Основные виды математических моделей. Статические и динамические модели

30.03.2019

Динамическая система первого порядка . Рассмотрим рис. 10.3. Пусть в момент - объем воды в резервуаре , a - объем воды в резервуаре , связанном с трубой. В данный момент мы не рассматриваем резервуар , показанный пунктиром. Пусть вода может подаваться в или забираться из него по трубе ; имеются механические средства, позволяющие изменять уровень, а следовательно, и объем воды в нужным образом вне зависимости от того, что происходит в .

Если объем в первом резервуаре поддерживается на постоянном уровне, вода будет перетекать из одного резервуара в другой до тех пор, пока уровни в них не станут одинаковыми. Если теперь изменить объем , вода будет снова перетекать из одного резервуара в другой до тех пор, пока не наступит равновесие. Объем воды в , находящийся в равновесии как функция заданного объема в , описывается стационарным соотношением

. (10.1.4)

В этом случае стационарное усиление геометрически выражается как отношение заштрихованных площадей двух резервуаров. Если два уровня в момент не совпадают, различие в уровне воды между резервуарами пропорционально .

Пусть теперь, выкачивая или впуская жидкость по трубе , мы заставляем объем следовать графику, показанному на рис. 10.3. Тогда объем воды в будет изменяться в соответствии с ходом графика, показанного на том же рисунке. В общем случае функция , определяющая режим системы, называется вынуждающей функцией .

Для того чтобы связать вход и выход, заметим, что с хорошей точностью скорость потока через трубу пропорциональна разности в уровнях, т. е.

, (10.1.5)

где - константа. Дифференциальное уравнение (10.1.5) можно переписать в виде

где. Динамическую систему, описываемую таким образом при помощи дифференциального уравнения первого порядка, часто называют динамической системой первого порядка.

Рис. 10.3. Представление простой динамической системы.

Постоянная называется постоянной времени системы. Та же модель первого порядка может приближенно описывать поведение многих простых систем. Например, может быть выходной температурой воды в системе водяного отопления, а - скоростью поступления воды в систему.

Можно показать (см. например ), что решение линейного дифференциального уравнения такого типа, как (10.1.6), можно записать в виде

, (10.1.7)

где - вообще говоря, (непрерывная) функция отклика на единичный импульс. Видно, что получается из как непрерывно взвешенная сумма, точно так же, как получалось из в (10.1.2) как дискретно взвешенная сумма. Далее видно, что роль непрерывной весовой функции в непрерывном случае совершенно аналогична роли в дискретном случае. Для конкретной системы первого порядка, определенной (10.1.6),

.

Таким образом, отклик на единичный импульс затухает в этом случае по экспоненте (см. рис. 10.3).

В непрерывном случае определение выхода для произвольной вынуждающей функции, такой, как на рис. 10.3, обычно выполняется либо моделированием на аналоговом вычислительном устройстве, ибо расчетом на цифровой вычислительной машине

Рис. 10.4. Функция отклика на единичный скачок системы первого порядка.

Аналитические решения можно получить только для вынуждающих функций специального вида. Пусть, например, вначале гидравлическая система пуста, а затем внезапно достигает уровня и сохраняет это значение. Такую вынуждающую функцию, внезапно изменяющую нулевой стационарный уровень на стационарный уровень, равный единице, мы будем называть (единичным) скачком. Отклик системы на такую функцию, названный откликом на единичный скачок, можно получить, решая дифференциальное уравнение (10.1.6) с единичным скачком на входе, что дает

. (10.1.8)

Как следует из этого результата, уровень в резервуаре возрастает по экспоненте (рис. 10.4). Когда , . Это означает, что постоянная времени - это время, необходимое системе первого порядка (10.1.6) для достижения 63,2% ее заключительного равновесного уровня после подачи на вход единичного скачка.

Иногда существует начальный интервал чистого запаздывания, или холостое время, перед тем как проявится какая бы то ни было реакция на данное изменение входа. Например, если труба между и (рис. 10.3) достаточно длинна, внезапное изменение уровня в может не оказать эффекта на до тех пор, пока через трубу не прошло достаточное количество жидкости. Пусть введенное таким образом запаздывание занимает единиц времени. Тогда отклик запаздывающей системы будет описываться дифференциальным уравнением, подобным (10.1.6), но только справа вместо будет стоять , т. е.

Соответствующие функции отклика на единичный импульс и скачок имеют точно такую же форму, как в системе без запаздывания, но смещены по оси времен на расстояние .

Рис. 10.5. Функции отклика на единичный скачок совпадающих дискретной и непрерывной систем второго порядка, имеющих характеристические уравнения с действительными (кривая ) и комплексными корнями (кривая).

