Оперативная память и ее особенности. Некоторые прочие особенности К8

25.04.2019

Собираем системник из говна и палок по минимальному бюджету.
Планируемая нагрузка - комфортный сёрфинг в сети, видео 720p, 2D игры (или 3D из прошлого десятилетия). Эпизод первый - центральный процессор.
Выбор сокета процессора был обусловлен наличием , которую мне удалось приобрести в офф-лайне по сходной цене. И хотя предполагаемая нагрузка на ПК по современным меркам более чем скромная, но подсознательно хотелось получить хоть какую-нибудь производительность. Тем более если учитывать мизерный . Поэтому я и остановил свой выбор на данном лоте - два ядра по 2,6 ГГц как нельзя лучше подходили для решения поставленных задач. Особенно с оглядкой на ценник.
Доставка заняла полтора месяца; по видимому сказались новогодние праздники. Но трек отслеживался и никаких беспокойств не было.
По упаковке претензий нет, всё надёжно и крепко. Содержимое посылки не пострадало.


Если откинуть всё лишнее, то непосредственно сам процессор поставляется в пластиковом блистере, что по видимому и сохраняет в целости его ноги)
Так же в комплекте присутствует пакетик смегмы каменного тролля тепмопасты. Что ж, приятный бонус. За неимением лучшего процессор хотя бы готов к работе «из коробки».


Мелко-царапки на корпусе

На первый взгляд всё ОК.


Хотя, если поиграть солнечным зайчиком, то мелко- царапинки всё-же найти можно. Ничего удивительного. Процессор-то бу-шный.


Ноги тоже в порядке, кардабалет ровный.



Протираем спиртом и устанавливаем на место


Не забываем про термоинтерфейс и запускаем систему. Материнская плата корректно распознаёт установленный процессор. Никаких обновлений BIOS не требуется. Ещё бы, ведь комплектующие родом из одной эпохи. Да они вообще как старые друзья встретились. (Полосы на мониторе - это косяк монитора. К обозреваемому процессору никакого отношения не имеют)


CPU-Z показал по этому поводу приблизительно следующее


А CPU-Z тесты:
в одно лицо - 227 попугаев
на двоих - 431


Стресс-тест разогревает процессор аж 60-65°C. Да уж, вообще не холодный. Однако здесь стоит учесть, что «сердцем» системы охлаждения является самый простой алюминиевый радиатор. Для лёгких вычислительных задач этого хватает. Но я нормально отдаю себе отчёт, что это работа на пределе возможностей СО и этот узел требует скорейшего апгрейда.


Бенчмарк PerformanceTest с точки зрения производительности центрального процессора оценил мой выбор в 941 попугай. И почему-то сравнил с производительностью шести топовых процессоров. Видимо намекая на то, что апгрейда требует не только система охлаждения).


Ну а бенчмарк встроенный в операционную систему Windows центральному процессору дал оценку в 5,9 балла из 9,9 возможных.

Если оценить общефункциональную производительность ПК, то с моими скромными задачами эта сборка справляется без тормозов и лагов. (Однако стоит упомянуть, что в качестве системного диска установлен SSD, хоть и sata 2… но на быстродействии и производительности это точно сказывается позитивно).

Сложно сделать однозначный вывод по ситуации, ведь железо морально старое, однако ещё трудоспособное. И для кого-то подобный процессор будет спасением, а для кого-то - брелоком.

Теперь прощаюсь Быть добру!

Планирую купить +30 Добавить в избранное Обзор понравился +60 +101

Представляем горячую новинку этого лета: массовый двухъядерный процессор от AMD. За $354 вы можете получить два ядра, работающие на частоте 2 ГГц и имеющие по 512 Кбайт L2 кеша. Но достаточно ли этого для удовлетворительной производительности? Ответ – в нашем обзоре, в котором вы найдёте и дополнительные бонусы: тестирование энергопотребления, оверклокинг и бенчмарки в 64-битной версии Windows.

Появление на рынке двухъядерных процессоров для настольных компьютеров было встречено пользователями с воодушевлением. Новые архитектуры, позволяющие объединить два процессорных ядра на одном полупроводниковом кристалле, дали существенный толчок в увеличении производительности современных CPU. В свете того, что производители процессоров в последнее время испытывают очень большие трудности в части дальнейшего наращивания тактовых частот, появление двухъядерных CPU трудно переоценить. Однако, как и любые другие новые продукты, процессоры с двумя ядрами оказались достаточно дорогими, чтобы в короткий срок стать массовыми решениями. В первую очередь это касается двухъядерных процессоров семейства AMD Athlon 64 X2. CPU этой линейки изначально позиционировались производителем как процессоры более высокого класса, нежели обычные Athlon 64. Это вылилось в то, что стоимость процессоров линейки Athlon 64 X2 лежала в пределах от $500 до $1000.

При этом Intel в ценообразовании на свои двухъядерные процессоры проявил более демократичный подход. Стоимость процессоров линейки Pentium D начинается с отметки в $241, что позволяет этим CPU попадать в настольные компьютеры класса mainstream. Впрочем, такое различие в ценах возникает не на пустом месте: производительность двухъядерных процессоров AMD, предлагаемых до сегодняшнего дня, значительно выше быстродействия CPU класса Pentium D.

Надо сказать, что такое положение дел вряд ли нравилось AMD. То, что Intel предлагает гораздо более дешёвые двухъядерные процессоры, вряд ли устраивало маркетологов AMD. Поэтому, сразу вслед за анонсом первых CPU с двумя ядрами инженерам AMD была дана команда по поиску путей удешевления двухъядерных процессоров. И задача эта была решена: сегодня, 1 августа 2005 года компания анонсирует младшую модель в линейке Athlon 64 X2 с рейтингом 3800+, стоимость которой (согласно официальному прайс-листу) опустилась до отметки $354. Не менее приятный факт заключается и в том, что данный анонс носит отнюдь не "бумажный" характер, AMD Athlon 64 X2 3800+ появится в магазинах с минуты на минуту.

Стоимость младшей модели линейки Athlon 64 X2 снижена достаточно стандартным методом. Во-первых, тактовая частота этого процессора опущена ниже частоты остальных двухъядерных CPU от AMD, а во-вторых, этот процессор имеет уменьшенный размер кеш-памяти второго уровня. Благодаря урезанию L2 кеша AMD получила возможность уменьшить ядро, что естественно, положительным образом сказывается на себестоимости. Так, первые процессоры Athlon 64 X2 основывались на ядре с кодовым именем Toledo, состоящем из 233.2 млн. транзисторов и имеющем площадь 199 кв. мм. Новое же ядро Manchester, нашедшее применение как в новом Athlon 64 X2 3800+, так и в некоторых других процессорах линейки, имеет площадь 147 кв. мм и содержит лишь 154 млн. транзисторов. Это, конечно, больше, чем содержится в одноядерных CPU от AMD, но, тем не менее, позволяет увеличить выход кристаллов с одной 200 мм пластины на 38%. Кстати, благодаря сокращению кеш-памяти второго уровня, площадь ядра процессоров Athlon 64 X2 с ядром Manchester вплотную приблизилась к площади ядра CPU серии Pentium 4 6XX, что само по себе уже говорит о многом.

Таким образом, новый Athlon 64 X2 3800+ представляет собой весьма любопытный объект для исследования. Этот двухъядерный процессор от AMD попадает в несколько иную ценовую категорию, нежели его предшественники, что в теории может сделать его хитом продаж. Конечно, при условии, что его производительность окажется на хорошем уровне. В этом обзоре мы как раз и поговорим о перспективности этой новинки, располагая результатами тестов.

Подробности о AMD Athlon 64 X2 3800+

Подробно о двухъядерных процессорах AMD мы уже говорили в статье "Обзор двухъядерного процессора AMD Athlon 64 X2 4800+ ". Отличия Athlon 64 X2 3800+ от его старших собратьев состоят в уменьшенном размере кеш-памяти второго уровня, составляющем по 512 Кбайт на каждое из ядер (такой же размер L2 кеша имеют и Athlon 64 X2 4600+ и 4200+), а также в пониженной до 2.0 ГГц тактовой частоте. Таким образом, с учётом новинки полная линейка двухъядерных CPU от AMD принимает следующий вид:

Тактовая частота Объём L2 кеша Цена
Athlon 64 X2 4800+ 2.4 ГГц 1 Мбайт + 1 Мбайт $1001
Athlon 64 X2 4600+ 2.4 ГГц 512 Кбайт + 512 Кбайт $803
Athlon 64 X2 4400+ 2.2 ГГц 1 Мбайт + 1 Мбайт $581
Athlon 64 X2 4200+ 2.2 ГГц 512 Кбайт + 512 Кбайт $537
Athlon 64 X2 3800+ 2.0 ГГц 512 Кбайт + 512 Кбайт $354

Полные же спецификации новинки, процессора Athlon 64 X2 3800+, мы приводим в таблице ниже:

Athlon 64 X2 3800+
Маркировка ADA3800DAA5BV
Частота 2.0 GHz
Тип упаковки 939-pin organic micro-PGA
Размер L2 кеша 512 Кбайт + 512 Кбайт
Контроллер памяти 128-бит, двухканальный
Поддерживаемые типы памяти DDR400 SDRAM
Частота шины HyperTransport 1 ГГц
Степпинг ядра E4
Технология производства 90 нм, SOI
Число транзисторов 154 млн.
Площадь ядра 147 кв. мм
Типичное тепловыделение 89 Вт
Максимальная температура корпуса 65 град.
Напряжение питания ядра 1.35В
Поддержка технологии AMD64 Есть
Поддержка NX-бит Есть
Поддержка технологии Cool’n’Quiet Есть

Хочется обратить внимание читателя на тот факт, что тепловой пакет для Athlon 64 X2 3800+ установлен в 89 Вт. Это означает, что этот процессор может работать со всеми теми материнскими платами и системами охлаждения, которые совместимы с обычными CPU семейства Athlon 64. Примечательность данного факта состоит в том, что предыдущие модели Athlon 64 X2, за исключением модели 4200+, имели типичное тепловыделение 110 Вт.

Достаточно любопытным представляется и то, что Athlon 64 X2 3800+ имеет чётко обозначенное напряжение питания в 1.35В. Очевидно, что повышение напряжения питания до 1.4В для выпуска младшей модели в семействе не требуется.

Диагностическая утилита CPU-Z выдаёт об Athlon 64 X2 3800+ следующую информацию:

Здесь нас никакие сюрпризы не поджидают, утилита детектирует ядро Manchester, работающее на 2-гигагерцовой частоте.

Энергопотребление и технология Cool’n’Quiet

Измеренное нами практическое энергопотребление рассматриваемого процессора в режиме максимальной загрузки (создаваемой специализированной утилитой S&M 1.7.2) составило 65.1 Вт. Давайте сравним эту величину с энергопотреблением других процессоров:

Как видим, Athlon 64 X2 3800+ вполне оправдывает установленную для него величину типичного тепловыделения. Процессор, хотя и потребляет больше одноядерных собратьев семейства Athlon 64 (на ядре Venice), до энергопотребления Athlon 64 FX-57 с тепловым пакетом 104 Вт всё-таки не дотягивает. Сравнение же с процессорами конкурента в данном контексте вообще бессмысленно, любые CPU от Intel потребляют примерно в два раза больше своих прямых соперников от AMD.

Пару слов необходимо сказать о технологии Cool’n’Quiet, которая перекочевала в двухъядерные процессоры AMD из своих одноядерных предшественников. Эта технология поддерживается в Athlon 64 X2 3800+ в полной мере, единственная особенность состоит в том, что оба ядра снижают частоту и напряжение питания при низкой загрузке синхронно.

В состоянии пониженного энергопотребления частота Athlon 64 X2 3800+ падает до 1 ГГц, а напряжение уменьшается до 1.1В. В результате, в состоянии покоя энергопотребление процессора снижается до 5.8 Вт, что делает Athlon 64 X2 3800+ весьма экономичным CPU. Впрочем, ещё большей экономии можно было бы добиться, если бы ядра могли входить в состоянии пониженного энергопотребления независимо друг от друга. Однако, данная возможность, видимо, будет реализована лишь в двухъядерных CPU, нацеленных на использование в мобильных компьютерах.

Как мы тестировали

Тестирование производительности AMD Athlon 64 X2 3800+ мы выполняли, сравнивая результаты этого CPU с показателями быстродействия процессоров близкой стоимости. В их число вошли Athlon 64 3800+, его цена на сегодня составляет $373; Pentium 4 650 cо стоимостью $401 и Pentium D 830 с ценой в $316.

Таким образом, в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

  • Процессоры:
    • AMD Athlon 64 X2 3800+ (Socket 939, 2.0 ГГц, 2 x 512KB L2, ревизия ядра E4 - Manchester);
    • AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
    • Intel Pentium D 830 (LGA775, 3.0 ГГц, 2 x 1MB L2);
    • Intel Pentium 4 650 (LGA775, 3.4 ГГц, 2MB L2).
  • Материнские платы:
    • ASUS P5WD2 Premium (LGA775, Intel 955X);
    • DFI NF4 Ultra-D (Socket 939, NVIDIA nForce4 Ultra).
  • Память:
    • 1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
    • 1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-14).
  • Графическая карта: PowerColor RADEON X850 XT (PCI-E x16).
  • Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).
  • Операционные системы:
    • Microsoft Windows XP Professional SP2;
    • Microsoft Windows XP Professional x64 Edition.

