Общее определение определителя n порядка. Определители n-го порядка; миноры и алгебраические дополнения

17.04.2019

Очевидно, что для системы из n линейных уравнений с n неизвестными получим матрицу коэффициентов размером :

Введем понятие определителя n -го порядка.

Определение 4.1:

Определителем n -го порядка называется число равное

Сумме n ! слагаемых;

Каждое слагаемое есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца;

Каждое слагаемое берется со знаком «+», если перестановка из вторых индексов четная, и со знаком «-», если перестановка из вторых индексов нечетная, при условии, что первые индексы образуют натуральный ряд чисел.

Т.о.

Здесь å берется по всем возможным перестановкам , составленным из чисел 1,2,…,n .

5. Основные свойства определителей.

Установим основные свойства определителей, которые для простоты будем показывать на определителе 2-го порядка.

1. При замене строк соответствующими столбцами (именуемой транспони­рованием ) определитель остается неизменным. Действительно:

Следовательно, , что и требовалось доказать.

Примечание : Полученный выше результат дает нам право утверждать, что строки и столбцы определителя, именуемые в дальней­шем рядами, равноправны.

2. При перестановке двух рядов определитель меняет знак на противоположный.

Действительно, Поменяем местами строки и вычислим определитель

что и требовалось доказать.

3. Если в определителе два параллельных ряда одинаковы, то он равен нулю. Действительно, поменяем местами две одинаковых строки. Тогда величина определителя не изменится, а знак в силу свойства 2. поменяется. Единственное число, которое не меняется при изменении знака – ноль.

4. Общий множитель членов любого ряда можно вынести за знак определителя.

Что и требовалось доказать.

5. Если все элементы любого ряда являются суммами одинакового числа слагаемых, то определитель равен сумме определителей, в которых элементами рассматриваемого ряда служат отдельные слагаемые.

что и требовалось доказать.

6. Определитель не изменится, если к элементам любого ряда прибавить соответствующие элементы параллельного ряда, умноженные на не­которое число.



Умножим вторую строку на и прибавим ее к первой строке:

Действительно, в силу свойств 3,4,5

=

что и требовалось доказать.

6. Миноры и алгебраические дополнения элементов оп­ределителя.

Рассмотрим определитель n -го порядка:

.

Выделим в определителе i -ю строку и j -й столбец. На пересечении этих рядов стоит элемент

Если в определителе мы вычеркнем i -юстроку и j -йстолбец, то получим определитель по­рядка п -1 (т. е. имеющий порядок, на единицу меньший по сравнению с исходным определителем), называемый мино­ром элемента определителя . Будем обозначать мино­р элемента символом .

Определение 6.1. А лгебраическим дополнением эле­мента определителя называется минор , взятый со знаком , и обозначается символом . Согласно определению получим

.

Пример 6.1. Найти минор и алгебраическое дополнение определителя

Методы вычисления определителей n-го порядка.

Пусть дано упорядоченное множество n элементов. Всякое расположение n элементов в определённом порядке называется перестановкой из этих элементов.

Так как каждый элемент определяется своим номером, то будем говорить, что дано n натуральных чисел.

Число различных перестановок из n чисел равно n!

Если в некоторой перестановке из n чисел число i стоит раньше j , но i > j , т. е. большее число стоит раньше меньшего, то говорят, что пара i , j составляет инверсию .

Пример 1. Определить число инверсий в перестановке (1, 5, 4, 3, 2)

Решение.

Числа 5 и 4, 5 и 3, 5 и 2, 4 и 3, 4 и 2, 3 и 2 образуют инверсии. Общее число инверсий в данной перестановке равно 6.

Перестановка называется чётной , если общее число инверсий в ней чётное, в противном случае она называется нечётной . В рассмотренном выше примере дана чётная перестановка.

Пусть дана некоторая перестановка …, i , …, j , … (*) . Преобразование, при котором числа i и j меняются местами, а остальные остаются на своих местах, называется транспозицией . После транспозиции чисел i и j в перестановке (*) получится перестановка …, j , …, i , …, где все элементы, кроме i и j , остались на своих местах.