Динамическая система второго порядка . Рассмотрим рис. 10.3 еще раз. Вообразим, что имеется система трех резервуаров с трубой, ведущей от резервуара к резервуару , объем жидкости в котором обозначен. Пусть - временная постоянная, и - стационарное усиление дополнительной системы. Тогда и связаны дифференциальным уравнением

После подстановки в (10.1.6) мы получаем дифференциальное уравнение второго порядка , связывающее выход третьего резервуара и вход первого,

где . Для такой системы функция отклика на единичный импульс - это наложение экспонент

а функция отклика на единичный скачок имеет вид

. (10.1.12)

Непрерывная кривая на рис. 10.5 показывает отклик на скачок системы

у которой , , . Отметим, что в отличие от системы первого порядка система второго порядка имеет отклик на скачок с начальным нулевым наклоном. действительными, действительными и равными или комплексными. У перезатушенной системы функция отклика на скачок образована наложением экспонент такого типа как (10.1.12), и всегда располагается ниже асимптоты . Как и в системе первого порядка, отклик может иметь холостое время, для этого надо заменить аргумент в правой части (10.1.13) на . Многие весьма сложные динамические системы можно достаточно точно описывать такими системами второго порядка с запаздыванием.

Более сложные линейные динамические системы могут быть описаны, если допустить, что не только сами значения уровня вынуждающей функции , но также скорость ее изменения и более высокие производные влияют на поведение системы. Поэтому общая модель для описаний (непрерывных) динамических систем - это линейное дифференциальное уравнение

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Теоретическая часть
    • 1.1 Понятие динамических систем
    • 1.2 Модели динамических систем и процессов
  • 1.3 Моделирование непрерывной системы контроля
    • 1.4 Математическое описание непрерывной системы контроля
    • 2. Практическая часть
    • 2.1 Выполнение задания 1
    • 2.2 Выполнение задания 2
  • Заключение
  • Список использованных источников
  • Введение
  • Достижения в теории и практике моделирования процессов и систем, в современных условиях, связано со стремительным развитием вычислительной техники. Что казалось невозможным при решении многих задач моделировании еще несколько лет назад, сейчас легко реализуется на доступном инженерном уровне. Появление и развитие инженерных пакетов моделирования, таких как Matlab, Skylab, Labview, создало условия высокопроизводительного, объектно-ориентированного моделирования на современных компьютерах.
  • Задачи моделирования процессов и систем многообразны. Моделирование широко используется при инженерном проектировании и научных исследованиях: для решения технических и экономических задач, при исследованиях в экологии и социологии, в приборостроении и автоматизации управления.
  • Особенности применения моделирования в приборостроении связаны в первую очередь с технологическими достижениями в датчикостроении, теории измерений и обработки информации.
  • В области экономических задач применение моделирования дает эффективный инструмент для управления проектами и прогнозирования развития экономических процессов. Многие современные методы теории управления оказались эффективными при решении экономических задач и достаточно легко реализуемыми на математических моделях и постановке вычислительных экспериментов на компьютерной технике.

Развитие нейросетей, микросистемотехники, нанотехнологии внесло много существенно нового в методы моделирования процессов и систем, что дало также эффективный инструмент для предварительного решения задач проектирования в математическом виде на моделях и их численном исследовании на компьютерах. Применение моделирования особенно эффективно при исследовании проектируемых систем с целью изучения и прогнозировании различных явлений и процессов в этих системах. Приближение к реальным условиям работы проектируемых систем осуществляется при стохастическом моделировании, когда к условиям моделирования добавляются случайные изменения параметров системы, возмущения и шумы измерений физических величин.

В приборостроении актуально моделирование задач управления, получения, передачи и преобразования информации. При этом современные модели везде для описания процессов и систем используют дифференциальные уравнения и линейные матричные преобразования.

Развитие современных методов моделирования создало предпосылки для создания и исследования высокоэффективных систем, которые, как правило, ориентированы на цифровые алгоритмы обработки информации, с применением современных микропроцессоров, нейрокомпьютеров, процессоров с нечеткой логикой и других современных технологических достижений.

1 . Теоретическая часть

1.1 Понятие динамических систем

Динамические системы - системы, под действием внешних и внутренних сил изменяющие во времени свои состояния. Представления о динамических системах возникли как обобщение понятия механической системы, поведение которой описывается законами динамики Ньютона. В современной науке понятие динамической системы охватывает системы практически любой природы: физические, химические, биологические, экономические, социальные и др. При этом системы характеризуются различной внутренней организацией жестко-детерминированные, стохастические, нелинейные, системы с элементами самоорганизации, самоорганизующиеся.

Важнейшим свойством динамических систем является их устойчивость, т. е. сохранение системой своей базовой структуры и основных выполняемых функций в течение определенного времени и при относительно небольших и разнообразных внешних воздействиях и внутренних возмущениях. Устойчивость есть внутреннее свойство систем, а не результат внешнего воздействия. Представления же о развитии этих систем отражают такие изменения их структурной организации, которые ведут к более эффективному выполнению системой своих основных функций. Качественные перестройки систем анализируются в теории катастроф, которая рассматривается как ветвь общей теории динамических систем.

Развитие представлений о динамических системах связано с переходом к познанию все более сложных систем. При этом особую роль приобретает изучение динамики внутренних свойств систем. В случае механических систем действие внутренних факторов сводилось к силам инерции. По мере усложнения систем возрастает значение внутренних факторов. На первый план выходят проблемы изучения источников внутренней активности систем и природы их целенаправленного функционирования и поведения.

Математической моделью динамической системы принято называть совокупность математических символов, однозначно определяющих развитие процессов в системе, т.е. ее движение. При этом в зависимости от используемых символов различают аналитические и графоаналитические модели. Аналитические модели строятся с помощью буквенных символов, в то время как графоаналитические допускают применение графических обозначений.