Особенностью этого тестирования стало использование сразу двух операционных систем: 32-битной и 64-битной версий Windows XP. Тестируя производительность процессоров в 64-битном режиме, мы в первую очередь старались использовать "родные" 64-битные приложения, которых уже стало достаточно много. Таким образом, полученные результаты дадут нам возможность оценить не только производительность процессоров в обычном 32-битном режиме, но и посмотреть, как поведут себя испытуемые CPU при задействовании технологий AMD64 и EM64T.

Впрочем, справедливости ради следует заметить, что большое число 64-битных приложений, доступных сегодня, представляют собой сделанные энтузиастами порты Open Source программ. Соответственно, такие программы весьма специфичны. К сожалению, крупных коммерческих продуктов от известных производителей в 64-битных версиях пока крайне мало.

Производительность

Новая редакция теста PCMark принципиально не отличается от прошлых версий. Тест CPU из этого пакета основывается на реальных алгоритмах шифрования и сжатия данных, плюс активно использует многопоточность. Соответственно, неудивителен и полученный результат. Двухъядерные процессоры показывают лучшую производительность, чем одноядерные, а CPU с NetBurst архитектурой, традиционно показывающие более высокое быстродействие в PCMark, вновь могут похвастать лучшими результатами по данным этого теста.

Также, необходимо отметить, что производительность процессоров с технологиями AMD64 и EM64T в PCMark05 совершенно одинакова как в 32-битной операционной системе, так и в 64-битной ОС. Это как раз наглядно подтверждает эффективность x86-64 архитектуры: исполняемые в 64-битной операционной системе в режиме совместимости 32-битные приложения работают с той же скоростью, что и в родной для них 32-битной среде.

То же самое можно сказать и про результаты в 3DMark05. Использование 64-битной системы Microsoft Windows XP Professional x64 Edition с соответствующими драйверами не приводит к падению производительности в 32-битных DirectX программах. Так что геймеры, по всей видимости, не должны опасаться миграции в 64-битную среду, поддерживаемую процессорами AMD с технологией AMD64 и процессорами Intel с технологией EM64T.

Сам по себе тест 3DMark05, как и большинство игр, не поддерживает многопоточность. Поэтому двухъядерные процессоры никак не проявляют себя здесь. Однако в состав этого тестового пакета входят специализированные тесты CPU, в которых многопоточность используется для расчёта шейдеров и одновременного моделирования игровой среды.

Новый процессор Athlon 64 X2 3800+ показывает здесь вполне адекватную своей стоимости производительность. В первом игровом тесте он обгоняет своих одноядерных конкурентов, немного уступая Pentium D 830 с тактово й частотой 3.0 ГГц. Зато во втором тесте его быстродействие оказывается недосягаемым для всех CPU той же что и он ценовой категории.

Производительность в играх

Современные игры не используют многопоточность, поэтому двухъядерные процессоры в приложениях этого типа не могут похвастать высокими результатами. Так, Athlon 64 X2 3800+ здесь показывает такое же число fps, как демонстрировал бы одноядерный Athlon 64 3200+:

Впрочем, благодаря тому, что архитектура K8 показывает себя очень эффективной именно в игровых приложениях, Athlon 64 X2 3800+ в играх уступает аналогичному по цене одноядерному CPU семейства Pentium 4 не так уж и значительно. Кроме того, мы вновь можем отметить, что переход в 64-битный режим мало сказывается на скорости работы 32-битных игровых приложений.

Несмотря на то, что разработчики игр не балуют нас использованием преимуществ многоядерных архитектур, 64-битные расширения худо-бедно всё же начинают использоваться. Не так давно появился патч для популярной игры Far Cry, позволяющий её использование в Microsoft Windows XP Professional x64 Edition в 64-битном режиме. Естественно, мы не смогли обойти стороной этот факт и протестировали производительность процессоров не только в стандартной 32-битной, но и в 64-битной версии этой игры.

Как видим, 64-битный Far Cry способен продемонстрировать более высокий уровень fps. Так, использование 64-битной операционной системы и 64-битной версии игры позволяет получить дополнительное преимущество порядка 3-5%.

Сжатие данных

Популярный архиватор WinRAR многопоточность не поддерживает, поэтому результаты, показанные в нём рассматриваемым в этом обзоре процессором Athlon 64 X2 3800+ относительно невысоки. По крайней мере, он уступает в быстродействии одноядерным CPU той же ценовой категории. Впрочем, если сравнивать результат Athlon 64 X2 3800+ с показателями двухъядерного процессора Intel Pentium D 830, то всё выглядит не так уж и плохо: производительность у этих двух CPU примерно одинакова.

Также следует обратить внимание на тот факт, что запуск 32-битной утилиты WinRAR в 64-битной операционной системе несколько снижает её быстродействие. По всей видимости, это замедление вносит интерпретатор WoW64, благодаря которому реализуется функционирование 32-битных программ в Microsoft Windows XP Professional x64 Edition.

Среди архиваторов есть и программы, поддерживающие многопоточность. К таким утилитам относится, например 7zip. Помимо возможности эффективной работы с многоядерными процессорами, 7zip отличается ещё и тем, что существует и в 64-битной версии. Поэтому, тестирование производительности с его использованием представляется нам очень любопытным.

Алгоритм сжатия данных в 7zip эффективно использует технологию Hyper-Threading. Тем не менее, производительность процессора Pentium D 830 с частотой 3 ГГц оказывается примерно равной производительности Pentium 4 650 с частотой 3.4 ГГц. Одноядерный Athlon 64 3800+ уступает здесь процессорам от Intel, а Athlon 64 X2 3800+, хотя и показывает на 22% более высокий результат, чем Athlon 64 3800+, догнать конкурентов в семействах Pentium 4 и Pentium D не может.

Сказанное выше относилось лишь к 32-битной версии архиватора. Использование же 64-битной версии изменяет изложенный расклад. Дело в том, что процессоры Athlon 64 от задействования 64-битных регистров получают осязаемый выигрыш в производительности, чего никак нельзя сказать о процессорах Pentium 4 и Pentium D. Быстродействие CPU с NetBurst архитектурой в 64-битном режиме, как мы видим на примере 7zip, может оказаться ниже производительности CPU в 32-битном режиме. Поэтому, 64-битная версия 7zip ставит на первое место процессор Athlon 64 X2 3800+.

При разархивации и Athlon 64, и Pentium 4 работают быстрее при использовании 64-битного режима. Однако, в данном случае, процессоры c архитектурой K8 более эффективны: лидирует одноядерный Athlon 64 3800+, двухъядерный же Athlon 64 X2 3800+, отставая на 18%, демонстрирует второй результат.

Кодирование медиа данных

В первую очередь остановимся на кодировании аудио в формат mp3 популярным кодеком lame. Для целей тестирования мы использовали неофициальную версию 3.97, поддерживающую многопоточность и имеющую 64-битный вариант.

При кодировании аудио процессоры с двухъядерной архитектурой могут похвастать более высокой скоростью, нежели их одноядерные собратья, несмотря на их более низкую тактовую частоту. Если использовать 32-битный кодек, то по данным этого теста лидирует двухъядерный Intel Pentium D 830. Если же прибегать к 64-битной версии кодека, то картина меняется. По странному стечению обстоятельств, 64-битная версия LAME работает медленнее 32-битной. При этом, если замедление процессоров Athlon 64 составляет менее 10%, то процессоры Pentium 4 и Pentium D теряют в скорости около 20%. В итоге, при использовании 64-битной версии LAME лучший результат показывает Athlon 64 X2 3800+.

Столь странное поведение 64-битного порта LAME связано, скорее всего, с проблемами компилятора от Microsoft, который использовался для сборки кода. Впрочем, в таких "клинических" случаях, когда 64-битная версия программы оказывается медленнее 32-битной, никто не мешает в 64-битной операционной системе использовать более быстрый вариант, хоть он и приводит к активации режима совместимости.

Также, в природе существует и 64-битный порт видеокодека XviD. Используя этот кодек, мы провели тестирование скорости кодирования видео в 32-битной и 64-битной операционной системе.

Таких же неожиданностей, как в случае с LAME здесь нет. 64-битная версия кодека работает явно быстрее 32-битной. Однако при этом получить выигрыш от использования процессоров с двухъядерной архитектурой при кодировании XviD, к сожалению, не даёт. Таким образом, в выбранной ценовой категории, самую высокую скорость при сжатии видео кодеком XviD обеспечивает процессор Athlon 64 3800+.

Рассмотрим теперь производительность тестируемых процессоров в кодеках, не имеющих 64-битных клонов.

Двухъядерная архитектура процессора Athlon 64 X2 3800+, вместе с поддержкой им набора инструкций SSE3, к сожалению, не позволяет этому CPU продемонстрировать высший результат. Лидером здесь оказывается Pentium D 830. Заметим, что в этом кодеке двухъядерный процессор AMD работает немного медленнее одноядерного CPU той же ценовой категории, в то время как с процессорами Intel всё происходит наоборот: одноядерный Pentium 4 650 проигрывает Pentium D 830.

Результаты при кодировании кодеком DivX вполне предсказуемы. Архитектура NetBurst здесь эффективнее, чем K8. Кроме того, несмотря на поддержку этим кодеком многопоточности, более высокая частота одноядерных процессоров оказывается важнее дополнительного ядра, которым располагают CPU семейств Athlon 64 X2 и Pentium D. Также, хочется отметить весьма любопытный факт, что в 64-битной операционной системе Microsoft Windows XP Professional x64 Edition 32-битный кодек DivX работает слегка быстрее, чем в родной для него 32-битной среде. Размер этого преимущества составляет порядка 3-5%.

Во время предыдущих тестирований двухъядерных процессоров мы уже отмечали, что Windows Media Encoder является отличным примером приложения, эффективно задействующих два ядра. Так, преимущество Athlon 64 X2 3800+ над Athlon 64 3800+ составляет тут более 30%, несмотря на то, что двухъядерный процессор имеет на 17% более низкую тактовую частоту. В целом же Athlon 64 X2 3800+ удаётся слегка обойти в этом тесте даже Pentium D 830, несмотря на то, что архитектура NetBurst весьма неплохо показывает себя при кодировании медиа данных.

Вычислительные задачи

Популярный бенчмарк SuperPi многопоточность не поддерживает. Поэтому в нём процессоры с двумя ядрами уступают одноядерным CPU.

Тест ScienceMark 2.0 весьма интересен. Во-первых, он поддерживает все современные наборы инструкций и многопоточность, а во-вторых, существует и в версии для Microsoft Windows XP Professional x64 Edition. Причём, использование 64-битного кода для математического моделирования физических процессов, выполняемого в рамках этого бенчмарка, позволяет получить довольно-таки весомый рост производительности, который в подтесте Molecular Dynamics превышает даже 100%.

Процессоры AMD в этом тесте, задействующем вычислительные ресурсы CPU по полной программе, показывают более высокие результаты, нежели конкурирующие продукты от Intel. При этом новый двухъядерный CPU Athlon 64 X2 3800+ в обоих подтестах опережает одноядерного собрата Athlon 64 3800+, автоматически становясь лидером.

Профессиональные приложения

В Adobe Photoshop CS2, поддерживающем многопоточность, Athlon 64 X2 3800+ оказывается быстрее всех остальных процессоров той же ценовой категории, включая и двухъядерный Pentium D 830.

Выигрывает у конкурентов Athlon 64 X2 3800+ и в 3ds max во время измерения производительности при финальном рендеринге. Следует заметить, что подобные задачи хорошо распараллеливаются, и благодаря этому Athlon 64 X2 3800+ обгоняет одноядерный Athlon 64 3800+ на 49%, то есть даже сильнее, чем при кодировании в Windows Media Encoder 9.

А вот работа в 3ds max в Viewports быстрее осуществляется всё-таки при применении одноядерных CPU.

Кстати, заметим сильное падение производительности в данном тесте при использовании 64-битной версии операционной системы. Создаётся впечатление, что проблема заключается в не до конца оптимизированных драйверах.

Photoshop и 3ds max – это 32-приложения. К сожалению, производители не предлагают (пока?) версии этих программ, скомпилированные специально для Microsoft Windows XP Professional x64 Edition. Однако, к счастью, один из профессиональных пакетов 3D графики уже доступен в версии для x86-64. Это – CINEMA 4D от MAXON. Естественно, мы не смогли обойти стороной это приложение и измерили производительность в нём при помощи специального теста CINEBENCH 2003.

Как и в 3ds max, двухъядерный процессор демонстрирует наивысшую производительность при финальном рендеринге и в CINEMA 4D. При этом следует заметить, что скорость финального рендеринга в 64-битных режимах возрастает ещё сильнее, так что в задачах подобного типа сам бог велел использовать двухъядерные 64-битные CPU.

При работе в OpenGL мы можем наблюдать тот же эффект, который наблюдался и в 3ds max, только в данном случае он проявляется на нативном 64-битном приложении. Использование Microsoft Windows XP Professional x64 Edition и приложения, использующего процессорный Long Mode, приводит к некоторому падению производительности. Списать этот эффект, видимо, вновь придётся на драйвера. Что же касается производительности рассматриваемого процессора, то в тестах, использующих OpenGL, вновь лучше себя показывают одноядерные CPU.

Разгон

Поскольку новый процессор Athlon 64 X2 3800+ стал младшей моделью в линейке двухъядерных CPU от AMD, именно он в первую очередь будет интересовать оверклокеров. Для тестирования разгонных возможностей этого процессора мы собрали систему из тех же комплектующих, что и использовались во время измерения производительности, то есть на основе отлично зарекомендовавшей себя материнской платы DFI NF4 Ultra-D. В качестве устройства охлаждения CPU нами был использован воздушный кулер Thermaltake CL-P0200.