От любой перестановки из n чисел можно перейти к любой другой перестановке из этих чисел с помощью нескольких транспозиций.

Всякая транспозиция меняет чётность перестановки.

При n ≥ 2 число чётных и нечётных перестановок из n чисел одинаково и равно .

Пусть М – упорядоченное множество из n элементов. Всякое биективное преобразование множества М называется подстановкой n -й степени .

Подстановки записывают так: https://pandia.ru/text/78/456/images/image005_119.gif" width="27" height="19"> и все ik различны.

Подстановка называется чётной , если обе её строки (перестановки) имеют одинаковые чётности, т. е. либо обе чётные, либо обе нечётные. В противном случае подстановка называется нечётной .

При n ≥ 2 число чётных и нечётных подстановок n степени одинаково и равно .

Определителем квадратной матрицы А второго порядка А= называется число, равное =а11а22–а12а21.

Определитель матрицы называют также детерминантом . Для определителя матрицы А используют следующие обозначения: det A, ΔA.

Определителем квадратной матрицы А=третьего порядка называют число, равное │А│=а11а22а33+а12а23а31+а21а13а32‑а13а22а31‑а21а12а33‑а32а23а11

Каждое слагаемое алгебраической суммы в правой части последней формулы представляет собой произведение элементов матрицы, взятых по одному и только одному из каждого столбца и каждой строки. Для определения знака произведения полезно знать правило (его называют правилом треугольника), схематически изображённое на рис.1:

«+» «-»

https://pandia.ru/text/78/456/images/image012_64.gif" width="73" height="75 src=">.

Решение.

Пусть А – матрица n-го порядка с комплексными элементами:

А=https://pandia.ru/text/78/456/images/image015_54.gif" width="112" height="27 src=">(1) ..gif" width="111" height="51">(2) .

Определителем n-го порядка, или определителем квадратной матрицы А=(aij) при n>1, называется алгебраическая сумма всевозможных произведений вида (1) , причём произведение (1) берётся со знаком «+», если соответствующая ему подстановка (2) чётная, и со знаком «‑», если подстановка нечётная.

Минором М ij элемента aij определителя называется определитель, полученный из исходного вычёркиванием i -й строки и j - го столбца.

Алгебраическим дополнением А ij элемента aij определителя называют число А ij =(–1) i + j М ij , где М ij минор элемента aij .

Свойства определителей

1. Определитель не изменяется при замене всех строк соответствующими столбцами (определитель не изменится при транспонировании).

2. При перестановке двух строк (столбцов) определитель меняет знак.

3. Определитель с двумя одинаковыми (пропорциональными) строками (столбцами) равен нулю.

4. Общий для всех элементов строки (столбца) множитель можно вынести за знак определителя.

5. Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число, отличное от нуля.

6. Если все элементы некоторой строки (столбца) определителя равны нулю, то он равен нулю.

7. Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения (свойство разложения определителя по строке (столбцу)).

Рассмотрим некоторые способы вычисления определителей порядка n .

1. Если в определителе n-го порядка хотя одна строка (или столбец) состоят из нулей, то определитель равен нулю.

2. Пусть в определителе n-го порядка какая-то строка содержит отличные от нуля элементы. Вычисление определителя n-го порядка можно свести в этом случае к вычислению определителя порядка n-1. Действительно, используя свойства определителя, можно все элементы какой-либо строки, кроме одного, сделать нулями, а затем разложить определитель по указанной строке. Например, переставим строки и столбцы определителя так, чтобы на месте а11 стоял отличный от нуля элемент.

https://pandia.ru/text/78/456/images/image018_51.gif" width="32 height=37" height="37">.gif" width="307" height="101 src=">

Заметим, что переставлять строки (или столбцы) не обязательно. Можно нули получать в любой строке (или столбце) определителя.

Общего метода вычисления определителей порядка n не существует, если не считать вычисление определителя заданного порядка непосредственно по определению. К определителю того или иного специального вида применяются различные методы вычисления, приводящие к более простым определителям.