В зависимости от типа сигналов различаются непрерывные и дискретные модели систем. В зависимости от используемых операторов - линейные и нелинейные, а также временные и частотные модели. К временным относятся модели, в которых аргументом является (непрерывное или дискретное) время. Это дифференциальные и разностные уравнения, записанные в явном виде или в операторной форме. Частотные модели предусматривают использование операторов, аргументом которых является частота соответствующего сигнала, т.е. операторы Лапласа, Фурье и т.д.

1.2 Модели динамических систем и процессов

В современной математике используется представление динамических процессов и систем дифференциальными уравнениями в пространстве состояний. Такое описание процессов и систем позволяет легко проводить их цифровое моделирование, используя конечно-разностное представление и проектировать универсальные алгоритмы обработки информации с целью дальнейшего оптимального оценивания параметров систем и процессов. Оптимальные оценки необходимы для организации управления в системах автоматического управления современными методами, а в информационно-измерительных системах для получения достоверных данных об измеряемых физических величинах, для прогнозирования поведения исследуемых явлений и систем, повышения отказоустойчивости обработки информации. Одним из методов получения математической модели системы или процесса является идентификация.

Идентификацией динамической системы называется получение или уточнение по экспериментальным данным математической модели (числовых параметров) этой системы или процесса, выраженной посредством того или иного математического аппарата.

Используются следующие основные математические модели в пространстве состояний.

Непрерывная детерминированно-стохастическая динамическая система (ДС) - это система, описываемая линейными дифференциальными уравнениями состояния первого порядка и линейным уравнение выхода. В матричном виде:

X"(t)=A*Х(t)+B*U(t)+D*V(t), Y(t)=CX(t),

где Х"(t) - n-мерный вектор состояния системы; V(t) - r-мерный вектор гауссовских шумов с нулевым средним и корреляционной матрицей

E=Q(t)

моделирование матричный фазовый траектория

(Е - оператор математического ожидания); Y(t) - m-мерный вектор выхода; A, B, D - матрицы состояния (матрицы коэффициентов); С - матрица линейного преобразования размера m x n.

Дискретная детерминированно-стохастическая динамическая система (ДС) - это система, описываемая разностными уравнениями первого порядка состояния и дискретным уравнением выхода. Матричный вид соответствует уравнениям:

Х(k+1)=F*Х(k)+G*U(k)+T*V(k), Y(k)=CX(k),

где F, G, T, - переходные матрицы. Матрицы F, G, T вычисляются через A, B, D в виде:

F=I+A*y*dt, G=y*B*dt, T=y*D*dt,

где I - единичная матрица; dt - период дискретности системы (процесса). Период дискретности dt выбирается исходя из полосы пропускания ДС в соответствии с импульсной теоремой.

Детерминированной является ДС, у которой отсутствуют шумы возмущения и нет стохастических процессов (или всеми этими факторами можно пренебречь). У чисто стохастической ДС отсутствует детерминированный вектор входных сигналов. Детерминировано-стохастическая система содержит как детерминированные воздействия, так и стохастические процессы.

Объектами наблюдения динамических систем являются: информационные процессы (ИП), объекты управления (ОУ), датчики первичной информации (ДПИ), исполнительные устройства (ИУ). Первичной моделью объекта наблюдения типа ИП является спектральная или корреляционная функция. Первичной моделью объекта наблюдения типа ОУ, ДПИ и ИУ является дифференциальное уравнение (или эквивалентная передаточная функция), связывающая вход и выход.

Датчик первичной информации - это элемент устройства, преобразующий информацию о физической величине в сигнал, удобный для использования и обработки. Он задается дифференциальным уравнением или передаточной функцией. Передаточной функцией ДПИ является отношение преобразования Лапласа выходного процесса ДПИ к преобразованию Лапласа входного процесса при нулевых начальных условиях. Движением системы называется физический процесс изменения её переменных во времени и пространстве. Выходные переменные Y(t), управляющие входные воздействия U(t) и возмущающие входные воздействия V(t) рассматриваются в виде соответствующих векторов, которые записываются в виде столбцовых матриц:

1. 3 Моделирование непрерывной системы контроля

Система контроля предназначена для измерения и выдачи информации о контролируемом процессе h(t), который содержит среднюю (детерминированную) составляющую и стохастическую (случайную) g(t). Измерение происходит при воздействии аддитивных шумов n(t). Датчик, с помощью которого производятся измерения, является динамическим звеном (в данном случае второго порядка). Эквивалентная схема системы контроля представлена на рисунке 1

Рисунок 1 - Схема системы контроля

Случайная составляющая g(t) измеряемого процесса задана спектральной плотностью Sg(w); детерминированная - сигналом u(t); h(t)=g(t)+u(t) - полный информационный процесс; f(t)=h(t)+n(t) - измерение процесса h(t) c аддитивными шумами n(t) (задана спектральная плотность шума - Sn(w)); h(t) -выходной сигнал ДПИ (датчик первичной информации); W(S) - передаточная функция ДПИ. Детерминированное входное воздействие задано суммой ступенчатой и гармонической функций.