Штатный коэффициент умножения процессора Athlon 64 X2 3800+ - 10x, изменять его можно лишь в сторону уменьшения (благодаря поддержке технологии Cool’n’Quiet). Соответственно, разгонять процессор приходится увеличением частоты тактового генератора. Чтобы при оверклокинге не "упереться" в предельные режимы других комплектующих, во время наших испытаний частоты шин PCI Express и PCI фиксировались на штатных значениях, а коэффициент для шины HyperTransport уменьшался до 4x. Для частоты памяти также устанавливался уменьшающий делитель, гарантирующий полную работоспособность модулей DIMM при увеличении частоты тактового генератора.

В процессе наших экспериментов мы установили максимальную частоту тактового генератора, при которой процессор сохраняет стабильность. Она составила 240 МГц. Для покорения этого предела нам даже пришлось несколько увеличить напряжение питания процессорного ядра – до 1.45В. Достигнутая частота процессора при этом составила 2.4 ГГц.

Таким образом, в процессе экспериментов по разгону нам удалось поднять частоту Athlon 64 X2 3800+ на базе ядра Manchester на 20%. Надо отметить, что это не так уж и много, на такой же частоте работают двухъядерные процессоры Athlon 64 X2 4800+ и Athlon 64 X2 4600+. Причём, последний основывается как раз на ядре Manchester. То есть, нам удалось разогнать Athlon 64 X2 3800+ только лишь до уровня Athlon 64 X2 4600+. Видимо, для производства младшей модели в своей двухъядерной линейке AMD использует не самые лучшие ядра. Например, при испытаниях Athlon 64 X2 4800+, правда, на ядре Toledo, нам удалось добиваться работы процессора на частоте в 2.7 ГГц.

Впрочем, чем богаты, тем и рады. Чтобы понять, насколько быстр разогнанный Athlon 64 X2 3800+ по сравнению со старшими процессорами от AMD, мы провели несколько тестов, в которых сравнили нашего "подопытного кролика" с Athlon 64 FX-57 и Athlon 64 X2 4800+. Для чистоты эксперимента память во всех тестах работала на частоте 200 МГц с минимальными таймингами 2-2-2-10.

Как видим, разогнанный до 2.4 ГГц Athlon 64 3800+ ни в одном из проведённых тестов лидирующей позиции не занимает. Однако его производительность при этом всё равно находится на очень хорошем уровне. Например, в приложениях, поддерживающих многопоточность, он может обгонять Athlon 64 FX-57. Отставание же от Athlon 64 X2 4800+, оснащённого кеш-памятью второго уровня объёмом по 1 Мбайту на каждое из ядер, составляет в среднем лишь 1-2%.

Впрочем, при этом встречаются и приложения, весьма критичные к объёму кеш-памяти. В них уровень отставания разогнанного Athlon 64 X2 3800+ от Athlon 64 X2 4800+ может доходить и до 10%. Хотя, конечно, это вряд ли может расстроить владельцев Athlon 64 X2 3800+, который стоит втрое дешевле, чем Athlon 64 X2 4800+ и Athlon 64 FX-57.

Выводы

С выпуском процессора Athlon 64 X2 3800+ компания AMD понизила ценовую планку для систем, основанных на двухъядерных CPU. Теперь платформы среднего уровня могут оснащаться процессорами с двумя ядрами не только от Intel, но и от AMD. Таким образом, выход Athlon 64 X2 3800+ внёс некоторую симметрию: в предложениях обоих компаний теперь есть не только экстремально дорогие двухъядерные CPU, но и аналогичные процессоры среднего уровня.

Мы не будем повторяться, рассказывая о том, в каких приложениях выгодно использование двухъядерных архитектур. Скажем лишь то, что в среднем, по результатам наших тестов, Athlon 64 X2 3800+ показал себя более быстрым процессором, чем двухъядерный конкурент от Intel, Pentium D 830. Таким образом, у этой новинки от AMD есть очень неплохие рыночные перспективы. Особенно, если принять во внимание совместимость двухъядерных процессоров от AMD с существующей инфраструктурой, относительно низкое тепловыделение, поддержку технологии Cool’n’Quiet и возможность перехода на 64-битные операционные системы и соответствующие приложения.

В качестве "ложки дёгтя" для Athlon 64 X2 3800+ следует разве только заметить, что этот процессор почему-то не смог нас поразить чудесами оверклокинга, разогнавшись всего лишь до 2.4 ГГц. Впрочем, даже в таком режиме его производительность такова, что он уступает старшим процессорам в семействах Athlon 64 X2 и Athlon 64 FX не столь значительно.

Всем привет Знаете, вот не часто я пишу о процессорах AMD, но сегодня я напишу именно о таком, если быть точнее, то о модели Athlon 64 X2 6000+, расскажу что я о нем думаю и поведаю вам его характеристики. Ну, я думаю что вы знаете, что процессор как бы далеко не новый, но при этом я не могу сказать, что он уж никакущий, все таки как мне кажется, он лучше чем Pentium 4, а это означает, что для офисного компа он спокойно подойдет.

Значит что из себя представляет процессор AMD Athlon 64 X2 6000+? Это проц сделанный по техпроцессу в 90 нм, частота 3 ГГц, TDP равно 125 Ватт, поэтому этот проц ну никак нельзя назвать холодным. Два ядра, у каждого ядра кэш L2 1 мб, то есть в сумме 2 мб, что не так уж и плохо. Поддерживает память DDR2, максимальный обьем 16 гигов. Сам проц был выпущен где-то в 2006-том году, ну может чуть раньше, но примерно в этом времени. Есть модель сделанная по техпроцессу в 90 нм, а есть которая сделанная по техпроцессу в 65 нм, последняя лучше, ибо меньше греется. Сокет процессора это AM2.

Вообще AMD Athlon 64 X2 это как бы аналог проца от Intel, тут я имею ввиду E6600, вот только у этого E6600 частота равна 2.4 ГГц, кэша правда 4 мб. И еще E6600 почти в два раза меньше потребляет энергии, ибо TDP равно 65 Ватт. Если быть точнее, то AMD Athlon 64 X2 немного только уступает E6600, то есть все в лучших традициях, AMD это хорошо, но Intel лучше.. Но вроде бы так раньше не было, помню я что был какой-то проц от AMD, который немногим был мощнее чем аналогичный от Intel, но честно говоря врать не буду, не помню точно что за модель..

Вот что показывает прога CPU-Z об этом проце:

Вот более подробные характеристики:


AMD Athlon 64 X2 6000+ и игры: почему нет? Нет, ну конечно современные игры я не думаю что будут нормально работать на этом проце, даже если будет суперская видюха, то проца все равно будет не хватать. Но немного старые игры, такие как NFS Most Wanted, Quake 4, то с нормальной видюхой можно поиграть. Кстати думаю что DOOM 3 тоже будет хорошо работать, ну просто мне эта игра нравилась раньше очень, ну это было реально давно, хотя игра старая, но как по мне, то одна из лучших вообще…

По разгону AMD Athlon 64 X2 6000+ я ничего не могу сказать, дело в том что проц и так работает на высокой частоте, в то время 3 ГГц считалось реально высокой частотой. Поэтому при своих штатных 3 ГГц грелся проц и так прилично, а если разогнать, то сами понимаете. Но из-за своей высокой частоты особо проц то и не гнался, ну примерно на процентов 10% частоту повысить скорее всего можно будет, но дальше уже вряд ли…

Вот тест WinRAR:


Тут как видите AMD Athlon 64 X2 6000+ чуть слабее чем E6700, но в принципе можно понять что за зверь этот проц так бы сказать Ну то есть то что я и писал, по производительности проц оч похож на E6600, наверно если бы был тут в тесте E6600, то разницы или не было бы вообще, или даже может AMD Athlon 64 X2 6000+ выигрывал на процент или два…

Ну, тесты особо показывать нет смысла, как я уже написал, то AMD Athlon 64 X2 6000+ это аналог E6600, где-то в каком-то тесте кто-то быстрее, где-то кто-то медленнее.. В 2017-том году я даже не знаю где можно использовать AMD Athlon 64 X2 6000+, ну разве что на офисном компе или если у вас есть видюха и вы любите старые игры, то можно и поиграть в принципе

В общем вот такие дела ребята, извините что мало инфы тут написал, но больше не знаю что написать, короче как есть так и написал. Удачи вам в жизни и хорошего настроенчика

16.01.2017

Длительное время Advanced Micro Devices, подобно Cyrix, производила центральные процессоры 286, 386 и 486, которые были основаны на разработках Intel. К5 был первым независимо созданным х86 процессором, на который AMD возлагала большие надежды.

Однако, покупка компанией AMD основанного в Калифорнии конкурента весной 1996 года, кажется, создала возможность лучше подготовиться к своей следующей атаке на Intel. К6 начал жизнь как Nx686, будучи переименованным после приобретения NextGen. Серия ММХ-совместимых процессоров К6 была запущена в середине 1997 года, за несколько недель до Cyrix 6х86МХ, и сразу была одобрена пользователями.

Изготовленный по 5-слойной 0.35-мкм технологии, К6 был почти на 20 % меньше, чем Pentium Pro и при этом содержал на 3.3 миллионов транзисторов больше (8.8 против 5.5 миллионов). Большинство этих дополнительных транзисторов находилось в кэше первого уровня на 64 Кбайт (на кэш команд 32 Кбайт и на кэш данных 32 Кбайт). Это равносильно четырем Pentium Pro или двум Pentium ММХ и Pentium 2.

Центральный процессор К6 поддерживал технологию ММХ Intel, включая 57 новых х86 команд, разработанных для развития мультимедийного программного обеспечения. Как и Pentium Pro, К6 был многим обязан классическим технологиям RISC. Используя суперскалярную микроархитектуру AMD RISC86, чип декодировал каждую х86-инструкцию в ряд более простых действий, которые могли быть обработаны, используя типичные принципы RISC - такие, как выполнение вне естественного порядка, переименование регистров, предсказание переходов, спекулятивное исполнение, опережающая выборка данных.

Центральный процессор К6 начинал с версий 166.200 и 233 МГц. Уровень его производительности был очень схож с Pentium Pro соответствующих частот с его максимальным 512 Кбайт кэшем второго уровня. Общее с чипом Cyrix MX (но в несколько меньшей степени) - работа с плавающей запятой - была областью относительной слабости по сравнению с Pentium Pro или Pentium 2. Однако проникновению процессора на рынок в конце 1997 - начале 1998 года препятствовали проблемы, которые возникли у AMD при перемещении ее нового производственного 0.25-мкм процесса из лабораторий на заводы-изготовители. Это привело к падению производства центральных процессоров на 200 и 233 МГц, задержке введения чипа 266 МГц и отмене чипа 300 МГц.

Процессор AMD К6-2

Процессоры AMD К6-2 с 9.3 миллионами транзисторов производились по 0.25-микронной технологии AMD. Процессор был упакован в 100 МГц Sирег7-совместимую, 321-контактную керамическую плату (ceramic pin grid array (CPGA) package).

K6-2 включает инновационную эффективную микроархитектуру RISC86, большой (64 Кбайт) кэш первого уровня (двухпортовый кэш данных на 32 Кбайт, кэш команд на 32 Кбайт с дополнительным предрасшифровывающим кэшем на 20 Кбайт), а также улучшенный модуль работы с плавающей запятой. Эффективная производительность при его запуске в середине 1998 года была оценена в 300 МГц, к началу 1999 года самым быстрым из доступных процессоров была версия 450 МГц.

Трехмерные возможности К6-2 представляли другое важное достижение. Они были воплощены в AMD технологии 3DNow!, как новый набор из 21 команды, который дополнял стандартные команды ММХ, уже включенные в архитектуру К6, что ускоряло обработку трехмерных приложений.

Процессор AMD K6-3

В феврале 1999 года AMD объявила о начале выпуска партии 400 МГц AMD К6-lll процессора под кодовым названием «Sharptooth» и опробовала 450 МГц версию. Ключевой особенностью этого нового процессора была инновационная разработка - «Трехуровневый кэш».

Традиционно процессоры персональных компьютеров использовали два уровня кэша:

  • кэш первого уровня (L1), который обычно расположен на кристалле;
  • кэш второго уровня (L2), который мог располагаться либо вне центрального процессора, на материнской плате или слоте, либо непосредственно на чипе центрального процессора.

Общее эмпирическое правило при проектировании подсистемы кэша - чем больше и быстрее кэш, тем выше производительность (ядро центрального процессора может быстрее получить доступ к инструкциям и данным).

Признавая выгоды большого и быстрого кэша в удовлетворении потребностей приложений, все более требовательных к производительности персональные компьютеры, «Трехуровневый кэш» компании AMD вводил архитектурные новшества кэша, разработанные для увеличения производительности персонального компьютера на основе платформы Super7:

  • внутренний L2-кэш (256 Кбайт), работающий на полной скорости процессора AMD-K6-3 и дополняющий кэш L1 (64 Кбайт), который был стандартен для всего семейства процессоров AMD-K6;
  • многопортовый внутренний кэш, позволяющий одновременное 64-битовое чтение и запись как кэшу L1, так и L2;
  • первичную процессорную шину (100 МГц), обеспечивающую соединение с резидентной кэш памятью на системной плате, расширяемой от 512 до 2048 Кбайт.

