ni─Co. Он позволял проводить обратимое абсорбирование водорода больше ста циклов. В дальнейшем все усовершенствования конструкции Ni─MH аккумуляторных батарей сводились к наращиванию энергетической плотности.

В дальнейшем был заменён отрицательный электрод, что дало увеличение активной массы плюсового электрода в 1,3─2 раза. Именно от плюсового электрода и зависит ёмкость этого типа аккумуляторов. Ni─MH аккумуляторы обладают более высокими удельными энергетическими параметрами, чем никель─кадмиевые.

Помимо высокой энергетической плотности никель-металлогидридных аккумуляторных батарей, они ещё состоят из нетоксичных материалов, что упрощает их эксплуатацию и утилизацию. Благодаря этим факторам аккумуляторы Ni─MH стали успешно распространяться. Дополнительно можете прочитать про для автомобиля.

Применение никель-металлогидридных аккумуляторов

Ni─MH аккумуляторы широко применяются для питания различной электроники, работающей в автономном режиме. В большинстве своём они выполняются в виде АА или ААА батарей. Хотя есть и другие исполнения, в том числе, промышленные аккумуляторные батареи. Сфера применения у них практически полностью совпадает с никель─кадмиевыми и даже шире, поскольку они не содержат токсичных материалов.





Продаваемые на рынке никель─металлогидридные аккумуляторы можно разделить на две большие группы по ёмкости:

  • 1500-3000 мАч;
  • 300-1000 мАч.

Первая группа (1500-3000 мАч) используется в различных устройствах, которые имеют высокое энергопотребление за короткий промежуток времени. При этом, как правило, отсутствует предварительное хранение батареек. В качестве примера можно привести такие устройства, как плееры, фотоаппараты, радиоуправляемые модели и другие гаджеты, где энергия аккумулятора Ni─MH расходуется за короткое время .

Вторая группа (300-1000 мАч) подходит, когда расход энергии начинается после определённого временного интервала. Примером могут служить ручные фонарики, рации, игрушки, GPS-навигаторы и других устройств с умеренным энергопотреблением, долгое время находящихся в автономном режиме.

Устройство Ni─MH аккумуляторов

Конструкция никель─металлогидридных аккумуляторов

Ni─MH цилиндрической формы

В этой конструкции разноимённые электроды разделены сепаратором. Все вместе они свёрнуты в рулон. Он помещается в корпус и герметизируется крышкой со специальной прокладкой. В крышке сделан аварийный клапан, рассчитанный на открытие при возрастании давления внутри аккумулятора до 2─4 МПа. На рисунке ниже показана конструкция никель─металлогидридного цилиндрического аккумулятора.

Ni─MH призматической формы

В Ni─MH аккумуляторах призматической формы поочерёдное размещение разноимённых электродов. Их также разделяет сепаратор. Сборка электродов находится в металлическом или пластиковом корпусе, который закрывается герметичной крышкой. В крышке в большинстве случаев ставится датчик или клапан давления. Ниже представлена конструкция никель-металлогидридного аккумулятора призматической формы.


В никель-металлогидридных аккумуляторных батареях в роли электролита выступает щёлочь. По составу это КОН с добавлением LiOH. Материал сепаратора в большинстве случаев это нетканый полиамид и полипропилен, обработанные смачивателем. Толщина сепаратора от 0,12 до 0,25 миллиметров.

Положительный электрод Ni─MH аккумуляторов выполняется из тех же материалов, что используются в Ni─Cd аккумуляторных батареях. Это оксидно─никелевая металлокерамика, пенополимерные и войлочные материалы.

Отрицательные электроды для Ni─MH аккумуляторов могут быть следующих вариантов:

  • ламель. Водород─абсорбирующий сплав в виде порошка запрессовывается в сетку из никеля;
  • пеноникелевый. Паста из сплава и связующего вещества вводится в пеноникелевую основу с последующей сушкой и прессованием;
  • фольга. Паста из сплава и связующего вещества наносится на перфорированную фольгу (из никеля или стали) с последующей сушкой и прессованием;
  • вальцованный. Порошок из сплава и связующего посредством прокатки (вальцевание) наносится на решётку или сетку (медную или никелевую);
  • спечённый. Сплав в порошкообразном виде напрессовывается на сетку Ni и затем обжигается в водороде.

Удельные ёмкости у всех этих вариантов электродов близки по значению. Они зависят в основном от ёмкости используемого сплава. Теперь стоит несколько подробнее рассмотреть конструкцию разных электродов никель─металлогидридных аккумуляторов.