Для моделирования системы контроля в Matlab составляется схема моделирования, которая представлена на рисунке 2.

Рисунок 2 - Схема моделирования системы контроля

1.4 Математическое описание непрерывной системы контроля

Задана спектральная плотность контролируемого процесса:

Передаточная функция объекта наблюдения:

Интенсивность шумов измерений R=17 (при измерении выходного сигнала объекта наблюдения).

Путем факторизации из модели в виде спектральной плотности получим передаточную функцию формирующего фильтра входного процессора:

Матричная модель объекта наблюдения находится методом вспомогательной переменной. Уравнение состояния в данном случае:

Процесс h(t) на выходе объекта наблюдения вычисляется в матричном виде:

В данном примере получаем следующий вид матриц:

Матричная модель датчика:

Выход объекта наблюдения h=C 0 *X 0 .

Полное уравнение объекта контроля содержит уравнение состояния входного процесса и уравнение состояния объекта:

где матрицы A, B и D составляются на основе дифференциальных уравнений процесса и объекта контроля, которые имеют вид:

Или относительно полного вектора: :

Матрицы A, B, C, D в данном случае имеют следующий вид:

2 . Практическая часть

2.1 Выполнение задания 1

Алгоритм выполнения работы в среде Simulink.

1. Запускаем Matlab (версия R2012b) и выбираем в меню пункт «New > Simulink Model» (рисунок 3).

Рисунок 3 - Процесс создания новой модели в Simulink

2. Открываем библиотеку функциональных блоков "Simulink". Для этого кликнем левой кнопки мыши на панели управления по иконке "Simulink Library" (рисунок 4).

Рисунок 4 - Процесс создания новой модели в Simulink

3. В результате откроется меню библиотеки Simulink, главный вид которой представлен на рисунке 5.

Рисунок 5 - Главное окно "Simulink Library"

4. Извлекаем из библиотеки Simulink все необходимые функциональные блоки. Для этого воспользуемся поиском, в верхней панели окна "Simulink Lybrary Browser", который представлен на рисунке 6.

Рисунок 6 - Поиск блока в "Simulink Library"

5. Для моделирования непрерывной системы контроля нам будут необходимы следующие блоки:

Блоки "Sine Wave", "Step" и "Random number" с вкладки "Sources";

Три блока "Subsystem" и блок "Scope" с вкладки "Commonly Used Blocks";

Блок "Sum" с вкладки "Math Operations";

Блок "Fcn" с вкладки "User Define Function";

Блок "State-space" с вкладки "Continuous".

6. Cоберем схему верхнего уровня модели непрерывной системы контроля (рисунок 7), используя перечисленные в п.5 функциональные блоки:

Рисунок 7 - Схема верхнего уровня системы контроля

7. Рассмотрим более подробно блоки "Subsystem": "Object", "Sensor", "Filter".

8. Блок "Object" является объектом наблюдения системы и представляет собой динамическую систему, в которой содержится стохастический процесс (блок "State-Space") и датчик (блок "State-Space 1"). Функциональная схема динамической системы "Object" представлена на рисунке 8.

Рисунок 8 - Динамическая система "Object"

9. Настройка блоков уравнения состояния "State-Space" и "State-Space 1" представлена на рисунках 9 и 10 соответственно.

Рисунок 9 - Настройка параметров блока "State-Space"

Рисунок 10 - Настройка параметров блока "State-Space 1"

10. Функциональные блоки h(t)=C 0 X и g(u)=C g X, заданы функциями, представленными в окне параметров (рисунок 11).

Рисунок 11 - Настройка функциональных блоков h(t) и g(u)

11. Блок "Sensor" (датчик) производит измерение входного сигнала и представляет собой совокупность полезного сигнала h(t) и помехи n(t):

Модель датчика представлена на рисунке 12. Блок "Random Number" используется в качестве генератора белого шума с интенсивностью 0,4.

Рисунок 12 - Модель датчика (Sensor)

12. Блок "Filter" (фильтр) на основе измерений датчика выдает оценку выходного параметра объекта наблюдения - h^(t). Матрицы A, B, C соответствуют матрицам полной модели. Матрица С в блоке "State Space" - единичная. Модель фильтра представлена на рисунке 13.

Рисунок 13 - Модель фильтра (Filter)

Настройка параметров блока "State Space" и функционального блока f(u) представлена на рисунке 14.

Рисунок 14 - Настройка параметров блоков "State-Space" и "f(u)"

13. Результаты процессов системы регистрируются осциллографом (блок "Scope"). Произведем настройку параметров блока "Scope". Для этого кликнем правой кнопкой мыши по блоку и выберем в диалоговом окне пункт "Block Parametres" (параметры блока). Далее в области появившегося окна кликнем правой кнопкой мыши и выберем пункт "Axes properties" (рисунок 15). В появившемся диалоговом окне зададим область значений (Y) для каждого из трех графиков (рисунок 16).

Рисунок 15 - Настройка параметров блока "Scope"

Рисунок 16 - Настройка области значений Y

14. На панели инструментов Matlab в верхней части экрана можно настроить число рабочих тактов системы, по окончании которых работа Matlab прекратится. Настройка данного параметра представлена на рисунке 17.