3. Приведем к треугольному виду. Пользуясь свойствами определителя, приводим его к так называемому треугольному виду, когда все элементы, стоящие по одну сторону от главной диагонали равны нулю. Полученный определитель треугольного вида равен произведению элементов, стоящих на главной диагонали. Если удобнее получить нули по одну сторону от побочной диагонали, то он будет равен произведению элементов побочной диагонали, взятому со знаком https://pandia.ru/text/78/456/images/image022_48.gif" width="49" height="37">.

Пример 3. Вычислить определитель разложением по строке

https://pandia.ru/text/78/456/images/image024_44.gif" width="612" height="72">

Пример 4. Вычислить определитель четвёртого порядка

https://pandia.ru/text/78/456/images/image026_45.gif" width="373" height="96 src=">.

2-й способ (вычисление определителя путём разложения его по строке):

Вычислим этот определитель разложением по строке, предварительно преобразовав его так, чтобы в какой-то его строке все элементы кроме одного обратились в ноль. Для этого прибавим первую строку определителя к третьей. Затем умножим третий столбец на (‑5) и сложим с четвёртым столбцом. Преобразованный определитель раскладываем по третьей строке. Минор третьего порядка приводим к треугольному виду относительно главной диагонали.

https://pandia.ru/text/78/456/images/image028_44.gif" width="202" height="121 src=">

Решение.

Вычтем из первой строки вторую, из второй – третью и т. д., наконец, из предпоследней последнюю (последняя строка остается без изменений).

https://pandia.ru/text/78/456/images/image030_39.gif" width="445" height="126 src=">

Первый определитель в сумме – треугольного вида относительно главной диагонали, поэтому он равен произведению диагональных элементов, т. е. (n–1)n. Второй определитель в сумме преобразуем, прибавив последнюю строку ко всем предыдущим строкам определителя. Полученный при этом преобразовании определитель будет треугольного вида относительно главной диагонали, поэтому он будет равен произведению диагональных элементов, т. е. nn-1:

=(n–1)n+(n–1)n + nn-1.

4. Вычисление определителя с помощью теоремы Лапласа. Если в определителе выделить k строк (или столбцов) (1£k£n-1), то определитель равен сумме произведений всех миноров k-ого порядка, расположенных в выделенных k строках (или столбцах), на их алгебраические дополнения.

Пример 6. Вычислить определитель

https://pandia.ru/text/78/456/images/image033_36.gif" width="538" height="209 src=">

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ №2

«ВЫЧИСЛЕНИЕ ОПРЕДЕЛИТЕЛЕЙ N-ГО ПОРЯДКА»

Вариант 1

Вычислить определители

https://pandia.ru/text/78/456/images/image035_39.gif" width="114" height="94 src=">

Для более точного и сложного определения и для того, чтобы говорить об определителях порядка больше третьего, потребуется вспомнить еще кое-что. Нас интересует термин подстановка, даже не столько определение, сколько способ её вычисление.

Для подстановки принята запись:
, т.е. пары чисел, записанные в столбик, причем так, что верхние числа идут последовательно (вообще говоря, столбцы можно менять местами).

Подстановки бывают четными и нечетными. Для того, чтобы выяснить, является данная подстановка четной или нечетной, нужно обратить внимание на вторую строку, а точнее на порядок чисел в ней. Необходимо подсчитать количество пар чисел во второй строке, таких, что число, стоящее левее, больше числа, стоящего правее (). Если количество таких пар нечетно, то и подстановка называется нечетной, и, соответственно, если количество таких пар четно, то и подстановка называется четной.

Пример:
1)


4 стоит левее 3, левее 1, левее 2 — это уже три «неправильные» пары.
3 стоит левее 1 и 2 – еще две пары.
Итого 5 пар, т.е. это нечетная подстановка.
2)

Заметим, что числа в первой строке расположены не по порядку. Выполним перестановку столбцов.