Устройство электродов Ni─MH аккумуляторов

Устройство металловодородного электрода

Основной материал, который определяет характеристики Ni─MH аккумуляторов, это сплав, поглощающий водород. Он может абсорбировать объем водорода в тысячу раз больший, чем его собственный объем . Наиболее распространённым сплавом для производства металловодородных электродов стал LaNi5. Так обозначается группа сплавом, где никель частично заменён на кобальт, марганец и алюминий. Это сделано для увеличения его активности и стабильности. В целях экономии ряд производителей используют не лантана, а Мm (миш-металл). Он представляет собой смесь редкоземельных элементов в соотношении, близком к тому, что есть в природной руде. Там кроме La есть неодим, церий, празеодим.

Во время прохождения цикла заряд-разряд кристаллическая решётка сплава сжимается и расширяется на 15─25 процентов. Это обусловлено процессами десорбции и абсорбции водорода. В результате растёт внутреннее напряжение и в сплаве образуются трещины. Из-за образования трещин растёт площадь поверхности, подвергающейся коррозии из-за реакции со щёлочью (электролит). В результате происходит постепенное снижение разрядной ёмкости отрицательного электрода.

Поскольку в аккумуляторной батарее имеется ограниченное количество электролита, все описанные процессы порождают проблемы, которые связаны с его перераспределением. В результате коррозии сплава его поверхность становится химически пассивной. На ней образуются оксиды и гидроксиды, стойкие к коррозии. Они увеличивают перенапряжение при реакции на металлогидридном электроде. Продукты коррозии образуются с потреблением водорода и кислорода из щелочи. Это ведёт к уменьшению количества электролита в батарее и увеличению её внутреннего сопротивления. Все эти процессы отрицательно сказываются на сроке эксплуатации Ni─MH аккумуляторов.

Чтобы снизить нежелательные процессы коррозии и диспергирования, производители используют 2 методики. Первая включает в себя микрокапсулирование частиц сплава. Это значит, что поверхность покрывается пористым слоем меди или никеля малой толщины (5─10 процентов). Более распространена вторая методика. Эта технология подразумевает обработку частиц сплава в щелочном растворе. В результате образуется защитная плёнка, которая проницаема для водорода.

Устройство оксидно─никелевого электрода

Оксидно-никелевые электроды можно встретить в следующих исполнениях:

  • ламельные;
  • безламельные металлокерамические спечёные;
  • прессованные.

Всё большую популярность обретают пенополимерные и безламельные войлочные электроды.

Конструктивно ламельные оксидно─никелевые электроды состоят из соединённых ламелей. Ламель – это перфорированные коробочки из тонкой стальной никелированной ленты. Её толщина составляет 0,1 миллиметра.

Металлокерамические спечённые электроды имеют пористую структуру металлокерамической основы. В порах, которых в основе не менее 70 процентов, находится активная масса. Материал основы – это карбонильный никелевый мелкодисперсный порошок (60─65 процентов) и карбонат аммония (или карбамид). Этот порошок напрессовывается, накатывается на сетку из никеля или стали. Также может выполняться его напыление.

Далее по технологии сетка с порошком проходит термообработку в атмосфере водорода. Температура при этом составляет 800─960 градусов Цельсия. Карбамид или карбонат аммония разлагается и происходит спекание никеля. В результате получается основа толщиной 1─2,3 миллиметра. Пористость получаемой основы составляет 80─85 процентов, а радиус пор равен 5─20 микрометров. Далее полученная основа пропитывается нагретым до 60─90 градусов раствором сульфата или нитрата никеля. А затем ещё делается пропитка раствором щелочи, осаждающей оксиды и гидроксиды никеля.

На современных производствах применяется электрохимическая технология пропитки. Электрод в растворе нитрата никеля подвергают катодной обработке. В результате в порах выделяется водород и пластины подщелачиваются. В порах пластины происходит осаждение гидроксидов и оксидов никеля.

Фольговые электроды являются разновидностью спечённых электродов. Их производят следующим образом. На перфорированную ленту из никеля толщиной около 0,05 миллиметра с двух сторон наносится спиртовая эмульсия никелевого карбонильного порошка со связующими веществами. Далее проводится спекание и пропитка реагентами (химическая или электрохимическая). Толщина электрода равна 0,4─0,6 миллиметра.