Таблица основных характеристик процессоров AMD

Тип процессора Архитектура Год выпуска Кодовое наименование Количество транзисторов, млн Ядро, мм L1 -кэш, Кбайт L2-кэш, Кбайт
AMD K5 K5 1996 SSA/5 4.3 271-161 8+16 Внешн.
1996 Godot 4.3 181 8+16 Внешн.
AMD К6 К6 1997 Nx686 (Model 6) 8.8 162 32+32 Внешн.
1998 Little Foot 8.8 88 32+32 Внешн.
K6-2 1998-2001 Chompers 9.3 81 64 Внешн.
К6 3 1999 Sharptooth 21.3 118 64 256
Athlon К7 1999 Argon 22.0 184 128 512
2000 Pluto 22.0 102 128 512
2000-2001 Thunderbird 37.0 120 64+64 256
Duron 2000-2001 Spitfire 25.0 100 64(|) + 64(D) 64-128
2001-2002 Morgan 25.18 106 128 64
2003 Applebred 37.2 85 128 64
Athlon ХР/МР 2001-2002 Palomino 37.5 130 128 256
2002 Thoroughbred 37.2 85 128 256
2003-2004 Barton 54.3 101 64+64 512
Sempron К7 2004 Thorton 54.3 101 128 256
2004 Thoroubred 37.2 85 128 256
2005 Winchester 68.5 84 128 128
Sempron К7 2005 Palermo 68-75 84 64+64 128-256
2006 Manila 103 81 128 128-256
Athlon 64 К8 2003-2004 Clawhammer 105.9 193 128 512-1024
2004 Newcastle 68.5 144 128 512
2004 Winchester 68.5 84 128 512
2005 Venice 76 84 128 512
2005 San Diego 114 115 128 512-1024
2006 Orleans 129 125 128 512
2006 Manchester 154 147 128 512
Opteron 2003 Sledgehammer 64+64 1024
2005 Venus, Troy, Athens 64+64 1024
Athlon 64 x 2 2-ядерные 2005 Manchester 154 147 128 x 2 512 x 2
2005 Toledo 233 199 128 x 2 512 x 2
2006 Windsor 243 220 128 x 2 512 x 2
2006 Brisbane 153.6 183 128 x 2 1024 x 2
Тип процессора Архитектура Размер минимальной структуры, мкм Тактовая частота шины, МГц Тактовая частота процессора, МГц Потребляемая мощность, Вт Интерфейс
AMD K5 K5 0.5-0.35 50-66 75-100 11-15 Socket 5/7
0.35 60-66 90-115 12-16 Socket 5/7
AMD К6 К6 0.35 CMOS 66 166-300 13-28 Socket 7
0.25 66 200-300 13-28 Socket 7
K6-2 0.25 66-100 266-550 15-30 Super7(321 p)
К6 3 0.25 100 400-450 18-30 Super7
Athlon К7 0.25 200 500-700 36-54 Slot A(575 p)
0.18 200 550-950 31-62 Slot A
0.18 200 700-1.4 ГГц 38-72 Socket A/Slot A
Duron 0.18 200 600-950 27-41 Socket A (Socket 462)
0.18 200 900-1.3 ГГц 44-60 S 462
0.13 266 1.4-1.8 57 S 462
Athlon ХР/МР 0.18 266 1.4-1.7 62-72 Socket 462
0.13 266 1.4-2.25 49-74 S 462
0.13 266-400 1.86-2.33 66-77 Socket A
Sempron К7 0.13 333 1.5-2.0 62 S 754/S 939
0.13 333 1.5-2.0 62 S462
0.09 400 1.6 62 S 754
Sempron К7 0.09 400 1.6-1.8 59-64.0 Socket А/ Socket 754
0.09 400 1.6-2.0 35-62 AM2
Athlon 64 К8 0.13 400 1.8-2.4 89 S 754
0.09 400 1.6-2.4 89 S754
0.09 400 1.8-2.2 67 S 939
0.09 400 2.0-2.4 16-89 S 754
0.09 400 2.2 89 S 939
0.09 400 1.8-2.4 35-62 AM2
0.09 400 2.0-2.2 67 S 939
Opteron 0.13 800/НТ 1.4-2.4 55-95 S 940
0.09 1000/НТ 1.6-3.0 55-95 S 940
Athlon 64 x 2 2-ядерные 0.09 667-800 2.0-2.4 69-110 S939
0.09 2.0-2.4 89-110 S 939
0.09 2.0-2.6 65-89 AM2
0.09 2.0-2.8 65-89 AM2

Проект многопортового внутреннего кэша процессора AMD-K6-3 позволил как кэшу L1 (64 Кбайт), так и кэшу L2 (256 Кбайт) выполнять одновременное 64-битовое чтение и запись операций за один такт процессора. В дополнение к этому многопортовому проекту кэша ядро процессора AMD-K6-I11 было в состоянии получить доступ к кэшам L1 и L2 одновременно, что увеличивало общую пропускную способность центрального процессора.

Процессор AMD Athlon

Выпуск процессора Athlon летом 1999 года был наиболее удачным ходом AMD. Это позволило им гордиться тем, что они произвели первый процессор седьмого поколения (у него было достаточно много радикальных архитектурных отличий от Pentium ll/lll и К6-3, чтобы заслужить название процессора следующего поколения), и это означало также, что они вырвали технологическое лидерство у Intel.

Древнегреческое слово Athlon означает «трофей», или «игры». Athlon - процессор, с помощью которого AMD надеялась увеличить реальное конкурентоспособное присутствие в корпоративном секторе, помимо его традиционного преимущества на потребительском рынке и рынке трехмерных игр. Ядро размещается на кристалле в 102 квадратных миллиметров и содержит приблизительно 22 миллиона транзисторов.

Основные элементы ядра Athlon

Многократные декодеры

Три полных декодера переводят х86-команды в макрооперации (MacroOPs) с фиксированной длиной для более высокой пропускной способности команд и увеличения мощности обработки. Вместо того чтобы выполнять х86 команды с длиной 1-15 байтов, процессор Athlon выполняет макрооперации фиксированной длины.

Блок контроля команд

Как только макрооперация расшифрована, за цикл посылаются до трех макроопераций блоку управления инструкциями (ICU). Это буфер перенаправления макроопераций с 72 входами (ROB), который управляет выполнением каждой макрооперации в целом, осуществляет переименование регистра для операндов, управляет любыми условиями исключения и действиями команды. ICU посылает макрооперацию планировщику исполнения.

Конвейеры исполнения

Athlon содержит 18-разрядный планировщик макроопераций и 36-разрядный планировщик операций мультимедиа и ПТ. Эти планировщики распределяют MacroOPs по девяти независимым конвейерам - три для вычислений с ФТ, три для вычисления адресов и три для выполнения команд ММХ, 3DNow! и операций ПТ для х87.

Супер скалярный блок плавающей точки FPT

Предыдущие центральные процессоры AMD были недостаточно производительными при работе с ПТ по сравнению с Intel. К этому недостатку более чем ответственно отнеслись в Athlon, который характеризуется суперскалярной архитектурой, включающей три конвейера выполнения команд с ПТ вне естественного порядка - FMUL (перемножение с ПТ), FADD (сложение с ПТ) и FSTORE (запись с ПТ). «Суперскалярность» означает способность центрального процессора выполнять более одной команды за такт процессора. Athlon же может выполнять одну операцию над 32-битовым числом с ПТ за такт процессора, что дает производительность в 2.4 Гфлопс при частоте в 600 МГц.

Прогнозирование переходов

Процессор Athlon предлагает сложную динамическую логику прогнозирования ветвления, чтобы минимизировать или устранить задержки из-за команд перехода, широко распространенные в программном обеспечении х86.

Системная шина

Системная шина Athlon - первая системная шина на 200 МГц для х86-платформ. Основанная на протоколе Digital Alpha EV6, первичная шина (FSB) - потенциально расширяемая до 400 МГц и более и, в отличие от разделяемой шины SMP (Symmetric Multi-Processing) проекта Pentium 3, использует архитектуру «точка-точка», чтобы обеспечить широкую полосу пропускания для одно- и многопроцессорных х86 платформ.

Архитектура кэша

Архитектура кэша Athlon существенно превосходит обычные центральные процессоры шестого поколения - полноценный кэш первого уровня 128 Кбайт, в 4 раза больший, чем у Pentium 3, и быстродействующий 64-битовый контроллер вторичного кэша 2-го уровня, поддерживающий от 512 Кбайт до 8 Мбайт.

Расширенный 3D Now

В ответ на Streaming SIMD Extensions (Intel Pentium 3) реализация 3DNow! в Athlon была модернизирована добавлением 24 новых команд к исходной 21 инструкции 3DNow!

Athlon был первоначально доступен в диапазонах скорости 500.550 и 600 МГц и 650 МГц немного позднее (все изготовлены по 0.25-мкм технологии). К концу 1999 года AMD еще более повысила частоту: его ядро К75 (750 МГц) является первым процессором, построенным с использованием алюминиевой 6-слойной технологии 0.18-мкм компании AMD.

Утверждение о том, что это был самый быстрый х86 совместимый центральный процессора тысячелетия, спорно, поскольку Intel быстро ответила объявлением 800 МГц Pentium 3. Однако AMD вскоре вернула лидерство в 2000 году выпуском версий на 800 и 850 МГц и преуспела в опережении Intel в преодолении барьера 1 ГГц буквально через несколько недель.

Процессор Thunderbird

В середине 2000 года была выпущена улучшенная версия Athlon с кодовым названием «Thunderbird».

Технология 0.18-мкм, кэш память 2-го уровня (L2) размером в 256 Кбайт расположена на плате процессора и работает на полной частоте процессора (первые процессоры Athlon имели кэш L2, работавшую на меньших частотах, например при частоте в 1 ГГЦ, память L2 работала на 330 МГц).

Интерфейсы - 462-контактный Socket А и Slot А. Частоты от 0.75 до 1 ГГц. Размещение 256 Кбайт памяти на кристалле привело к увеличению его размера до 120 квадратных миллиметров (102 квадратных миллиметров для ядра). Однако он меньше исходного (0.25-micron) К7 Athlon, который занимает 184 квадратных миллиметров. Добавление 256 Кбайт к L2-кэшу на кристалле весьма увеличивает число транзисторов. Центральный процессор Thunderbird включает 37 миллионов транзисторов, то есть 15 миллионов добавились для размещения кэша L2.

Осенью 2000 года был выпущен чипсет AMD760, обеспечивающий поддержку для памяти DDR SDRAM РС1600 (200 МГц FSB) и РС2100 (266 МГц FSB). Другие особенности - AGP 4-х, 4 порта USB , адресация памяти 8 Гбайт на 4 DIMM и поддержка АТА-100. С этого момента процессоры Athlon выпускались только для разъемов Socket А. Последние из процессоров Athlon/Thunderbird были выпущены летом 2001 года, достигнув частоты 1.4 ГГц.

Процессор Duron

В середине 2000 года был выпущен процессор Duron, предназначенный для дома и офиса. Название происходит от латинского «durare» - «вечный», «длительный». Кэш-память L1 (128 Кбайт) и L2 (64 Кбайт) размещается на плате. Первичная системная шина работает на частоте 200 МГц. Поддерживается улучшенная технология 3DNow! Технология 0.18-мкм, частоты 600.650 и 700 МГц. Интерфейс - 462-контактный разъем Socket А.

Процессор Palomino (Athlon ХР - EXtra Performance)

Процессор выполнен по 0.18-мкм технологии с использованием медных проводников на плате (вместо алюминия), содержит 37.5 миллионов транзисторов на кристалле в 128 квадратных миллиметров. Достигнуто понижение на 20 % энергопотребления сравнительно с Thunderbird. Введен ряд новшеств, в совокупности именуемых AMD как «QuantiSpeed Architecture»:

  • введение дополнительного буфера - буфера быстрого преобразования адреса (БПА, TLB - Processor`s Transition Lookaside Buffer). Это дополнительная кэш память, расположенная между L1 и L2. В частности, TLB содержит данные, которые используются для перевода виртуальных адресов в физические и наоборот;
  • поддержка SSE технологии Intel. В Palomino добавлены еще 52 новые команды SIMD по отношению к ранее имевшимся. Удвоено количество исходных 21 SIMD-команд, реализующих «3DNow!», и получена технология «Enhanced 3DNow!» («3DNow! Professional»);
  • использование технологии упаковки OPGA (organic PGA) для замещения CPGA (ceramic PGA), которая использовалась ранее. Использование пластмасс вместо керамики технологичнее, платы оказываются легче и обладают лучшими тепловыми свойствами. Кроме того, можно плотнее размещать навесные элементы, что уменьшает наводки и помехи. OPGA размещаются на уже известном разъеме Socket А.

Процессор Morgan

Morgan первоначально представлял собой ядро Palomino c удаленными 3/4 кэша L2 (64 Кбайт вместо 256 Кбайт). Размер кристалла - 106 квадратных миллиметров, число транзисторов - 25.18 миллионов. Напряжение питания было изменено с 1.6 до 1.75 В.

Процессор Thoroughbred

Летом 2002 года AMD начала поставлять первый процессор с 0.13-мкм технологией и медными соединениями. Площадь кристалла - 80 квадратных миллиметров (у его предшественников - 128 квадратных миллиметров). Питание - 1.65 В, размеры кэша на кристалле - 128 Кбайт для L1 и 256 Кбайт для L2, разъем - Socket А. Эквивалентная производительность Athlon ХР - 2400+ или 2600+.