Рассмотрим числа второго ряда.
3 стоит левее 2 и 1 – две пары,
2 стоит левее 1 – одна пара,
5 стоит левее 4 и 1 – две пары,
4 стоит левее1 – одна пара.
Итого 6 пар – подстановка четная.

Определение 2 (для студентов математических специальностей, раскрывающее всю суть определяемого понятия):

Определителем n-го порядка, соответствующим матрице
,
называется алгебраическая сумма слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае.
Замечание: Объясним это определение на примере определителя третьего порядка, для которого уже известна формула вычисления.
.
1) «алгебраическая сумма слагаемых» — . И да, действительно, здесь шесть слагаемых.
2) «слагаемыми служат всевозможные произведения элементов матрицы, взятых по одному из каждой строки и каждого столбца» — рассмотрим например слагаемое . Его первый множитель взят из второй строки, второй – из первой, а третий из третьей. То же самое и со столбцами – первым множитель из первого столбца, второй из третьего, а последний из второго.
3) «причем слагаемое берется со знаком плюс, если его индексы составляют четную подстановку, и со знаком минус – в противоположном случае» — рассмотрим для примера слагаемые (со знаком плюс) и (со знаком минус).

Составим перестановки так, что в первой строке будут номера строк сомножителей, а во второй – номера столбцов.
Для слагаемого : (первый столбец – индекс первого сомножителя и т.д.)
Для слагаемого : .
Определим четность этих перестановок:
а) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара,
3 левее 1 – одна пара.
Итого две пары, т.е. количество пар четно, значит перестановка четная, а значит, слагаемое должно входить в сумму со знаком плюс (как оно и есть на самом деле).
б) — элементы в первой строке стоят по порядку. Во второй строке не по порядку стоят пары:
2 левее 1 – одна пара.
Итого, количество пар чисел, стоящих так, что большее левее меньшего – 1 шт., т.е. нечетно, а значит и перестановка называется нечетной, и соответствующее слагаемое должно входить в сумму со знаком минус (да, это так).
Пример («Сборник задач по алгебре» под ред. А.И. Кострикина, №1001):

Выяснить, какие из следующих произведений входят в развернутое выражение определителей соответствующих порядков и с какими знаками.
а)
Обратим внимание на часть определния «по одному из каждой строки и каждого столбца». Все первые индексы сомножителей различны от 1 до 6(1, 2, 3, 4, 5, 6). Все вторые индексы сомножителей различны от 1 до 6 (3, 2, 1, 4, 5, 6).
Вывод – это произведение входит в развернутое выражение определителя 6-го порядка.

3 левее 2, 1 – две пары,
2 левее 1 – одна пара,
6 левее 5, 4 – две пары,
5 левее 4 – одна пара.
Итого 6 пар, т.е. перестановка четная и слагаемое входит в развернутую запись определителя со знаком «плюс».

б)
Все первые индексы сомножителей различны от 1 до 5(3, 1, 5, 4, 2). Все вторые индексы сомножителей различны от 1 до 5 (1, 3, 2, 5, 4).
Вывод – это произведение входит в развернутое выражение определителя 5-го порядка.
Определим знак этого слагаемого, для этого составим перестановку из индексов сомножителей:

Переставим столбцы так, чтобы числа в первой строке шли по порядку от меньшего к большему.

3 левее 1, 2 – две пары.
4 левее 1, 2 – две пары,
5 левее 2 – одна пара.
Итого 5 пар, т.е. перестановка нечетная и слагаемое входит в развернутую запись определителя со знаком «минус».
в) — обратим внимание на первый и шестой сомножители: и . Они оба взяты из 4-го столбца, а значит, это произведение не может входить в развернутое выражение определителя 7-го порядка.

Рассмотрим квадратную матрицу второго порядка

Определение . Определителем квадратной матрицы второго порядка называют число, равное a 11 a 22 -a 12 a 21 и обозначают символом , то есть

Определитель матрицы называется также детерминантом . Обозначения определителя матрицы A : |A |, Δ, det A , det(a ij) .