Прессованные электроды производятся путём напрессовки на ленту или сетку из стали активной массы. Давление при этом составляет 35─60 МПа. В качестве активной массы используется смесь гидроксидов никеля и кобальта, графита, связующих веществ.


Металловойлочные электроды представляют собой высокопористую основу, состоящую из волокон углерода или никеля. Пористость основы составляет от 95 процентов. Войлочный электрод делается на основе углеграфитового или полимерного фетра, покрытого никелем. Толщина электрода может быть от 0,8 до 10 миллиметров. Активная масса внедряется в войлок различными методиками.

Есть технология, где вместо войлока используют пеноникель. Его делают никелированием пенополиуретана и дальнейшим отжигом в восстановительной атмосфере. В высокопористую среду вносят добавки посредством намазки. Это паста, включающая в себя гидроксид никеля со связкой. Далее основу сушат и вальцуют. Электроды металловойлочного и пеноникелевых типов имеют высокую удельную ёмкость и существенный ресурс работы.

Реакции в никель─металлогидридных аккумуляторах

Как уже разбиралось выше, в Ni─MH аккумуляторе положительный электрод оксидно─никелевый также, как в Ni─Cd батареях. А вот отрицательный электрод вместо кадмиевого используется из никелевого сплава с добавлением редкоземельных элементов.

Какие реакции протекают в Ni─MH аккумуляторах?

На оксидно-никелевом электроде (положительный) протекает реакция:

При заряде

Ni(OH) 2 + OH −- ⇒ NiOOH + H 2 O + e −

При разряде

NiOOH + H 2 O + e − ⇒ Ni(OH) 2 + OH −

На электроде из никелевого сплава (отрицательный) протекает реакция:

При заряде

M + H 2 O + e − ⇒ MH + OH −-

При разряде

MH + OH − ⇒ M + H 2 O + e −

Суммарная реакция, протекающая в Ni─MH аккумуляторе, выглядит следующим образом:

При заряде

Ni(OH) 2 + M ⇒ NiOOH + MH

При разряде

NiOOH + MH ⇒ Ni(OH) 2 + M

При этом щелочной электролит не принимает участия в реакции образования тока.

После того, как при заряде аккумулятора до уровня 70─80 процентов на оксидно─никелевом запускается выделение кислорода в соответствии со следующей реакцией:

2OH − ⇒ 1/2O 2 + H 2 O + 2e −

На отрицательном электроде происходит реакция восстановления этого кислорода:

1/2O 2 + H 2 O + 2e − ⇒ 2OH −

Так описывается процесс перезарядки никель─металлогидридного аккумулятора. Эти реакции образуют собой замкнутую циркуляцию кислорода. В процессе восстановления кислорода происходит увеличение ёмкости металлогидридного электрода благодаря выделению группы ОН − .

Характеристики Ni-MH аккумуляторов

Основные параметры никель─металлогидридных и никель─кадмиевых аккумуляторов приводятся в следующей таблице.

Характеристика Ni-Cd Ni-MH Ni-H2
Характеристика Ni-Cd Ni-MH Ni-H2
Энергетическая плотность, Вт-ч/кг 45-80 60-120 -
Внутреннее сопротивление (при 6 В), мОм 100-200 200-300 -
Число циклов заряд-разряд до падения ёмкости 80 процентов от номинала 1500 300-500 2000-3000
Время быстрой зарядки, часы 1 2-4 -
Устойчивость к перезаряду средняя низкая -
Саморазряд при комнатной температуре 20% в месяц 30% в месяц 20-30% за сутки
Номинальное напряжение, В 1,25 1,25 1,25
Оптимальный ток нагрузки до 0,5С -
Пиковый ток нагрузки 20С -
Рабочая температура (разряд), С от -40 до +60 от -20 до +60 от -20 до +30
Периодичность обслуживания (тренировка), дней 30-90 30-90 -
Появление в продаже 1950 1990 -
Срок службы, лет 1-5 1-5 2-7
Удельная энергия, Вт-ч/литр 60-120 100-270 60-80

Электрические характеристики

Ёмкость аккумулятора

При повышении нагрузки и понижении температуры ОС ёмкость никель─металлогидридного аккумулятора снижается в соответствии с графиком ниже.



Эффект снижения ёмкости особенно заметен при существенной скорости разряда в области отрицательных температур.