Однако ядро Thoroughbred рассматривать как простую переделку Palomino с учетом новых норм технологического процесса все же не совсем верно. Thoroughbred по своей внутренней структуре значительно отличается от Palomino, в чем можно убедиться по микроснимкам процессорных ядер.

  • а - Palomino.
  • б - Thoroughbred.

Процессор Sempron

Летом 2004 года AMD объявила о выходе центрального процессора семейства Sempron. Первоначально задуманный как преемник успешного центрального процессора Duron и прямой конкурент процессору Celeron D (Intel, 90 нм), диапазон применения Sempron фактически перекрыл диапазон Athlon AMD ХР и поставил фирмы, выпускающие настольные и мобильные персональные компьютеры, перед выбором - либо Sempron, либо Athlon 64.

Все первые центральные процессоры базировались на 130 нанометровой технологии AMD. Наиболее мощные образцы (3100+) выпускаются в формате интерфейса Socket 754 (Athlon 64 - в формате Socket 939). Другие участники семейства - от 2 ГГц (2800+) до 1.5 ГГц (2200+) - используют Socket А.

В дальнейшем Sempron предполагается перевести на 90 нанометровую технологию и интерфейс Socket 939.

Архитектура процессора К8

Эта архитектура используется во всех современных серверных, настольных и мобильных процессорах AMD (Opteron, Athlon 64 и Athlon 64 Х2). Первым из процессоров К8 являлся Hammer (середина 2000 года).

Одним из главных новшеств К8 является 64-разрядная архитектура х86-64 ISA. Примером 64-разрядных процессоров (IA-64) является Intel Itanium. Однако между 64-разрядными архитектурами процессоров Itanium и К8 мало общего. Itanium - процессор, несовместимый с системой команд х86, тогда как К8, напротив, таковым является.

Стратегия AMD на 64 бита (х86-64) заключается в следующем - за основу взято производительное х86-ядро и расширен набор инструкций для возможности адресации 64-битового пространства памяти. Особенности архитектуры х86-64 (AMD64):

  • обратная совместимость с инструкциями х86;
  • 8 новых 64-битовых РОН плюс 64-битовые версии прежних 8 РОН х86 (доступны лишь в 64-битовом «длинном» режиме);
  • поддержка SSE и SSE2 помимо восьми новых регистров SSE2;
  • увеличен объем адресуемой памяти для приложений, работающих с большими объемами данных (доступно лишь в «длинном» режиме);
  • высокая производительность 32-битовых приложений плюс поддержка появляющихся 64-битовых приложений, хороший вариант переходного процессора.

Таблица режимов процессоров К8

Режим Подрежим Назначение Адресуемая память, Гбайт Операционная система Примечания
«Преемственности» (Legacy Mode) Нет Работа со всеми 16- или 32-бито-выми х86-прило-жениями 4 32-раз-рядная Используются только 32 разряда в 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется
«Длинный» (Long Mode) Полный (64 разряда) Работа с 64-разрядными приложениями (инструкции х86-64) Более 4 64-разрядная Используются 64-разрядные основные и дополнительные регистры. Требуется перекомпиляция старых программ
Совместимости (Compatibility Mode) Запуск 32-разрядных программ в 64-разрядной операционной системы 2 в 32-битовой операционной системе. 4 в 64-битовой операционной системе Используются только 32 разряда е 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется

Основные недостатки:

  • процессор продолжает поддерживать архитектуру х86, которая достаточно устарела;
  • новые РОН можно использовать лишь в 64-битовом режиме, что не позволяет повысить производительность 32-битовых приложений посредством улучшения архитектуры системы команд.

Для реализации возможности работы как с 32-битовыми, так и с 64-битовыми приложениями процессоры К8 поддерживают два режима работы - Long Mode и Legacy Mode. В режиме Long Mode также предусмотрено два подрежима - 64-битовый и Compability mode (режим совместимости).

Некоторые прочие особенности К8

  • контроллер памяти интегрирован в сам процессор. Традиционно он располагается в «северном мосте» чипсета на системной плате. Собственно, контроллер памяти - это основной функциональный блок «северного моста» (в чипсетах Intel его так и называют - МСН, Memory Controller Hub); встроенный порт («линк») шины HyperTransport - универсальной шины межчипового соединения. В процессорах К8 Opteron может быть до 3-4 линков НТ, что позволяет комбинировать их в кластерные структуры

  • архитектура К8 разработана с перспективой создания многоядерных процессоров и многопроцессорных систем: если центральные процессоры Intel Хеоn может продемонстрировать лишь 11 процентов увеличения производительности при переходе к двум процессорам, то в случае с Opteron оно составляет 24 процента;
  • усовершенствован блок предсказания переходов - для увеличения точности он содержит историю 16 000 переходов, а также 2000 адресов назначения.

Исполнение инструкций на конвейере К8 начинается с блока выборки инструкций. За один такт блок выбирает из кэша 16 байт данных и выделяет из них от одной до трех инструкций х86 - сколько в выбранных данных поместилось. Поскольку средняя длина команды х86 составляет 5-6 байт, то, как правило, блоку удается выбрать три команды за такт.

На втором такте конвейера выбранные команды распределяются по трем блокам декодирования инструкций. Самые сложные команды отправляются в декодер сложных команд (VectorPath), другие - в декодеры простых команд (DirectPath).

Исходные х86-инструкции на завершающих этапах работы декодера К7/К8 переводятся в макрооперации, или МакОПы (mOPs). Большинству х86-инструкций соответствует одна МакОП, некоторые преобразуются в 2 или 3, а наиболее сложные, например деление или тригонометрические, - в последовательность из нескольких десятков МакОП. Макрооперации имеют фиксированную длину и регулярную структуру.

Условно можно считать что в определенный момент МакОп может «расщепляться» на две микрооперации (МкОП). Как правило, в К7 и в К8 МакОП содержит две МкОП - одну для АЛУ (ALU) (или блока ПЗ - FPU), другую - для УВА (устройства вычисления адреса, AGU - Address Generation Unit).

За счет конвейеризации возможны ситуации, когда одновременно в разных блоках процессора будут выполняться до двух десятков команд - и в К7, и в К8 имеется десять исполнительных устройств - три ALU, три FPU, три AGU и отдельный блок умножения.

Подобно тому, как объединение двух отдельных МкОП в одну МакОП дает явные преимущества, точно так же дела обстоят и с самими МакОП - практически везде они выступают не в виде самостоятельных единиц, а в виде группы. Группу образуют три МакОП, которые одновременно запускаются на параллельные каналы.

Вся дальнейшая работа идет не с одиночными, а с «тройками» МакОП («линиями», line). Такая «линия», с точки зрения центрального управляющего блока процессора - ICU (Instruction Control Unit) воспринимается как единое целое: все основные действия выполняются именно над «линиями», в первую очередь выделение внутренних ресурсов.

Сгенерированные «линии» от декодеров по одной за такт поступают в блок управления командами - Instructions Control Unit (ICU), где подготовленные к исполнению линии накапливаются в специальной очереди (24 линии).

Из очереди в 24 линии по три МакОП в каждой ICU выбирает в наиболее удобной для исполнения последовательности (одна-три МакОП) и пересылает их либо на АЛУ, либо на блок ПЗ в зависимости от типа микрооперации. В случае АЛУ микрооперации сразу же попадают в очередь планировщика (шесть элементов по три МакОП), который подготавливает необходимые для исполнения микрооперации ресурсы, дожидается их готовности и только потом отправляет. Причем при исполнении одной МакОП на самом деле может происходить исполнение сразу двух действий (МкОП).

Процессор Athlon 64х2

AMD снова оказалась впереди Intel, продемонстрировав действующий экспериментальный образец двухъядерного процессора летом 2004 года и поэтому Intel вызвала всеобщее удивление, все же выйдя первой на рынок с двухъядерным процессором весной 2005 года Однако, мало того, что AMD 64 Х2 был только короткое время позади Pentium Extreme Edition и Pentium D по датам выхода на рынок, он значительно опережал их по показателям эффективности.

Athlon 64 Х2 включает все возможности, заложенные в единственном ядре Athlon 64 (такие, как HyperTransport и Enhanced Virus Protection - EVP). Когда центральный процессор работает под операционной системой Windows ХР (SP2), EVP интерпретирует области системной памяти как «только данные», так что любой находящийся здесь фрагмент кода может быть либо прочитан, либо записан, но не может быть выполнен как код программы. Тем самым EVP действует как профилактическая мера против обычных злонамеренных вирусов, локализуя и обезвреживая их.

Основная архитектура ядра Х2 по существу та же, как и у Athlon 64. Различие в том, что новые чипы, размещаемые на единственном кристалле в 199 квадратных миллиметров, причем каждый содержит более чем 233 миллиона транзисторов, изготовлены по 90 нанометровой технологии AMD.

Таким образом, спецификации первоначально объявленного диапазона Athlon 64 Х2 были эквивалентны таковым из существующих центральных процессоров на 3500+, 3700+, 3800+ и 4000+ с изменением кэша L2 и тактовой частоты. Модели с 512 Кбайт кэша на ядре базируются на двойном ядре «Winchecter», в то время как версии версии кэша L2 на 1 Мбайт используют дизайн «Toledo». К лету 2005 года диапазон был расширен с появлением нового чипа (3800 +).

Первые процессоры архитектуры AMD64 появились еще в апреле этого года. Тогда компания AMD представила серверные модели Opteron серии 200. Их можно было использовать в одно- и двухпроцессорных конфигурациях. К сожалению частоты представленных процессоров (1,4—1,8 ГГц) сначала не очень порадовали пользователей. Однако благодаря своей уникальной архитектуре Opteron показал неплохие результаты. К осени модельный ряд Opteron расширился за счет как новых частот, так и новых серий. Сегодня AMD предлагает уже три серии процессоров для применения в одно- (серия 100), двух- (серия 200) и четырех- или восьмипроцессорных (серия 800) системах. Максимальная частота для процессоров Opteron сейчас составляет 2 ГГц (модели XX6).

Однако «не серверами едиными», и рынок ждал и даже требовал показать что-то действительно новое, массовое, недорогое — для всех. Масса слухов и предположений о частоте, сокете, объеме L2 кэша и даже названии новых настольных процессоров будоражили воображение. И вот в последней трети сентября AMD наконец раскрыла свои планы завоевания рынка.

  • AMD Athlon 64 3200+
  • AMD Athlon 64 FX-51

Кроме того, объявлено о выпуске процессоров для ноутбуков (класса DTR (DeskTop Replacement), класса замены настольному ПК) с рейтингами 3000+ и 3200+, но поскольку они отличаются от Athlon 64 только отсутствием закрывающей кристалл крышки, то особо про них пока говорить не будем, а просто чуть позже опубликуем статью и про такой процессор. Отметим только, что мобильная технология динамического изменения частоты и напряжения Cool"n"Quiet может быть задействована у всех процессоров архитектуры AMD64, дело только за поддержкой такой функциональности материнской платой. И конечно, пока процессоры Mobile Athlon 64 могут использоваться только в DTR-системах: они потребляют до 89 Ватт — например, версия 3000+ потребляет 81 Вт. Кстати этот показатель у Opteron составляет 85 Вт для младших моделей и 89 Вт для 2,0 ГГц и выше (это же касается и Athlon 64/Athlon 64 FX) — для процессоров архитектуры AMD64 всех линеек потребляемая мощность определяется исключительно частотой.

Итак, попробуем теперь расставить все по своим местам. Для начала советуем прочитать наши прошлые материалы по архитектуре AMD64:

  • Тестирование процессоров Athlon 64 и Opteron в реальных приложениях

Поскольку про процессоры Opteron уже сказано и написано достаточно много, опишем новые продукты в виде отличий от них, благо ядра у всех практически одинаковые.

Процессор с названием Athlon 64 использует Socket 754 и имеет одноканальный интегрированный контроллер памяти с поддержкой DDR400 (не регистровой!). Он пришел на смену Athlon XP, который постепенно будет вытесняться с рынка. Несмотря на то что индекс производительности у нового процессора совпадает с максимальным у предшественника (а частота даже меньше), значительные отличия в архитектуре позволяют надеяться, что он будет превосходить Athlon XP 3200+ в скорости.

С Athlon 64 FX все еще проще — на момент анонса он отличался от Opteron только частотой, которая для модели FX-51 составляет 2,2 ГГц. Конечно, формально есть и отличие в поддержке памяти DDR400, однако, как мы увидим в дальнейшем, это не считается:). Этот процессор AMD позиционирует как high-end настольную модель. Хотя если учесть ее полную взаимозаменяемость с Opteron (в однопроцессорных системах), то становится ясно, что «позиционирование» это очень шаткое, и легко может быть проигнорировано особо сообразительными покупателями. :)

Несмотря на то что между контактами в сетке у обоих сокетов одинаковое расстояние в 1,27 мм, Socket 754 не является подмножеством Socket 940, поскольку его контакты расположены в квадрате 29 на 29 мм против 31 на 31 мм у 940-го. Поэтому в отличие от, например, известной пары i865/i875 и i848 производителям придется создавать разный дизайн плат для этих продуктов.

Однако оба сокета используют одинаковую систему крепления охлаждающих устройств.

Основание, на которое собственно и крепится кулер, состоит из двух частей: металлической подложки и пластмассовой рамки, которые располагаются с разных сторон материнской платы и скрепляются двумя винтами. Сам кулер крепится на рамку на две мощные защелки.