Рисунок 17 - Настройка рабочих тактов системы

15. На этом настройка модели непрерывной системы контроля завершена. Далее запустим систему, кликнув левой кнопкой мыши по иконке "Run" на панели инструментов в верхней части экрана (рисунок 18).

Рисунок 18 - Запуск системы на выполнение

16. Результаты работы системы отражаются в блоке "Scope" и приведены на рисунке 19.

Рисунок 19 - Результаты работы системы

2.2 Выполнение задания 2

Колебания нелинейного осциллятора описываются следующим уравнением:

Используя данное дифференциальное уравнение, необходимо:

1. Создать модель механической системы;

2. Вычислить числовое значение координаты осциллятора в момент времени t=5 и вывести результат на display;

3. Построить графики зависимости координаты и скорости от времени;

4. Построить фазовую траекторию системы.

Запишем исходное уравнение в виде системы уравнений первого порядка.

Решим эту систему с помощью пакета Simulink, составляя блочную модель. Отдельным блоком в общей модели сформируем подмодель (блок Subsystem):

(библиотека Ports & Subsystems).

Подмодель -- это фрагмент модели, оформленный в виде отдельного блока. Использование подмодели при составлении модели имеет следующие положительные стороны:

1) уменьшает количество одновременно отображаемых блоков на экране, что облегчает восприятие модели;

2) позволяет создавать и отлаживать фрагменты модели по отдельности, что повышает технологичность создания модели;

3) дает возможность синхронизации параллельно работающих подсистем.

Используя созданную подмодель, значения и в основной модели связываем с соответствующими входами подмодели, а выход подмодели связываем с сумматором. Сигнал с выхода сумматора подаем на вход первого интегратора, замыкая цепь интегрирования.

В Simulink описанная процедура представлена на рисунках 20 и 21:

Рисунок 20 - Основная модель

Рисунок 21 - Подмодель

Если дважды щелкнуть мышью на блоке Scope (y(t)) в блок-схеме осциллятора, то появится графическое окно с графиком зависимости координаты y от времени. Результат показаний блока "Scope" представлен на рисунке 22.

Рисунок 22 - Показания блока Scope

В данной модели для построения фазовой траектории системы используется блок -- графопостроитель, который строит график одного сигнала в функции другого (график вида Y(X)). Блок имеет два входа. Верхний вход предназначен для подачи сигнала, который является аргументом (X), нижний вход -- для подачи значений функции (Y). Зависимость X от Y представлена на рисунке 23.

Рисунок 23 - Зависимость X от Y

Заключение

При выполнении данной работы были решены следующие задачи:

1) смоделирована непрерывная система контроля на основе матричной модели объекта наблюдения;

2) получена и построена передаточная функция формирующего фильтра входного процесса;

3) составлена и построена матричная модель датчика и функция выхода для объекта наблюдения;

4) на основе дифференциальных уравнений процесса и объекта контроля сформировано полное уравнение объекта контроля;

5) построены графики для выходного параметра фильтра h(t), для выхода объекта наблюдения h(t) и выхода датчика (сенсора) y(t);

6) спроектирована модель механической системы;

7) построен график зависимости координаты и скорости от времени, а также фазовая траектория системы.

Список использованных источников

1. Волков, В.Л. Моделирование процессов и систем. Учеб. пособие /В.Л. Волков. - Н.Новгород; НГТУ, 1997. -80 c.

2. Лебедев, А.Н. Моделирование в научно-технических исследованиях. - М.: Радио и связь, 1989.

3. Прохоров, С.А. Математическое описание и моделирование случайных процессов. - Самара. Самарский гос. аэрокосм. ун-т, 2001. -209 с.

4. Моделирование процессов и систем. Стохастические и детерминированные динамические системы и информационные процессы. Лабораторные работы. Методические Указания / Сост: Волков В.Л., Гущин О.Г., Поздяев В.И. - Н.Новгород. НГТУ, 1998. -32 c.

Размещено на Allbest.ru

Подобные документы

    Анализ динамических процессов в системе на основе использования построенной аналитической модели. Моделирование с использованием пакета расширения Symbolic Math Tolbox. Построение модели в виде системы дифференциальных уравнений, записанных в форме Коши.

    курсовая работа , добавлен 21.06.2015

    Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.

    курсовая работа , добавлен 20.10.2013

    Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.

    курсовая работа , добавлен 08.03.2016

    Моделирование входного заданного сигнала, построение графика, амплитудного и фазового спектра. Моделирование шума с законом распределения вероятностей Рэлея, оценка дисперсии отсчетов шума и проверка адекватности модели шума по критерию Пирсона.

    курсовая работа , добавлен 25.11.2011

    Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.

    контрольная работа , добавлен 22.12.2014

    Схема блоков модели Карааслана, система дифференциальных уравнений, методы решения. Блоки и биохимические законы системы Солодянникова, переход между фазами. Моделирование патологий, графики экспериментов. Построение комплексной модели гемодинамики.

    дипломная работа , добавлен 24.09.2012

    Разработка проекта системы автоматического управления тележкой, движущейся в боковой плоскости. Описание и анализ непрерывной системы, создание ее математических моделей в пространстве состояний и модели "вход-выход". Построение графиков реакций объекта.