Номинальное разрядное напряжение

Номинальное разрядное напряжение (U р) обычно находится в пределах 1,2─1,25 вольта при токе разряда (I р), определяемом по формуле:

I p = 0,1─0,2С, где

С — номинальная ёмкость батареи при температуре 25 градусов Цельсия.

Конечное напряжение разряда составляет 1 вольт. Как можно видеть на графике ниже, напряжение снижается при возрастании нагрузки.

Напряжение разомкнутой цепи

Величину этого параметра Ni─MH аккумуляторов определить достаточно сложно. Это определяется тем, что равновесный потенциал оксидно─никелевого электрода во многом зависит от степени окисленности Ni.

Важную роль играет и равновесный потенциал отрицательного электрода, который определяется степенью насыщенности водородом. Спустя сутки после заряда батареи напряжение разомкнутой никель-металлогидридного аккумулятора находится в пределах 1,30─1,35 вольта.

Хранение и срок эксплуатации

Во время хранения Ni─MH аккумулятора, как и в случае других типов батарей, имеет место явление саморазряда. При комнатной температуре за первый месяц хранения такой аккумулятор теряет 20─30 процентов ёмкости. В дальнейшем каждый месяц ёмкость никель─металлогидридного аккумулятора падает на 3─7 процентов в месяц. Интенсивность саморазряда возрастает с ростом температуры, как можно видеть на графике ниже.

Nimh аккумуляторы – источники питания, которые относят к щелочным АКБ. Они схожи с никель-водородными аккумуляторными батареями. Но уровень их энергетической емкости больше.

Внутренний состав аккумуляторов ni mh схож с составом никель-кадмиевых источников питания. Для подготовки плюсового вывода используют такой химический элемент, никель, минусового – сплав, который включает водородные металлы поглощающего типа.

Выделяют несколько типовых конструкций никель металл гидридных АКБ:

  • Цилиндр. Для разделения токопроводящих выводов использован сепаратор, которому задана форма цилиндра. На крышке сосредоточен аварийный клапан, который приоткрывается при существенном повышении давления.
  • Призма. В таком никель металл гидридном аккумуляторе электроды сосредоточены поочередно. Для их разделения применен сепаратор. Для размещения основных элементов используется корпус, подготовленный из пластика или специального сплава. Для контроля давления в состав крышки вводят клапан либо датчик.

Среди достоинств такого источника питания выделяют:

  • Удельные энергетические параметры источника питания возрастают в процессе эксплуатации.
  • При подготовке токопроводящих элементов не используется кадмий. Поэтому проблем с утилизацией АКБ не возникает.
  • Отсутствие своеобразного «эффекта памяти». Поэтому необходимости в увеличении емкости нет.
  • Дабы справиться с разрядным напряжением (снизить его), специалисты выполняют разрядку агрегата до 1 В 1–2 раза в месяц.

Среди ограничений, которые имеют отношение к аккумуляторам никель металлгидридным, выделяют:

  • Соблюдение установленного интервала рабочих токов. Превышение этих показателей приводит к стремительному разряду.
  • Эксплуатация источник питания этого типа в сильные морозы не допускается.
  • В состав АКБ вводят термические предохранители, с помощью которых определяют перегрев агрегата, повышение уровня температуры до критического показателя.
  • Склонность к саморазряду.

Зарядка аккумулятора никель металлгидридного

Процесс зарядки никель металлогидридных аккумуляторов связан с определенными химическими реакциями. Для их нормального протекания требуется часть энергии, которая подается зарядником, от сети.

КПД зарядного процесса представляет собой часть получаемой источником питания энергии, которая запасается. Величина этого показателя может разниться. Но при этом получить 100-процентное КПД невозможно.

Перед тем как заряжать металлогидридные аккумуляторы, изучают основные виды, которые зависят от величины тока.

Капельный тип зарядки

Применять этот вид зарядки для аккумуляторов необходимо осторожно, поскольку он приводит к уменьшению периода эксплуатации. Так как отключение зарядника этого типа осуществляется вручную, процесс нуждается в постоянном контроле, регулировании. В этом случае устанавливается минимальный показатель тока (0,1 от общей емкости).

Поскольку при такой зарядке ni mh аккумуляторов максимальное напряжение не устанавливается, ориентируются только на временной показатель. Для оценки временного промежутка используют параметры емкости, которые имеет разряженный источник питания.

КПД заряженного таким способом источника питания составляет около 65–70 процентов. Поэтому компании-изготовители не советуют пользоваться такими зарядниками, поскольку они влияют на эксплуатационные параметры аккумуляторной батареи.