Кулеры, которые мы использовали, имели медное основание и приваренные медные ребра. Конструкция аналогична известным моделям Thermaltake Volcano 7+/11+ . Кстати, по обилию знаков этой торговой марки на разных частях боксового кулера можно предположить, что именно эта компания помогала AMD в разработке систем охлаждения новых процессоров. Размеры у разных моделей немного отличались. У боксовой версии от Opteron 240 (без проблем работающей и с более быстрыми процессорами, включая Opteron 146) использовалось основание размером 55x75x5 мм и 46 ребер площадью по 12 см 2 . Вентилятор от Delta размером 70x70x15 мм модели AFB0712HBB имел встроенный термодатчик для регулировки оборотов (максимальное значение — 4300 об/мин). Вариант от Thermaltake имел другие параметры: основание 65x60x4 и 36 ребер по 18 см 2 , вентилятор тот же, но уже без датчика. Кроме цельномедных версий была и одна алюминиевая с медным цилиндром внутри. Кроме того, возможно использование и Zalman CNPS7000-Cu (однако он крепится винтами и поэтому для частых замен не очень удобен).

В принципе, дизайн кулера предполагает, что он немного обдувает и расположенные рядом с процессором модули памяти, однако одна из использованных версий имела ориентацию ребер вдоль длинной стороны сокета и поэтому (по крайней мере, на протестированных платах) непригодна для этой цели.

Что касается шума, то все вентиляторы очень тихие (для Delta паспортный уровень шума составляет 38,5 дБА при максимальных оборотах). Так что с этой точки зрения у новых продуктов AMD все в порядке, несмотря на то что количество транзисторов в ядре у них почти в два раза больше, чем у Athlon XP (105,9 млн. против 54,3).

Приведем сводную таблицу параметров старых и новых процессоров, которые претендуют на место в системном блоке настольного ПК. Opteron тут смотрится, конечно, несколько чужеродно, и приведен, скорее, для наглядного сопоставления с Athlon 64 FX. Однако и цена на модели серии 100 не такая страшная — от $250.

Athlon XP Athlon 64 Athlon 64 FX Opteron Pentium 4
сокет Socket A Socket 754 Socket 940 Socket 940 Socket 478
рейтинг/модель 3200+ 3200+ FX-51 146
частота 2,2 ГГц 2,0 ГГц 2,2 ГГц 2,0 ГГц 3,2 ГГц
шина 3,2 ГБ/с 6,4 ГБ/с 6,4 ГБ/с 6,4 ГБ/с 6,4 ГБ/с
память, скорость 6,4 ГБ/с * 3,2 ГБ/с 6,4 ГБ/с 5,3 ГБ/с 6,4 ГБ/с *
L1 I: 64КБ
D: 64 КБ
I: 64КБ
D: 64 КБ
I: 64КБ
D: 64 КБ
I: 64КБ
D: 64 КБ
I: 12000 мОп
D: 8 КБ
L2 512 КБ 1024 КБ 1024 КБ 1024 КБ 512 КБ

* определяется чипсетом

Несмотря на то что в этой таблице приведены официальные данные, в ней есть неточность — на самом деле процессоры Opteron (мы проверили как модели ранней ревизии — B3, так и последней — C0) прекрасно работают и с памятью DDR400! Дело, оказывается, только в том, что регистровых модулей с такой скоростью в апреле еще не было. Да и валидация памяти для серверных систем — процесс небыстрый. Будем считать, что AMD просто перестраховалась.

Что касается дальнейших планов компании, то тут можно предположить только одно — частоты будут повышаться. Для предыдущей архитектуры (ядро Barton) была достигнута отметка в 2,2 ГГц, а Athlon 64 FX с этого начинает. Так что можно надеяться, что будут и следующие, более быстрые процессоры, но революционная часть на этом завершена. Следующий большой шаг — переход на технологию 90 нм.

Внешне процессоры практически не отличаются друг от друга. Только у Athlon 64 корпус аналогичен последним «зеленым» Athlon XP с органическим основанием, а у Athlon 64 FX и Opteron он керамический. И конечно, все они закрыты металлической крышкой.

Что касается маркировки, то тут одним предложением не обойдешься:), но попробуем, исходя из текущей информации, хоть что-то расшифровать. Заметим, что эта информация не является строго официальной, поэтому в дальнейшем возможны изменения и дополнения.

Мы имели дело со следующими процессорами:

  • Opteron 240: OSA240CCO5AH
  • Opteron 244: OSA244CEP5AL
  • Opteron 146: OSA146CEP5AK
  • Athlon 64 FX-51: ADAFX51CEP5AK
  • Athlon 64 3200+: ADA3200AEP5AP

Итак, первая буква говорит о бренде: O — Opteron, A — Athlon 64. Вторая — о применении: S — Server, D — Desktop. Конечно, пока у нас есть только комбинации OS и AD, но кто знает, может, AMD выпустит и серверный Athlon 64? :-)

Третья буква по некоторым источникам определяет некий «Power Limit». Однако подробных объяснений пока нет, да и все протестированные процессоры имеют здесь букву «A», так что по этому параметру их пока не различишь.

Наконец, четвертым пунктом у нас идет номер модели. Для Opteron это три цифры, первая — номер серии, вторая пока равна четырем, а последняя, всегда четная, определяет частоту: от «0» для 1,4 ГГц до «6» для 2,0 ГГц. У Athlon 64 мы видим здесь индекс производительности в виде четырех цифр, которые соответствуют названию конкретной модели. Аналогичная ситуация и с Athlon 64 FX.

Далее следует вариант исполнения корпуса: A — 754-контактный OuPGA с крышкой (для Athlon 64), B — 754-контактный OuPGA без крышки (мобильный Athlon 64) и C — 940-контактный CuPGA тоже с железной крышкой у Opteron и Athlon 64 FX.

Следующая буква показывает напряжение ядра. Для первой модели Opteron, которую мы тестировали, оно составляет 1,55 В (буква C), а для всех остальных — 1,50 В (буква E). Предусмотрено использование букв через одну до Y, которая соответствует значению 1,00 В.

Седьмой показатель определяет рабочую температуру процессора. «O» соответствует 69°C, «P» — 70°C. Следующие по алфавиту буквы обозначают бо льшую температуру, вплоть до «Z» — 105 градусов по Цельсию.

Последняя цифра показывает объем L2 кэша процессора: 1 — 64 КБ, 2 — 128 КБ, 3 — 256 КБ, 4 — 512 КБ, 5 — 1 МБ. Как легко убедиться, у представителей архитектуры AMD64 меньше одного мегабайта кэша пока нет.

Ну и, наконец, две последние буквы определяют степпинг, ревизию, сокет, количество когерентных шин HT и все такое. Главное запомнить, что если буквы старше AI, то это степпинг C0 или выше.

В общем, самыми важными (и простыми для запоминания:-)) являются первые три буквы, которые определяют серверный или настольный процессор, и, конечно, индекс модели, который показывает производительность в единицах, известных только самому производителю. :-)

Поскольку производительность — не единственное, что интересует покупателей, то сообщим и цены, по которым компания планирует продавать новые продукты: $417 за Athlon 64 3200+ и $733 за Athlon 64 FX-51 (мобильные процессоры пойдут за $417 и $278 за модели 3200+ и 3000+ соответственно). В целом, цены на уровне high-end настольных процессоров, но вот до желанных «$64 за 64 бита!» еще очень и очень далеко. С другой стороны, это лишь начало, и можно ожидать значительного снижения цен в ближайшие месяцы, однако сейчас все это только для очень нетерпеливых. Ну а количество проданных процессоров будет определяться и результатами, которые они покажут в тестах производительности.

Как вы помните, AMD еще во время представления Athlon XP опубликовала список приложений, которые использовались ею для присвоения рейтингов. Но вот использованием даже не рейтинга, а кодового имени (FX-51) у настольного процессора компания еще раз подчеркнула свой оригинальный подход к понятию «производительность».

Современная версия списка приложений, используемых для оценки скорости, выглядит так:

Productivity eTesting Labs inc. Business Winstone 2001
eTesting Labs inc. Business Winstone 2002
BAPCo SYSmark 2001 Office Productivity
Media Computing eTesting Labs inc. Content Creation Winstone 2002
eTesting Labs inc. Content Creation Winstone 2003
RAW AVI to MPEG2 (Bbmpeg, AVItoMPEGg2)
XMPEG 5.0 patched / DivX (5.03 Pro bundle) MPEG2 to MPEG4
RazorLAME 1.1.5 MP3 encoder
BAPCo SYSmark 2001 Internet Content Creation
WinRAR
3D Gaming Futuremark Corporation 3DMark 2001SE (D3D Hardware T&L)
Futuremark Corporation 3DMark 2001SE (D3D Software T&L)
Futuremark Corporation 3DMark 2003 Hardware
Futuremark Corporation 3DMark 2003 Software
Futuremark Corporation 3DMark 2003 CPU
Aquamark (1024x768)
Commanche 4 Demo (1024x768x32)
Half-Life Smokin" (1024x768x32)
Jedi Knights II demo (1024x768x32)
QuakeIII Demo2 (1024x768x32)
Return to Castle Wolfenstein 3D (1024x768x32)
Serious Sam: Karnak: Peaceful Night Coup demo (1024x768x32)
Serious Sam: Second Encounter-Demo version (1024x768x32)
Unreal Tournment (1024x768x32)
Unreal Tournment 2003 Flyby
Unreal Tournment 2003 Botmatch
Splinter Cell (1_1_1)
Splinter Cell (1_1_2)
General Performance BAPCo SYSmark 2001 — Overall Performance

Безусловно, по сравнению с прошлым вариантом стало немного лучше — добавились популярные задачи типа кодирования медиаданных и архивирования. С другой стороны, обилие синтетических тестов типа SYSmark и Winstone немного смущает. Поскольку уже давно известно, что любой современный процессор с частотой порядка 2 ГГц в силах обеспечить достойную работу в современных офисных приложениях. Конечно, есть примеры получения по 1000 электронных писем с упакованными вложениями в день и постоянной проверки всего этого (включая двухгигабайтную почтовую базу) антивирусом, но в этом случае нужно апгрейдить не железо:-), да и указанная синтетика такую ситуацию не проигрывает.

Туда же выкидываем тесты 3DMark с «D3D Software T&L», поскольку если уж человек потратился на такой процессор и не стал покупать достойную видеокарту, то, видимо, он не играть на компьютере будет.

С некоторыми играми типа QuakeIII тоже не очень ясно — стоит ли покупать новый процессор для увеличения количества fps с 220 до 290? :-) Да и в руководстве по проведению тестов от AMD, бывает, проскакивает «Select «Preferences» to «Speed». С одной стороны, конечно, понятно, что не видеокарту хотим тестировать, но…

В общем, остается кодирование в MP3 (хотя… и так 5-10 минут на диск, зачем быстрее? :-)), преобразование в MPEG2 (но тоже непонятно, зачем это делать из RAW AVI? У всех диски большие и быстрые, чтобы хранить более полутора гигабайт за минуту?), а вот «MPEG2 в MPEG4» совершенно точно продолжает нервировать своей медлительностью.

Явно не хватает задач класса рендеринга и расчетных задач. Видимо, эти приложения компания относит уже к рабочим станциям. В целом, пожалуй, это правильно, поскольку, по многочисленным опросам, мощные ПК дома обычно используются сами знаете для чего:-). Однако позиционирование (опять это подозрительное слово:-)) процессора Athlon 64 FX легко может быть исправлено и в сторону «рабочих станций начального уровня», если он покажет в этих приложениях достойную скорость.

64-битные приложения и Windows XP for AMD64

Заранее хотим предупредить, что несмотря на цифры «64» в названии, действительно использовать 64-битные расширения на рабочих столах мы будем еще не скоро. Конечно, энтузиасты уже сейчас могут попробовать вкусить их, используя соответствующие версии Linux, однако реально массовое распространение 64-битного режима начнется только с выпуском компанией Microsoft своей ОС Windows для этой платформы. В настоящий момент компания работает над двумя версиями ОС — серверной и десктопной. Обе они уже существуют в виде бета-версий. У нас была возможность ознакомиться с пре-релизом Windows XP for AMD64.

Как вы видите на скриншоте, запуск обычного Microsoft Office XP, программы VirtualDub с кодеком DivX, файлового менеджера FAR прошли успешно. Чего нельзя сказать о графических приложениях. Несмотря на «полную совместимость», попытка запуска игр QuakeIII и Return to Castle Wolfenstein окончилась неудачей (игры не смогли настроить графическую систему). В то время как Serious Sam: The Second Encounter и Unreal Tournament 2003 Demo заработали без проблем. Что касается скорости, то на ее показатели в 3D-приложениях, которыми являются игры, очень большое влияние оказывают драйверы видеокарты. В данном случае Детонаторы NVIDIA версии 50.30 от мая этого года не хватали звезд с неба и показали 30-процентное падение скорости по сравнению с Windows XP Pro с драйвером 45.23. Видимо, именно портирование драйверов под новую систему (которое обязательно, поскольку драйвера в ней обязаны быть 64-битными) будет основной проблемой в первое время. Заметим, что ОС так их скрывает, что найти собственно файлы драйвера можно только вручную в проводнике. Попытка обнаружить их поиском в проводнике или файловом менеджере FAR окончилась неудачей. Есть и сомнения в версии используемого драйвера NVIDIA, поскольку в свойствах файла драйвера фигурирует цифра 50.40 и дата 8 августа этого года.