    курсовая работа , добавлен 25.12.2010

    Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).

    контрольная работа , добавлен 16.02.2011

    Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

    реферат , добавлен 19.06.2008

    Операторы преобразования переменных, классы, способы построения и особенности структурных моделей систем управления. Линейные и нелинейные модели и характеристики систем управления, модели вход-выход, построение их временных и частотных характеристик.

Введение..................................................................................................... 3

1. Модель межотраслевого баланса............................................ 4

1. 1. Динамическая модель Леонтьева.................................................... 7

1. 2. Построение динамической модели Леонтьева............................. 12

2. Модель Неймана............................................................................... 16

Заключение............................................................................................. 20

Cписок литературы............................................................................. 21

Динамические модели экономики - модели, описывающие экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Модель является динамической, если, как минимум, одна ее переменная относится к периоду времени, отличному от времени, к которому отнесены другие переменные.

В общем виде динамические модели экономики сводятся к описанию следующих экономических явлений: начального состояния экономики, технологических способов производства (каждый “способ” говорит о том, что из набора ресурсов x можно в течение единицы времени произвести набор продуктов y), а также критерия оптимальности.

Математическое описание динамических моделей экономики производится с помощью систем дифференциальных уравнений (в моделях с непрерывным временем), разностных уравнений (в моделях с дискретным временем), а также систем обыкновенных алгебраических уравнений.

С помощью динамических моделей решаются, в частности, следующие задачи планирования и прогнозирования экономических процессов: определение траектории экономической системы, ее состояний в заданные моменты времени, анализ системы на устойчивость, анализ структурных сдвигов.

С точки зрения теоретического анализа большое значение приобрела динамическая модель фон Неймана. Что же касается практического применения динамических моделей экономики, то оно находится еще в начальной стадии: расчеты по модели, хотя бы сколько-нибудь приближающейся к реальности, чрезвычайно сложны. Но развитие в этом направлении продолжается. Используются, в частности, многоотраслевые (многосекторные) динамические модели развития экономики, к которым относятся динамические модели межотраслевого баланса, а также производственная функция, теория экономического роста.

Межотраслевое моделирование является частью макроэкономического

моделирования и служит для анализа и оценки состояния общего экономического равновесия национальной экономики. Национальная

экономика в межотраслевом балансе представлена рядом чистых отраслей,

связанных между собой финансовыми потоками от реализации продукции,

работ и услуг. Чистые отрасли – это условные отрасли, представляющие

производство одного или нескольких однородных продуктов.

Динамические модели межотраслевого баланса - частный случай динамических моделей экономики; основаны на принципе межотраслевого баланса, в который дополнительно вводятся уравнения, характеризующие изменения межотраслевых связей во времени на основе отдельных показателей: напр., капитальных вложений и основных фондов (что позволяет создать преемственность между балансами отдельных периодов).

Основные предположения модели межотраслевого баланса:

· каждая отрасль выпускает ровно один продукт

· каждый продукт выпускается ровно одной отраслью

Число продуктов равно числу отраслей

Измерять интенсивность работы отрасли можно объёмом выпуска соответствующего продукта

· затраты любого продукта в каждой отрасли прямо пропорциональны её интенсивности

Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат.

Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции; второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме.

Наибольшее распространение получила матричная экономико-математическая модель межотраслевого баланса. Она представляет собой прямоугольную таблицу (матрицу), элементы которой отражают связи экономических объектов. Количественные значения этих объектов вычисляются по установленным в теории матриц правилам. В матричной модели отражается структура затрат на производство и распределение продукции и вновь созданной стоимости.

Таблица межотраслевого баланса производства и распределения

продукции,работ и услуг

В первом квадранте отражены данные о взаимных поставках продукции,

работ, услуг между отраслями. Первый квадрант называется квадрантом

промежуточного потребления и характеризует промежуточное потребление

(затраты) или промежуточный спрос отраслей при производстве продукции,

работ, услуг:

X ij – стоимость продукции i -й отрасли, поставленной в j -ю отрасль в

течение года, или стоимость продукции i -й отрасли, потребленной j

отраслью в течение года;

i -я строка – промежуточное потребление продукции i -й отрасли всеми

отраслями;

j -й столбец – потребление (затраты) в j -й отрасли продукции всех

отраслей при производстве своей продукции;

X i – стоимость валового продукта, произведенного i -й отраслью в

течение года.

Второй квадрант называется квадрантом конечного использования

(потребления) или конечного спроса. В нем представлено конечное использование продукции отраслей, распределенное на конечное потребление (С i ), инвестиции (I i ), экспорт (E i ) и импорт (M i ), сальдо во внешней торговле (E i M i ). Конечное потребление включает потребление домашних хозяйств (населения), государства и некоммерческих организаций.

Третий квадрант называется квадрантом добавленной стоимости. В нем

представлена добавленная стоимость, присоединенная в отраслях к затратам

продукции других отраслей при производстве продукции, работ, услуг.

Добавленная стоимость, произведенная в отраслях народного хозяйства,

включает: оплату труда (V j ), амортизацию (потребление основного капитала)

(C j ), чистый доход (m j ). Четвертый квадрант не заполняется.