Быстрая подзарядка

Определяя, каким током можно заряжать ni mh батарейки в быстром режиме, учитываются рекомендации производителей. Величина тока – от 0,75 до 1 от общей емкости. Превышать установленный интервал не рекомендуется, так как аварийные клапана включаются.

Для заряда nimh аккумуляторов в быстром режиме устанавливается напряжение от 0,8 до 8 вольт.

КПД быстрой зарядки ni mh источников питания достигает 90 процентов. Но этот параметр уменьшается, как только время зарядки заканчивается. Если своевременно не отключить зарядник, то внутри батарейки начнет увеличиваться давление, возрастет температурный показатель.

Дабы зарядить ni mh акб, выполняют такие действия:

  • Предварительная зарядка

Этот режим вводят в том случае, если батарейка полностью разряжена. На этом этапе ток составляет от 0,1 до 0,3 от емкости. Пользоваться большими токами запрещено. Временной промежуток – около получаса. Как только параметр напряжения достигает 0,8 вольт, то процесс прекращается.

  • Переход на ускоренный режим

Процесс наращивания тока осуществляется в течение 3–5 минут. В течение всего временного промежутка контролируется температура. Если этот параметр достигает критического значения, то зарядник отключается.

При быстрой зарядке никель металлогидридные батареек ток устанавливается на уровне 1 от общей емкости. При этом очень важно быстро отключить заряжающее устройство, дабы не нанести вред аккумулятору.

Для контроля напряжения используют мультиметр или вольтметр. Это способствует исключению ложных срабатываний, которые пагубно влияют на работоспособность устройства.

Часть зарядных устройств для ni mh аккумуляторов работают не при постоянном, а при импульсном токе. Подача тока осуществляется с установленной периодичностью. Подача импульсного тока способствует равномерному распределению электролитического состава, активных веществ.

  • Дополнительная и поддерживающая зарядка

Для восполнения полного заряда ni mh аккумулятора на последнем этапе показатель тока снижается до 0,3 от емкости. Продолжительность – около 25–30 минут. Увеличивать этот временной промежуток запрещено, поскольку это способствует минимизации периода эксплуатации АКБ.

Ускоренная зарядка

Некоторые модели зарядных устройств для никель кадмиевых аккумуляторов оснащены режимом ускоренной зарядки. Для этого ток зарядки ограничивают, устанавливая параметры на уровне 9–10 от емкости. Снижать ток заряда нужно, как только батарея будет заряжена до 70 процентов.

Если аккумуляторная батарея заряжается в ускоренном режиме более получаса, то структура токопроводящих выводов постепенно разрушается. Специалисты рекомендуют пользоваться такой зарядкой, если вы обладаете определенным опытом.

Как правильно заряжать источники питания, а также исключить вероятность перезарядки? Для этого следует соблюдать такие правила:

  1. Контроль температурного режима ni mh аккумуляторов. Прекращать зарядку nimh аккумуляторов необходимо, как только уровень температуры стремительно повышается.
  2. Для nimh источников питания установлены временные ограничения, которые позволяют контролировать процесс.
  3. Разряжать ni mh аккумуляторные батареи и заряжать их необходимо при напряжении, которое равно 0,98. Если этот параметр существенно снижается, то выполняется отключение зарядников.

Восстановление никель металлогидридных источников питания

Процесс восстановления ni mh аккумуляторов заключается в ликвидации последствий «эффекта памяти», которые связаны с потерей емкости. Вероятность возникновения такого эффекта увеличивается, если часто осуществлять неполную зарядку агрегата. Аппаратом фиксируется нижняя граница, после чего емкость снижается.

Перед тем как восстановить источник питания, подготавливаются такие предметы:

  • Лампочка требуемой мощности.
  • Зарядник. Перед применением важно уточнить, можно ли использовать зарядник для разрядки.
  • Вольтметр или мультиметр для установления напряжения.

К аккумуляторной батареи своими руками подводят лампочку либо же зарядник, который оснащен соответствующим режимом, дабы полностью ее разрядить. После этого включается режим зарядки. Численность циклов восстановления зависит от того, в течение какого срока не эксплуатировалась АКБ. Процесс тренировки рекомендуют повторять 1–2 раза в течение месяца. Кстати, восстанавливаю таким способом те источники, которые потеряли 5–10 процентов от общей емкости.

Для вычисления утраченной емкости используют достаточно простой способ. Так, аккумуляторную батарею полностью заряжают, после чего его разряжают и измеряют емкость.