Конечно, и большинство консольных приложений тоже не должны иметь проблем с запуском под этой версией ОС. Исключение составляют программы, которые используют 16-битный код (например, в библиотеках), и те, что запускают для своей работы специальные системные драйверы, например, для доступа к аппаратным ресурсам (одна из таких программ — утилита для получения информации о процессоре, материнской плате и памяти, CPU-Z — не смогла показать полностью всю информацию под Windows XP for AMD64). Ну а о том, что скорость работы win32-приложений (не графических) в новой ОС по крайней мере не хуже, чем в 32-битной версии, говорит и тот факт, что показатели теста SPEC CPU2000, некоторые подтесты которого очень чувствительны к скорости памяти, практически не изменяются при работе в Windows XP for AMD64.

Чипсеты

Чипсеты для процессоров архитектуры AMD64 отличаются тем, что в случае десктопного применения они практически не влияют на скорость. Судите сами: память в таких системах подключается непосредственно к процессору, а единственный формально «толстый» потребитель информации — видеокарта — уже давно обзавелась своей объемной и быстрой памятью. Так что основные потоки информации циркулируют вне чипсета. Да, конечно, есть сеть и накопители, однако стандартные 100BaseTX требуют всего около 10 МБ/с, а жесткие диски хоть и совершенствуют интерфейс в направлении 150 МБ/с, но (также — для десктопов) сами по себе только приближаются к скоростям чтения с поверхности порядка 70—80 МБ/с.

Конечно, для рабочих станций у нас появляются и гигабитные сетевые контроллеры, и RAID-массивы на жестких дисках, однако это уже совсем другая история.

Еще одним интересным свойством чипсетов является их универсальность и масштабируемость. Поскольку с процессором(-ами) они общаются исключительно по стандартной шине HyperTransport, то, учитывая положительный опыт с Socket A, производители вполне могут рассчитывать на долгую жизнь своих разработок. Ну а то, что любой чипсет (по крайней мере, формально) может работать как с одним, так и с двумя и более процессорами, позволяет позиционировать один продукт на несколько рынков одновременно.

Однако у первого поколения настольных чипсетов есть и общий недостаток — они поддерживают только одну шину HT. Как вы помните по прошлым публикациям , чипсет AMD8000 отличается великолепными возможностями расширения, так как большинство чипов имеют две шины HT и могут подключаться последовательно (правда, «выходная» шина только восьмибитная). Поскольку HT в текущей редакции поддерживает скорость обмена до 6,4 ГБ/с, это позволяет не иметь узких мест для шести шин PCI-X, двенадцати PCI 2.2 64 бит/66 МГц или 48 обычных PCI 32 бит/33 МГц.

К сожалению, существующие решения не от AMD лишены таких возможностей, и область их применения ограничивается обычными ПК, а для перехода на следующий уровень производителям придется придумывать что-то новое.

Отметим, что помимо рассматриваемых сегодня продуктов от NVIDIA () и VIA (), на рынок чипсетов для новых процессоров AMD также вышли изделия компаний ALI () и SiS (). Сейчас это двухчиповые решения, однако в планах стоят и одночиповые продукты. Кроме того, в будущем ожидается появление чипсетов с поддержкой шины PCI Express и 3GIO. К этому моменту и ATI обещает представить свои чипсеты, включая вариант с интегрированной графикой.

NVIDIA

Одним из первых чипсетов от сторонних компаний для процессоров AMD оказался NVIDIA nForce3 Pro 150. Это одночиповое решение сочетает в себе как мост для поддержки шин AGP и PCI, так и все стандартные для южного моста контроллеры:

  • 2 канала PATA/IDE с поддержкой UltraATA 133 и RAID
  • Fast Ethernet сетевой контроллер
  • 6 портов USB 2.0
  • AC"97 звуковой контроллер с поддержкой 5.1 и цифрового выхода

В следующую версию чипсета — с индексом 250 — планируется включить гигабитный сетевой контроллер, 2 порта PATA и 4 порта SATA. Ну а сегодняшние платы используют для SATA и Gigabit Ethernet внешние чипы.

В тестировании сегодня участвуют материнские платы на этом чипсете: ASUS SK8N для Socket 940 и Gigabyte K8NNXP для Socket 754.

Поскольку основная тема статьи — новые процессоры, то здесь приведем только краткие характеристики плат, а подробное сравнение оставим до следующего раза.

Плата ASUS SK8N

Gigabyte K8NNXP

Чипсет NVIDIA nForce3 Pro 150 NVIDIA nForce3 Pro 150
Поддержка процессоров Socket 940,
AMD Opteron, Athlon 64 FX
Socket 754,
AMD Athlon 64
Разъемы памяти 4 DDR
до 4 ГБ
3 DDR
до 3 ГБ
Слоты расширения AGP/ 5 PCI AGP/ 5 PCI
Порты ввода/вывода 1 FDD, 2 COM, 1 LPT, 2 PS/2
USB 4 USB 2.0 + 1 разъем на 2 USB 2.0 2 USB 2.0 + 2 разъема по 2 USB 2.0
FireWire 2 порта (один на планке, внешний контроллер TI) 3 порта (планки в комплекте, внешний контроллер TI)
2 порта PATA (ATA133) 2 порта PATA (ATA133)
Внешний IDE-контроллер Silicon Image Sil3512 (2 порта SATA), GigaRAID IT8212 (2 порта PATA)
Звук AC"97-кодек Avance Logic ALC650 AC"97-кодек Avance Logic ALC658
Сетевой контроллер интегрированный Fast Ethernet интегрированный Fast Ethernet и внешний Gigabit Ethernet
I/O-контроллер ITE IT8712F-A ITE IT8712F-A
BIOS 4 Мбит
AMI BIOS
4 Мбит
AwardBIOS v6.00PG
Форм-фактор, размеры ATX, 30,5x24,5 см ATX, 30,5x24,4 см

Отметим, что у процессоров Athlon 64 есть некоторое ограничение в плане скоростей и объема памяти, вызванное применением нерегистровых модулей. В частности, на частоте 400 МГц можно использовать только 2 модуля, что ограничивает максимальный объем оперативной памяти в этом случае до 2 ГБ.

Как это обычно и бывает, первые продукты для новой архитектуры производитель старается «набить» по максимуму, считая, что у первых покупателей денег много и они могут себе позволить потратить значительную сумму. Так вышло и с SK8N и K8NNXP. Сейчас их можно приобрести примерно за $200. Конечно, для массового рынка это слишком много. Безусловно, вскоре мы увидим и версии без контроллеров FireWire и SATA, которые будут дешевле. Да и ежедневные анонсы других производителей говорят о будущей конкуренции на рынке плат для новых процессоров AMD, что также приведет к снижению цен.

VIA

Компания VIA тоже не смогла отказаться от такого свежего рынка и выпустила свой чипсет для новых процессоров AMD — VIA K8T800. Кстати, по первым обзорам Athlon 64 в Сети вы должны помнить и фантома с названием K8T400M (или даже K8М400 — с интегрированным видеоконтроллером), до массового производства плат на котором дело так и не дошло. Пока AMD откладывала выпуск своего настольного процессора, VIA выпустила новую версию своего чипсета:-) (хотя, скорее всего, просто переименовала старый).

В отличие от чипсета nForce3, он выполнен в почти классическом варианте — с северным и южным мостом, которые соединены шиной 8X V-Link с пропускной способностью 533 МБ/с (в некоторых источниках указывается цифра в 1 ГБ/с). В качестве high-end южного моста используется чип VT8237 (уже известный по платам на KT600), который поддерживает:

  • восемь портов USB 2.0
  • два порта Parallel ATA133/100/66 с поддержкой до 4 устройств
  • звуковые решения от VIA: VIA Vinyl 5.1 & Vinyl Gold 7.1
  • два порта SATA с поддержкой RAID (V-RAID: RAID 0, RAID 1, RAID 0+1, JBOD)
  • интегрированный 10/100 BaseT сетевой контроллер
  • подключение Gigabit Ethernet companion controller

Как одно из достоинств своего чипсета, компания представляет технологию Hyper8, за красивым названием которой скрывается поддержка режима шины HyperTransport между процессором и чипсетом 16 бит/800 МГц в обе стороны.

Действительно, у плат на nForce3 эти параметры составляют «всего» 8 бит/600 МГц в одну сторону и 16 бит/600 МГц в другую. Однако такое формально большое отличие не играет сегодня практически никакой роли, поскольку у любого чипсета под AMD64 единственным серьезным потребителем данных является видеоконтроллер на шине AGP, которая в настоящее время почти не загружена при реальной работе. Возможно, в будущем, для рабочих станций и серверов с шинами PCI-X и PCI Express это и будет важно, но сейчас несколько преждевременно. Поскольку BIOS платы на K8T800 позволяет настроить разрядность и частоту шины HT, то мы провели экспресс-тестирование в Return to Castle Wolfenstein и SPECviewperf и не выявили никаких отличий в скорости при работе в указанных режимах.

В тестировании принимали участие материнские платы ASUS K8V Deluxe и MSI K8T Neo для Socket 754. Результаты тестов плат практически совпадают. Для определенности на диаграммах приводятся показатели платы от ASUS. Но советуем относиться к результатам с осторожностью, так как использовались бета-версии BIOS, и с выходом релиза может многое измениться.

Плата ASUS K8V Deluxe

MSI K8T Neo

Чипсет VIA K8T800 + VT8237 VIA K8T800 + VT8237
Поддержка процессоров Socket 754,
AMD Athlon 64
Socket 754,
AMD Athlon 64
Разъемы памяти 3 DDR
до 3 ГБ
3 DDR
до 3 ГБ
Слоты расширения AGP/ 5 PCI/ ASUS WiFi AGP/ 5 PCI
Порты ввода/вывода 1 FDD, 2 COM (один на планке), 1 LPT, 2 PS/2 1 FDD, 1 COM, 1 LPT, 2 PS/2
USB 4 USB 2.0 + 2 разъема по 2 USB 2.0
FireWire 2 порта (один на планке, внешний контроллер VIA) 2 порта (внешний контроллер VIA)
Интегрированный в чипсет IDE-контроллер 2 порта PATA (ATA133), 2 порта SATA
Внешний IDE-контроллер Promise PDC20378 (1 порт PATA, 2 порта SATA) Promise PDC20378 (1 порт PATA, 2 порта SATA)
Звук AC"97-кодек ADI AD1980 AC"97-кодек Avance Logic ALC655
Сетевой контроллер внешний Gigabit Ethernet (3Com) внешний Gigabit Ethernet (Realtek)
I/O-контроллер Winbond W83697HF Winbond W83697HF
BIOS 4 Мбит
AMI BIOS
4 Мбит
AMI BIOS
Форм-фактор, размеры ATX, 30,5x24,4 см ATX, 30,5x24,5 см

Как видно из таблицы, обе модели представляют собой типичные образцы high-end материнских плат. Обе используют внешние гигабитные сетевые адаптеры, звуковые 5.1-контроллеры позволяют подключать АС через оптический и коаксиальные цифровые выходы. Также впечатляет и возможное количество накопителей — по 6 подключается только к южному мосту и еще остается в запасе внешний ATA/RAID-контроллер.

Отметим, что на плате ASUS установлен специальный слот для подключения собственной карты беспроводного радиодоступа (идет в комплекте с Deluxe-версией) стандарта 802.11b (11 Мбит).

Конфигурации

Процессоры:

  • AMD Athlon XP 3200+
  • AMD Athlon 64 3200+
  • AMD Athlon 64 FX-51
  • AMD Opteron 146
  • Intel Pentium 4 3,2 ГГц

Материнские платы:

  • Athlon XP (Socket A): Albatron KX18D Pro II (nForce2 Ultra 400)
  • Athlon 64 (Socket 754): Gigabyte K8NNXP (nForce3 Pro 150), ASUS K8V Deluxe (K8T800)
  • Athlon 64 FX, Opteron (Socket 940): ASUS SK8N (nForce3 Pro 150)
  • Pentium 4 (Socket 478): ASUS P4C800 Deluxe (i875P)
  • два модуля по 256 МБ Kingmax DDR400 (2-3-3-5) для систем на Athlon 64, Athlon XP и Pentium 4
  • два модуля по 512 МБ от компании Legacy Electronics DDR400 ECC Registered (2.5-3-3-5) для систем на Athlon 64 FX-51 и Opteron (также использовалась как DDR333 с теми же таймингами), контроль ECC отключался в BIOS.

Видеокарта:

  • ATI Radeon 9800 Pro 256MB

Жесткий диск:

  • Western Digital WD360 (SATA, 10000 об/мин)

Программное обеспечение и драйвера:

  • Windows XP Pro SP1
  • DirectX 9.0b
  • набор драйверов для NVIDIA nForce3 версии 3.44
  • драйвера чипсета Intel версии 5.0.2.1003
  • видеодрайвер ATI CATALYST 3.7

Результаты тестов

Сначала отметим, что методика тестирования систем в этой статье отличается от использованной ранее. Так что сравнивать результаты напрямую нельзя. Тем более что мы поменяли и видеокарту.

Конечно, весь предложенный AMD список приложений мы использовать не стали. В этот раз мы рассмотрим игры, медиакодирование и архивирование, как наиболее процессороемкие приложения для настольных ПК.

Для повышения точности все тесты на реальных приложениях запускались минимум по три раза, и для отчета выбиралась медиана.