В состав отраслей в МОБ входят отрасли материального производства:

промышленность (энергетика, машиностроение, легкая и пищевая

промышленность, строительство, сельское хозяйство) и отрасли

нематериальных услуг (жилищно-коммунальное хозяйство, банковская сфера, здравоохранение, образование, наука и др.). В реальный межотраслевой баланс входит около 30 отраслей. Межотраслевой баланс за прошедший год называется отчетным межотраслевым балансом.

Межотраслевой баланс известен в науке и практике как метод “затраты – выпуск”, разработанный В.В. Леонтьевым. Этот метод сводится к решению системы линейных уравнений, где параметрами являются коэффициенты затрат на производство продукции. Коэффициенты выражают отношения между секторами экономики (коэффициенты текущих материальных затрат), они устойчивы и поддаются прогнозированию. Решение системы уравнений позволяет определить, какими должны быть выпуск и затраты в каждой отрасли, чтобы обеспечить производство конечного продукта заданного объема и структуры. Для этого составляется таблица межотраслевых потоков товаров. Неизвестными выступают выпуск и затраты товаров, произведенных и использованных в каждой отрасли. Их исчисление с помощью коэффициентов и означает объемы производства, обеспечивающие общее равновесие. В случае выявления диспропорции с учетом заказов потребителей, в том числе и государственных, составляется план-матрица выпуска всех видов материальных благ и затрат на их производство.

Метод “затраты – выпуск” стал универсальным способом прогнозирования и планирования в условиях, как рыночной, так и директивной экономики. Он применяется в системе ООН, в США и других странах для прогнозирования и планирования экономики, структуры производства, межотраслевых связей.

В динамических моделях отражается процесс развития экономики. В них

производственные капитальные вложения выделяются из состава конечной

продукции, исследуется их структура и влияние на рост объема производства.

Схема динамического межотраслевого баланса представлена в таблице

Таблица содержит две матрицы. Элементы второй матрицы показывают, какое количество продукции i -й отрасли направлено в текущем периоде в j -ю отрасль в качестве производственных капитальных вложений в основные и оборотные средства.

В динамической схеме конечный продукт у i включает продукцию i- й отрасли, идущую в личное и общественное потребление, накопление

непроизводственной сферы, незавершенное строительство, на экспорт. Все

показатели даны в стоимостной форме.

В таблице выполняются следующие балансовые соотношения:

Межотраслевые потоки капитальных вложений относятся к периоду

(t- 1,t ). Динамика задается дополнительными соотношениями:

Экономический смысл коэффициентов ϕ ij = Кij /ΔХj следующий: они

показывают, какое количество продукции i -й отрасли должно быть вложено в

j -ю отрасль для увеличения выпуска ее продукции на единицу в

рассматриваемых единицах измерения. Коэффициенты ϕ ij называются

коэффициентами капитальных вложений или коэффициентами приростной

фондоемкости. Систему уравнений (1) с учетом (2) можно записать как:

Представим (3) в матричном виде:

(4)

Из (4) следует, что

Модель (3) называется дискретной динамической моделью межотраслевого баланса Леонтьева. Система уравнений (3) представляет собой систему линейных разностных уравнений 1-го порядка. Для исследования данной модели надо задать в начальный момент времени векторы X (0 ) и Y (t ) для t = 1, 2, …, T. Решением модели будут значения векторов X (t ), K (t ), t = 1, 2, …, T.

Условием разрешимости системы (3) относительно вектора Х (t ) является требование det (E A Ф ) ≠ 0

В данной модели предполагается, что прирост продукции в периоде

(t – 1, t ) обусловлен капиталовложениями, произведенными в том же периоде.

Для коротких периодов это предположение нереально, т.к. существуют

отставания во времени (временные лаги) между вложением средств в

производственные фонды и приростом выпуска продукции. Модели,

учитывающие лаги капитальных вложений, образуют особую группу

динамических моделей межотраслевого баланса.

Если перейти к непрерывному времени, то уравнения (3) перепишутся в виде системы дифференциальных уравнений 1-го порядка с постоянными коэффициентами:

(6)

Для ее решения помимо матриц коэффициентов текущих прямых

материальных затрат A = (a ij ) и коэффициентов капитальных затрат Ф = (ϕij )

необходимо знать уровни валового выпуска в начальный момент времени

t = 0 (x (0)) и закон изменения величин конечного продукта y (t ) на отрезке .

Решением системы уравнений (6) будут значения вектор-функции x (t )

на отрезке . Условием разрешимости системы (6) является det Ф ≠ 0 .

Более общей динамической межотраслевой моделью является модель,

учитывающая производственные мощности отраслей. Она представлена ниже в виде следующих соотношений:

(7)

(9)

Состояние экономики в году t характеризуется в динамике следующими

переменными:

Х t – вектор-столбец валовых выпусков отраслей;

v t –вектор ввода отраслевых мощностей;

γ − диагональная матрица выбытия мощностей;

x t – вектор-столбец отраслевых мощностей (максимально возможных выпусков);

l t = (l 1 , l 2 ,..., l n )t вектор трудоемкости отраслевых производств, может зависеть от времени;

L t объем трудовых ресурсов в экономике.