Этот процесс существенно упроститься, если пользоваться зарядным устройством, с помощью которого можно контролировать и уровень напряжения. Такие агрегаты выгодно использовать еще и потому, что вероятность глубокого разряда сокращается.

Если степень заряженности никелевых металлогидридных батарей не установлена, то подводить лампочку необходимо осторожно. С помощью мультиметра контролируется уровень напряжения. Только так предотвращается вероятность полного разряда.

Опытные специалисты проводят, как восстановление одного элемента, так и целого блока. В период зарядки проводят выравнивание имеющегося заряда.

Восстановление источника питания, который эксплуатировался в течение 2–3 лет, при полном заряде, разряде не всегда приносит ожидаемый результат. Все потому, что электролитический состав и токопроводящие выводы постепенно меняются. Перед применением таких устройств выполняется восстановление электролитического состава.

Просмотрите видео про восстановление такого аккумулятора.

Правила использования никель-металлогидридных аккумуляторных батарей

Продолжительность эксплуатации ni mh аккумуляторов во многом зависит от того, не допускается ли перегрев или существенный перезаряд источника питания. Дополнительно мастера советуют учитывать следующие правила:

  • Вне зависимости от того, сколько будут храниться источники питания, их обязательно заряжают. Процент заряда должен составлять не менее 50 от общей емкости. Только в этом случае проблем во время хранения и обслуживания не будет.
  • Аккумуляторные батареи такого типа отличаются чувствительностью к перезарядке, к чрезмерному нагреву. Эти показатели пагубно сказываются на продолжительности использования, величине токоотдачи. Для этих источников питания требуются специальные зарядники.
  • Проводить тренировочные циклы для никель-металлогидридных источников питания необязательно. При помощи проверенного зарядника потерянная емкость восстанавливается. Численность восстановительных циклов во многом зависит от того, в каком состоянии агрегат.
  • Между циклами восстановления обязательно делают перерывы, а также изучают, как зарядить АКБ эксплуатируемое. Этот временной промежуток требуется, дабы агрегат остыл, уровень температуры опустился до требуемого показателя.
  • Процедура подзарядки или тренировочного цикла проводится только в приемлемом температурном режиме: +5-+50 градусов. Если превышать этот показатель, то вероятность стремительного выхода из строя повышается.
  • При подзарядке следят за тем, чтобы напряжение не опускалось ниже, чем 0,9 вольта. Ведь некоторые зарядники не осуществляют зарядку, если это значение минимальное. В таких случаях допускается подведение внешнего источника для восстановления питания.
  • Циклическое восстановление проводят при условии, что есть определенный опыт. Ведь не все зарядные устройства можно использовать для разрядки аккумулятора.
  • Процедура хранения включает ряд простых правил. Не допускается хранение источника питания на открытом воздухе или в помещениях, в которых уровень температуры снижается до 0 градусов. Это провоцирует застывание электролитического состава.

Если единовременно осуществляется зарядка не одного, а нескольких источников питания, то степень заряженности поддерживается на установленном уровне. Поэтому неопытные потребители осуществляют восстановление АКБ отдельно.

Nimh аккумуляторы – эффективные источники питания, которыми активно пользуются для комплектации различных устройств и агрегатов. Они выделяются определенными преимуществами, особенности. Перед их эксплуатацией обязателен учет основных правил использования.

Видео про Nimh аккумуляторы


Никеля.

Энциклопедичный YouTube

    1 / 5

    Химия из поддельного Ni-MH аккумулятора

    Химия из никель-кадмиевого аккумулятора

    Никель-цинковые аккумуляторы

    Где взять бесплатные LI-Ion и Ni-Mh аккумуляторы.

    Устройство аккумуляторов. Химия – просто. Li-ion battery

    Субтитры

История изобретения

Исследования в области технологии изготовления NiMH-аккумуляторов начались в 1970-е годы и были предприняты как попытка преодоления недостатков . Однако, применяемые в то время металл-гидридные соединения были нестабильны, и требуемые характеристики не были достигнуты. В результате процесс разработки NiMH-аккумуляторов застопорился. Новые металл-гидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980 году. Начиная с конца 1980-х годов NiMH-аккумуляторы постоянно совершенствовались, главным образом по плотности запасаемой энергии . Их разработчики отмечали, что для NiMH-технологий имеется потенциальная возможность достижения ещё более высоких плотностей энергии.