Теперь рассмотрим квадратную матрицу третьего порядка

При вычислении определителя третьего порядка полезно знать правило треугольника: со знаком плюс идут произведения троек чисел, расположенных на главной диагонали матрицы, и в вершинах треугольников с основанием параллельным этой диагонали и вершиной в противоположого угла матрицы. Со знаком минус идут тройки из второй диагонали и из треугольноков, построенных относительно этой диагонали. Следующая схема демонстрирует это правило. В схеме синим (слева) отмечены элементы, чьи произведения идут со знаком плюс, а красным (справа) - со знаком минус.

Теперь дадим определение.

Определение . Определителем квадратной матрицы третьего порядка называют число

Определение . Минором какого-либо элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, к которым принадлежит данный элемент. Минор элемента a ik обозначим M ik .

Определение . Минор элемента a 21 определителя третьего порядка матрицы является определитель второго порядка

Определение a ik определителя называется его минор, взятый со знаком (-1) i+k .

Алгебраическое дополнение элемента a ik обозначим A ik . По определению

Правило для определения знака алгебраического дополнения (на примере определителя третьего порядка):

Пример . Алгебраическим дополнением элемента a 21 является

Теорема разложения . Определитель равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Свойства определителей

  • Определитель не изменится при замене всех его строк соответствующими столбцами.
  • При перестановке двух столбцов (строк) определитель меняет знак.
  • Определитель с двумя одинаковыми столбцами (строками) равен нулю.
  • Множитель, общий для элементов некоторого столбца (строки), можно выносить за знак определителя.
  • Определитель с двумя пропорциональными столбцами (строками) равен нулю.
  • Определитель равен нулю, если все элементы некоторого столбца (строки) равны нулю.
  • Определитель не изменится, если к элементам некоторого столбца (строки) прибавить соответствующие элементы другого столбца (строки), предварительно умножив их на один и тот же множитель.

Замечание . Если в определителе все элементы некоторого столбца (строки) равны суммам двух слагаемых, то такой определитель равен сумме двух соответствующих определителей.

Например,

Определители n -го порядка

Рассмотрим квадратную матрицу n -го порядка

Понятие определителя этой матрицы или определителя n -го порядка вводится индуктивно, считая, что уже введено понятие определителя порядка n-1 , соответствующего квадратной матрице (n-1) -го порядка.

Определение минора элемента матрицы и его алгебраического дополнения верны для определителей любого порядка.

Определение . Определителем порядка n , соответствующим матрице A n -го порядка, называют число, равное (M 1k - минор элемента a 1k ) и обозначаемое одним из символов

Итак, по определению

Эта формула выражает правило составления определителя порядка n по элементам первой строки соответствующей ему матрицы и по алгебраическим дополнениям этих элементов, являющимся определителем порядка n-1 , взятыми с надлежащими знаками.

Для определителя любого порядка верны все свойства и теоремы, полученные и доказанные для определителя третьего порядка.

Сформулируем основную теорему:

Теорема [Теорема замещения] . Каков бы ни был номер строки i (i=1,2,…,n ), для определителя n -го порядка справедлива формула

называемая разложением этого определителя по i -й строке.

Поскольку верно свойство 1 определителей, то определитель также можем разложить и по столбцу:

Примеры

Вычислим следующий определитель:

Вычтем вторую строку из первой и третьей. После прибавим к третей первую и из третей вынесем общий множитель:

Теперь ко второй строке прибавим третью, умноженную на 7, и к четвертой прибавим третью, умноженную на 2. После вынесем общий множитель из четвертой строки:

Разложим определитель по второму столбцу (знаки указывают значение (-1) i+j при миноре). Заметим, что в столбце только один ненулевой элемент, следовательно, в разложении останется только один определитель третьего порядка. Окончательно пулучаем ответ использую формулу для определителя третьего порядка.

Приведем еще несколько примеров для определителей различных порядков.