Игры

Для тестирования производительности в играх использовались следующие приложения:

  • Return to Castle Wolfenstein 1.41, id Software/Activision
  • Serious Sam: The Second Encounter 1.07, Croteam/GodGames
  • Unreal Tournament 2003 Demo 2206, Digital Extreme/Epic Games

Записанные в этих программах демо сцены (checkpoint, Grand Cathedral, botmatch-antalus, flyby-antalus) проигрывались в разных разрешениях с оптимизацией настроек «Качество», установленными в самой игре. В драйверах видеокарты не производилось никаких изменений кроме отключения VSync.

Отметим, что результаты показали высокую зависимость скорости от разрешения и, следовательно, от видеокарты. Только количество fps в сцене botmatch-antalus практически не снижалось при росте разрешения. Для отчета выбраны результаты в разрешении 1024x768. При игре в 800x600 разрыв между участниками будет больше, в то время как при 1600x1200 заметно сократится. А если использовать режимы антиалиасинга и анизотропии, то может так получиться, что разницы в результатах не будет совсем.

В этой, достаточно старой игре всегда были фаворитами процессоры компании Intel. Однако с выходом 64-битных процессоров от AMD ситуация сильно изменилась. Новые процессоры с частотой 2 ГГц идут наравне с Pentium 4 3,2 ГГц, а Athlon 64 FX пропорционально частоте увеличивает свой результат практически на 10% и выходит в лидеры.

Эта игра уже больше любит продукты AMD. И если ранее у нас был паритет между Athlon XP 3200+ и Pentium 4 3,2 ГГц, то теперь новые процессоры дружно вырываются вперед. Как и в прошлый раз, лидером является Athlon 64 FX-51.

Посмотрим также и на зависимость результатов от разрешения. На следующих двух диаграммах приводятся только данные по Athlon 64 FX-51 и Pentium 4 3,2 ГГц.

Мы видим, что RtCW является несложным заданием для ATI RADEON 9800 Pro, и результаты практически не зависят от разрешения. Преимущество Athlon 64 FX составляет от 10 до 6% в зависимости от разрешения.

Для Serious Sam: The Second Encounter ситуация другая — в разрешении 1600x1200 результаты систем практически совпадают, а вот при 800x600 разница составляет почти 30%.

В этой игре результаты в целом повторяют данные по Serious Sam: The Second Encounter. Однако разброс показателей в тесте flyby меньше и составляет всего 10%, в то время как в более сложном для процессора демо botmatch лидер выигрывает у конкурента уже 25%.

Для сравнения мы также провели тесты двух самых быстрых систем и с видеокартой NVIDIA GeForce FX 5900 Ultra (драйвер 45.23).

В целом расстановка сил сохраняется и в этом случае: Athlon 64 FX-51 выигрывает у Pentium 4 3,2 ГГц от 7,5% в RtCW до 26,7% в UT2003 botmatch.

Медиакодирование

Как и раньше, используются две популярные задачи: кодирование музыки в формат MP3 и видео в формат MPEG4(DivX). Однако в этот раз используются другие настройки и версии программ.

Для первой задачи мы взяли кодек Lame 3.93 и использовали три варианта настроек:

  • --preset standard -m s
  • --preset 192 -m s
  • --preset cbr 192 -m s

Все они создают файлы примерно одинакового размера со средним битрейтом 192 Кбит/с. В качестве исходного выступал WAV-файл длиной в 71 минуту (переписанный с CD-DA).

В этом тесте мы видим явную зависимость скорости кодирования от частоты, и Athlon XP 3200+ легко обгоняет все новые процессоры AMD с частотой 2,0 ГГц и даже немного опережает Athlon 64 FX-51. А в лидеры со своими 3,2 ГГц выходит продукт от Intel. Отрыв его от ближайшего преследователя составляет около 10%.

Кодирование видео в DivX (кодек версии 5.1) производилось из трейлера фильма в формате MPEG2 (длинна 2:25, разрешение 720x576) в программе VirtualDub (c поддержкой чтения формата MPEG2, версия 1.5.4) с использованием фильтров crop, deinterlace и resize.

И снова в лидерах Pentium 4 3,2 ГГц, но в этот раз Athlon 64 FX-51 его практически догнал. А вот Athlon XP 3200+ сильно сдал на этой задаче. В принципе, можно предположить, что дело в отсутствии у последнего SSE2, однако у нас нет практически никакой информации о поддержке SIMD у кодека DivX, так что утверждать, что дело именно в этом, мы не можем. Так же как и у Lame, заметно, что результаты практически не зависят от скорости памяти.

Архивирование

В архивировании применялись две программы: консольная версия RAR (версии 3.20) и 7-Zip (версии 3.09.01 beta). Настройки на максимальное сжатие: -m5 для RAR и -mx9 для 7-Zip.

В качестве входных файлов применялись:

  • исходные тексты ядра Linux (примерно 150 МБ)
  • драйверы для видеокарт NVIDIA (примерно 100 МБ)

Архиватор 7-Zip мы уже применяли ранее. Он показывает один из лучших результатов по степени сжатия, однако за это приходится расплачиваться большим временем работы. Для примера в таблице приведена эффективность в режиме максимальной компрессии (отношение объемов входного и выходного файла) и время работы архиваторов в секундах. За формат zip выступает консольная win32-версия архиватора pkzip версии 2.50 от PKWARE.

zip rar 7z
коэффициент сжатия
driver 2,3 3,5 6,2
kernel 4,5 6,7 7,1
время, секунды
driver 9 55 116
kernel 10 68 368

Кстати, из этой таблицы видно, почему мы исключили из тестов архивирование в формат zip — скорость его работы определяется скорее параметрами жесткого диска, чем процессора. Да и степень сжатия у него заметно меньше, чем у конкурентов.

Единственный тест, где мы видим заметную разницу в работе Athlon 64 на разных чипсетах. Причем его скорость на nForce3 — лучшая среди всех участников. Отличием этой конфигурации от остальных является использование SATA-контроллера Sil3512. Возможно, дело в этом, а может, есть еще какой-то секрет в чипсете NVIDIA.

Если же сравнивать Pentium 4 3,2 ГГц и Athlon 64 FX-51, то последний в этот раз немного впереди.

Здесь у нас ситуация другая. Тест показывает зависимость как от скорости памяти (что не вызывает удивления, поскольку при архивировании тестовых файлов 7-Zip забирает более 300 МБ оперативной памяти), так и от частоты процессора. И похоже, что интегрированный контроллер у процессоров AMD ему нравится больше из-за меньших задержек. И снова в этом тесте Athlon 64 на nForce3 показывает хороший результат и почти догоняет лидера.

Выводы

Посмотрим на итоговую таблицу результатов:

Athlon 64 FX-51
против
Pentium 4 3,2 ГГц
Athlon 64 3200+
против
Athlon XP 3200+
Athlon 64 3200+
против
Pentium 4 3,2 ГГц
игры
RtCW +10% +17% +1%
SSAM2 +20% +14% +14%
UT2003 flyby +10% +9% +7%
UT2003 botmatch +25% +18% +18%
медиакодирование
Lame VBR -11% -9% -19%
Lame ABR -10% -9% -17%
Lame CBR -10% -9% -18%
DivX -1% +4% -10%
архивирование
RAR, kernel +8% +26% +12%
RAR, driver +2% +40% +15%
7-Zip, kernel +10% +10% +6%
7-Zip, driver +8% +12% +4%

Итак, мы видим, что новый процессор компании AMD Athlon 64 FX-51 в игровых приложениях показывает отличную производительность, на 10 и более процентов опережая своего непосредственного конкурента Intel Pentium 4 3,2 ГГц. Однако не забудем, что результаты сильно зависят от используемой видеокарты, и если у вас 3D-ускоритель не высшего класса, то… нужно скорее пойти в магазин и купить его:-), иначе эффекта от потраченных на процессор денег можно и не заметить.

В кодировании в формат MP3 продукт Intel вне конкуренции — высокая частота ядра решает в этой задаче все. Тесты показывают, что подсистема памяти в данном случае практически не оказывает заметного влияния на результат.

Кодирование MPEG2 в формат DivX является более сложной задачей, здесь важны как скорость ядра, так и производительность шины процессор—память. Так что Athlon 64 FX практически догоняет Pentium 4. Остальные процессоры AMD показывают результат лучше своего предшественника Athlon XP.

В задачах архивирования Athlon 64 FX также опережает соперника. Причем для 7-Zip это заслуга интегрированного контроллера памяти, обеспечившего низкие задержки доступа в память.

Что касается сравнения чипсетов NVIDIA и VIA для Athlon 64, то во всех тестах, за исключением архивирования в RAR, их результаты практически не отличаются. Однако просим рассматривать результаты K8T800 как предварительные.

В целом наши предыдущие предположения о производительности новых процессоров AMD оправдались. Да, они хороши, однако не так хороши, как всем хотелось бы. Безусловно, потенциал архитектуры виден и на этих образцах, но покупателей обычно интересуют все-таки не абстрактные рассуждения, а реальные результаты. Сложно сказать, исчерпало ли себя ядро Athlon XP, однако AMD действительно нужно было представить что-то новое и оригинальное. И, я думаю, это ей удалось.

Конечно, мы сегодня рассмотрели не все тесты нового процессора, но для начала вполне достаточно. Впереди у нас обсуждение результатов тестов на профессиональных приложениях, а также многочисленной синтетики.

Ну а напоследок попробуем разобраться, почему же у AMD вдруг нашелся такой интересный процессор, как Athlon 64 FX-51 — по всем параметрам очень напоминающий задерживающийся Opteron 148. Как один из вариантов развития событий, причем достаточно правдоподобный, предложим следующее.

Начиная с апреля, развитие линейки Opteron шло своим чередом — повышалась частота, выходили новые серии. Одновременно проверялась и работа процессора Athlon 64, который в отличие от Opteron использовал одноканальный контроллер памяти, и сказать, что он «разрабатывался отдельно от Opteron», пожалуй, нельзя. И использование нерегистровых модулей тоже представляется естественным для настольного процессора. Не очень понятно почему, но частота первого Athlon 64 составила 2,0 ГГц. Этого было явно мало для конкуренции с Pentium 4 3,2 ГГц. К тому же, обладая одноканальным контроллером памяти, процессор и по этому формальному признаку проигрывал конкуренту. И это несмотря на сегодняшние результаты — в играх Athlon 64 3200+ все равно бьет конкурента, в архивировании тоже, только скорость кодирования в MP3 и DivX подкачала.

Однако AMD нужна была яркая и безоговорочная победа. Так что, использовав версию, в общем-то, серверного процессора с частотой 2,2 ГГц и двухканальным контроллером памяти и убедившись, что регистровые модули с частотой 400 МГц уже производятся в достаточных объемах, она представила новый бренд — Athlon 64 FX, первый представитель которого отличался от других моделей сразу по двум параметрам: частотой (ядра) и скоростью памяти от Opteron и частотой (ядра) и двухканальным контроллером от Athlon 64.

Продажам линейки Opteron это не повредит, тем более что никто не мешает выпустить вскоре и эти процессоры с частотой 2,2 ГГц. Ну а выставив цену, немного превышающую стоимость Pentium 4 3,2 ГГц, компания AMD осталась на поле настольных процессоров.

Правда, остается небольшая неясность, связанная с использованием регистровых модулей памяти с этим процессором. Многие ожидали, что настольный high-end от AMD будет использовать обычные модули. Но если бы это произошло, то, во-первых, можно было бы не тянуть так долго с анонсом, а во-вторых, процессор мог бы составить конкуренцию Opteron серии 100, обладая большей частотой и работая с более дешевой памятью. Безусловно, для большинства пользователей регистровые модули (которые, по сути, нужны для поддержки больших объемов памяти) ассоциируются с рынком рабочих станций и серверов. Однако странно предполагать, что контроллер памяти у Athlon 64 FX и Opteron нужно сильно переделывать для работы с обычными модулями — ведь у Athlon 64 с этим нет проблем. Так что мы снова наблюдаем далекие и необъяснимые для простого человека рыночные игры.

Дальнейшая судьба Athlon 64 FX покрыта туманом. С одной стороны, останавливаться в наращивании мегагерцев AMD нельзя, с другой — модельный ряд Opteron почти закончен: после моделей x46 будут идти x48, а дальше придется расширять существующую систему обозначений. А за FX-51, скорее всего, последует FX-53 с увеличенной частотой. Выпускать настольный процессор, полностью аналогичный серверному, но с большей частотой (и возможностью работы только в однопроцессорных конфигурациях) — значит снизить темпы по завоеванию рынка рабочих станций.

Было бы странно предполагать, что у AMD есть технические проблемы с выпуском процессоров с большой частотой ядра и двумя-тремя шинами HT для работы в многопроцессорных конфигурациях. Но и рассчитывать, что массовый рынок перейдет на регистровую память — тоже несерьезно.

Так что в этих условиях AMD, скорее всего, выпустит модели Opteron с частотой 2,2 ГГц, которые будут оставаться самыми быстрыми серверными процессорами компании до перехода на 90-нанометровую технологию. Athlon 64 FX будет наращивать частоту до 2,6 ГГц или чуть выше и будет флагманом среди настольных процессоров AMD. При этом, учитывая необходимость использования регистровой памяти, он не будет поставляться в больших количествах. Хотя если это ограничение вдруг отменят в следующем году:-), то его шансы на массовость сильно возрастут. Ну а Athlon 64 успешно заменит современные Athlon XP.