Параметры

  • Теоретическая энергоёмкость (Вт·ч /кг): 300 Вт·ч/кг .
  • Удельная энергоёмкость: около - 60-72 Вт·ч/кг.
  • Удельная энергоплотность (Вт·ч/дм ³): около - 150 Вт·ч/дм³.
  • ЭДС: 1,25 .
  • Рабочая температура: −60…+55 °C .(-40… +55)
  • Срок службы: около 300-500 циклов заряда/разряда.
  • саморазряд: до 100 % в год (у старых типов аккумуляторов)

Описание

У никель-металл-гидридных аккумуляторов типа «Крона», как правило - начальным напряжением 8,4 В, напряжение постепенно снижается до 7,2 В, а затем, когда энергия аккумулятора исчерпывается, напряжение снижается быстро. Этот тип аккумуляторов разработан для замены никель-кадмиевых аккумуляторов . Никель-металл-гидридные аккумуляторы имеют примерно на 20 % большую ёмкость при тех же габаритах, но меньший срок службы - от 200 до 300 циклов заряда/разряда. Саморазряд примерно в 1,5-2 раза выше, чем у никель-кадмиевых аккумуляторов.

NiMH-аккумуляторы практически избавлены от «эффекта памяти ». Это означает, что заряжать не полностью разряженный аккумулятор можно, если он не хранился больше нескольких дней в таком состоянии. Если же аккумулятор был частично разряжен, а затем не использовался в течение длительного времени (более 30 дней), то перед зарядом его необходимо разрядить.

Экологически безопасны.

Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда - 15-16 часов (типичная рекомендация производителя).

Хранение

Аккумуляторы нужно хранить полностью заряженными в холодильнике, но не ниже 0 °C . При хранении желательно регулярно (раз в 1-2 месяца) проверять напряжение. Оно не должно падать ниже 1 . Если же напряжение упало, необходимо зарядить аккумуляторы заново.

NiMH-аккумуляторы с низким саморазрядом (LSD NiMH)

Никель-металл-гидридные аккумуляторы с низким саморазрядом (the low self-discharge nickel-metal hydride battery, LSD NiMH), впервые были представлены в ноябре 2005 года фирмой Sanyo под торговой маркой Eneloop. Позднее многие мировые производители представили свои LSD NiMH-аккумуляторы.

Этот тип аккумуляторов имеет сниженный саморазряд, а значит обладает более длительным сроком хранения по сравнению с обычными NiMH. Аккумуляторы продаются как «готовые к использованию» или «предварительно заряженные» и позиционируются как замена щелочным батарейкам.

По сравнению с обычными аккумуляторами NiMH, LSD NiMH являются наиболее полезными, когда между зарядкой и использованием аккумулятора может пройти более трёх недель. Обычные NiMH-аккумуляторы теряют до 10 % ёмкости заряда в течение первых 24 часов после заряда, затем ток саморазряда стабилизируется на уровне до 0,5 % ёмкости в день. Для LSD NiMH этот параметр как правило находится в диапазоне от 0,04 % до 0,1 % ёмкости в день. Производители утверждают, что улучшив электролит и электрод, удалось добиться следующих преимуществ LSD NiMH относительно классической технологии:

  1. Возможность работать с высокими токами разряда, которые могут на порядок превышать ёмкость аккумулятора. Из-за этой особенности LSD NiMH очень хорошо справляются с мощными фонарями, фотовспышками, радиоуправляемыми моделями и любыми другими мобильными устройствами, которые требуют отдачи большого тока.
  2. Высокий коэффициент устойчивости к морозам. При −20 °C - потеря номинальной мощности составляет не более 12 %, в то время как лучшие экземпляры обычных NiMH-аккумуляторов теряют порядка 20-30 %.
  3. Лучшее сохранение рабочего напряжения. Многие устройства не имеют драйверов питания и выключаются при падении напряжения, характерного для Ni-MH - до 1,1 В, а предупреждение низкого питания наступает при 1,205 В.
  4. Большее время жизни: в 2-3 раза больше циклов заряда-разряда (до 1500 циклов) и лучше сохраняется ёмкость на протяжении жизни элемента.