Рассматривая развернутое выражение для определителей

замечаем, что в каждое слагаемое входят в качестве сомножителей по одному элементу из каждой строки и по одному из каждого столбца определителя, причем всевозможные произведения этого вида входят в состав определителя со знаком плюс или минус. Это свойство полагается в основу обобщения понятия определителя на квадратные матрицы любого порядка. Именно: определителем квадратной матрицы порядка или, короче, определителем порядка называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки и по одному из каждого столбца, причем полученные произведения снабжены знаками плюс и минус по некоторому вполне определенному правилу. Это правило вводится

довольно сложным образом, и мы не будем останавливаться на его формулировке. Существенно отметить, что оно устанавливается так, что обеспечивается следующее важнейшее основное свойство определителя:

1. При перестановке двух строк определитель меняет знак на противоположный.

Для определителя 2 и 3-го порядков это свойство легко проверяется непосредственным вычислением. В общем случае оно доказывается на основе не сформулированного нами здесь правила знаков.

Определители обладают целым рядом других замечательных свойств, которые дают возможность с успехом использовать определители в разнообразных теоретических и численных расчетах, несмотря на чрезвычайную громоздкость определителя: ведь определитель n-го порядка содержит, как нетрудно видеть, слагаемых, каждое слагаемое состоит из сомножителей и слагаемые снабжены знаками по некоторому сложному правилу.

Переходим к перечислению основных свойств определителей, не останавливаясь на их подробных доказательствах.

Первое из этих свойств уже сформулировано выше.

2. Определитель не меняется при транспонировании его матрицы, т. е. при замене строк на столбцы с сохранением порядка.

Доказательство основано на подробном исследовании правила расстановки знаков в слагаемых определителя. Это свойство дает возможность всякое утверждение, касающееся строк определителя, перенести на столбцы.

3. Определитель есть линейная функция от элементов какой-либо его строки (или столбца). Подробнее

где представляют собой выражения, не зависящие от элементов строки.

Это свойство с очевидностью следует из того, что каждое слагаемое содержит по одному и только одному сомножителю из каждой, в частности строки.

Равенство (5) называется разложением определителя по элементам строки, а коэффициенты называются алгебраическими дополнениями элементов в определителе.

4. Алгебраическое дополнение элемента равно, с точностью до знака, так называемому минору определителя, т. е. определителю

долю порядка, получающемуся из данного посредством вычеркивания строки и столбца. Для получения алгебраического дополнения минор нужно взять со знаком . Свойства 3 и 4 сводят вычисление определителя порядка к вычислению определителей порядка

Из перечисленных основных свойств вытекает ряд интересных свойств определителей. Перечислим некоторые на них.

5. Определитель с двумя одинаковыми строками равен пулю.

Действительно, если определитель имеет две одинаковые строки, то при их перестановке определитель не изменяется, ибо строки одинаковые, но вместе с тем он, в силу первого свойства, меняет знак на обратный. Следовательно, он равен нулю.

Сумма произведений элементов какой-либо строки на алгебраические дополнения другой строки равна нулю.

Действительно, такай сумма является результатом разложения определителя с двумя одинаковыми строками по одной из них.

Общий множитель элементов какой-либо строки можно вынести за знак определителя.

Это следует из свойства 3.

8. Определитель с двумя пропорциональными строками равен нулю.

Достаточно вынести множитель пропорциональности, и мы получим определитель с двумя равными строками.

9. Определитель не меняется, если к элементам какой-либо строки добавить числа, пропорциональные элементам другой строки.

Действительно, в силу свойства 3 преобразованный определитель: равен сумме исходного определителя определителя с двумя пропорциональными строками, который равен нулю.

Последнее свойство дает хорошее средство для вычисления определителей. Используя это свойство можно, не менян величины определителя, преобразовать его матрицу так, чтобы в какой-либо строке (или столбце) все элементы, кроме одного, оказались равными нулю. Затем, разложив определитель но элементам этой строки (столбца), мы сведем вычисление определителя порядка к вычислению одного определителя порядка именно, алгебраического дополнения единственного отличного от нуля элемента выбранной строки.