Неполный список аккумуляторов долгого хранения (с низким саморазрядом):

  • AlwaysReady от Camelion
  • AccuEvolution от AccuPower
  • MaxE и MaxE Plus от Ansmann
  • Ecomax от CDR King
  • ActiveCharge/StayCharged/Pre-Charged/Accu от Duracell
  • nx-ready от ENIX energies
  • Prolife от Fujicell
  • ReCyko от Gold Peak
  • Ready4Power от Hama
  • Pre-Charged от Kodak
  • R2G от Lenmar
  • Imedion от Maha
  • EnergyOn от NexCell
  • Infinium от Panasonic
  • Hybrid, Platinum, и OPP Pre-Charged от Rayovac
  • Pleomax E-Lock от Samsung
  • Cycle Energy от Sony
  • Centura от Tenergy
  • LSD ready to use от Turnigy
  • Hybrio от Uniross
  • Instant от Vapex
  • Ready2Use от Varta
  • eniTime от Yuasa
  • Precision от Energizer

Другие преимущества NiMH-аккумуляторов с низким саморазрядом (LSD NiMH) Никель-металл-гидридные аккумуляторы с низким саморазрядом обычно имеют значительно более низкое внутреннее сопротивление, чем обычные NiMH-батареи. Это сказывается весьма положительно в устройствах с высоким токопотреблением:

  • Более стабильное напряжение
  • Уменьшенное тепловыделение, особенно на режимах быстрого заряда/разряда
  • Более высокая эффективность
  • Способность к высокой импульсной токоотдаче (пример: зарядка вспышки фотоаппарата происходит быстрее)
  • Возможность продолжительной работы в устройствах с низким энергопотреблением (пример: пульты ДУ , часы.)

Методы заряда

Зарядка производится электрическим током при напряжении на элементе до 1,4 - 1,6 В. Напряжение на полностью заряженном элементе без нагрузки составляет 1,4 В. Напряжение при нагрузке меняется от 1,4 до 0,9 В. Напряжение без нагрузки на полностью разряженном аккумуляторе составляет 1,0 - 1,1 В (дальнейшая разрядка может испортить элемент). Для зарядки аккумулятора используется постоянный или импульсный ток с кратковременными отрицательными импульсами (для предотвращения эффекта «памяти», метод заряда аккумуляторов переменным асимметричным током).

Контроль окончания заряда по изменению напряжения

Одним из методов определения окончания заряда является метод -ΔV. На изображении показан график напряжения на элементе при заряде. Зарядное устройство заряжает аккумулятор постоянным током. После того, как аккумулятор полностью заряжен, напряжение на нём начинает падать. Эффект наблюдается только при достаточно больших токах зарядки (0,5С..1 С). Зарядное устройство должно определить это падение и выключить зарядку.

Существует ещё так называемый «inflexion» - метод определения окончания быстрой зарядки. Суть метода заключается в том, что анализируется не максимум напряжения на аккумуляторе, а изменение производной напряжения по времени. То есть быстрая зарядка прекратится в тот момент, когда скорость роста напряжения будет минимальной. Это позволяет завершить фазу быстрой зарядки раньше, когда температура аккумулятора ещё не успела значительно подняться. Однако метод требует измерения напряжения с большей точностью и некоторых математических вычислений (вычисления производной и цифровой фильтрации полученного значения).

Контроль окончания заряда по изменению температуры

При зарядке элемента постоянным током бóльшая часть электрической энергии преобразуется в химическую энергию. Когда аккумулятор полностью заряжен, то подводимая электрическая энергия будет преобразовываться в тепло. При достаточно большом зарядном токе можно определить окончание заряда по резкому увеличению температуры элемента, установив датчик температуры аккумулятора. Максимальная допустимая температура аккумулятора +60 °С.

Расчет времени заряда

Для расчета времени заряда аккумулятора используется следующая формула: t = 1.3*(ёмкость аккумулятора / ток заряда)

Области применения

Замена стандартного гальванического элемента, электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

Выбор емкости аккумуляторов

При использовании NiMH-аккумуляторов далеко не всегда следует гнаться за большой ёмкостью. Чем более ёмок аккумулятор, тем выше (при прочих равных условиях) его ток саморазряда. Для примера рассмотрим аккумуляторы ёмкостью 2500 мАч и 1900 мАч. Полностью заряженные и не используемые в течение, например, месячного срока аккумуляторы потеряют часть своей электрической ёмкости вследствие саморазряда. Более ёмкий аккумулятор будет терять заряд значительно быстрее, чем менее ёмкий. Таким образом по прошествии, например, месяца аккумуляторы будут иметь примерно равный заряд, а по прошествии ещё большего времени изначально более ёмкий аккумулятор будет содержать меньший заряд.