Время в модели дискретно и изменяется через промежутки, равные году

(t = 1, 2, …, T ). Коэффициенты матрицы прямых затрат А = ║аij║ и матрицы

капиталоемкости прироста производственных мощностей Ф = ║фij║ могут

зависеть от времени. Экзогенно заданы вектор-функция Y t и числовая функция L t . Решением модели являются векторы Х t и x t , удовлетворяющие системе неравенств (7)-(10).

Неравенства (7) показывают, что вектор валового продукта X t должен

обеспечивать текущие производственные затраты t , затраты продукции на

ввод производственных мощностей ФV t и на непроизводственное потребление Y t. Неравенства (8) ограничивают валовые выпуски отраслей наличными мощностями, неравенства (9) представляют собой отраслевые балансы изменения производственных мощностей с учетом их выбытия и ввода, неравенства (10) показывают, что общая занятость ограничена имеющимися трудовыми ресурсами.

Определим величины, характеризующие изменения валового выпуска 5 отраслей по 7 временным интервалам.

Рыбная -25056 -46023 -27579 -9222 18357 -22098 -79866
Логистика 101607 -1499 56461 8932 226650 -181033 -583399
Судоремонтная -7076 29510 9728 55934 -35028 15280 -432869
Пищевая 10100 11822 39809 -54373 12350 35889 -532456
Машино и приборо-строение 11706 2156 16085 -97206 36989 9201 -543768

Теперь воспроизведем матрицу D. Коэффициент d ij матрицы D равен количе­ству продукции отрасли i, необходимой для увеличения на единицу (в стоимост­ном выражении) фонда отрасли j. Коэффициенты d ij именуются ко­эффициентами капиталоемкости приростов ОПФ.

Производство продукции, B Потребление продукции

Конечная продукция Y

Валовой выпуск

Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная 1 5,5 1,5 5 6 56700 101964
Логистика 6 1 5 4,5 3 56430 204324
Судоремонтная 4,5 5 1 6 6 390860 508326
Пищевая 5 5 5 1 6 787890 1289754
Машино и приборо-строение 4 4 5 4 1 323630 734563

Построим матрицу К коэффициентов капитальных затрат или капи­тальных коэффициентов.

Производство продукции, B Потребление продукции Конечная продукция Y Валовый выпуск
Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная 0,8 4,4 1,2 4 4,8 56700 101964
Логистика 4,8 0,8 4 3,6 2,4 56430 204324
Судоремонтная 3,6 4 0,8 4,8 4,8 390860 508326
Пищевая 4 4 4 0,8 4,8 787890 1289754
Машино и приборо-строение 3,2 3,2 4 3,2 0,8 323630 734563

Теперь определим

Пусть Ф 0 =0,

(Матрица А - матрица прямых затрат)

Итак, мы имеем первый вектор

Отрасль x при t=1 Ф при t=1 y при t=1
Рыбная 191487 -20044,8 -3,601*10^4
Логистика 372281 81285,6 7,575*10^4
Судоремонтная 364521 -5660,8 2,697*10^3
Пищевая 476859 8080 1,824*10^4
Машино и приборо-строение 564837 9364,8 -8,428*10^3

Аналогичным образом получаются таблицы для t = 2, 3, 4, 5, 6.

Отрасль x при t=2 Ф при t=2 y при t=2
Рыбная 166431 -56863,2 -6,808*10^4
Логистика 473888 80086,4 -6,632*10^3
Судоремонтная 357445 17947,2 2,495*10^4
Пищевая 486959 17537,6 2,816*10^4
Машино и приборо-строение 576543 11089,6 5,698*10^3
Отрасль x при t=3 Ф при t=3 y при t=3
Рыбная 120408 -78926,4 -4,702*10^4
Логистика 472389 125255,2 2,757*10^4
Судоремонтная 386955 25729,6 8,966*10^3
Пищевая 498781 49384,8 3,867*10^4
Машино и приборо-строение 578699 23957,6 -3,451*10^3
Отрасль x при t=4 Ф при t=4 y при t=4
Рыбная 92829 -86304 -4,489*10^4
Логистика 528850 132400,8 5,323*10^4
Судоремонтная 396683 70476,8 3,166*10^4
Пищевая 538590 5886,4 -3,038*10^4
Машино и приборо-строение 594784 -53807,2 -6,271*10^4
Отрасль x при t=5 Ф при t=5 y при t=5
Рыбная 83607 -71618,4 8,141*10^3
Логистика 537782 313720,8 1,671*10^5
Судоремонтная 452617 42454,4 -2,388*10^4
Пищевая 484217 15766,4 -2,626*10^3
Машино и приборо-строение 497578 -24216 -2,208*10^4
Отрасль x при t=6 Ф при t=6 y при t=6
Рыбная 101964 -89296,8 -9,557*10^3
Логистика 764432 168894,4 -1,595*10^5
Судоремонтная 417589 54678,4 1,239*10^4
Пищевая 496567 44477,6 3,563*10^4
Машино и приборо-строение 534567 -16855,2 3,836*10^4

В модели Неймана представлены n продуктов и m способов их

производства. Каждый j- й способ задается вектор-столбцом затрат продуктов

a j и вектор-столбцом выпусков продуктов b j в расчете на единицу

интенсивности процесса:

(1)

Это означает, что при единичных интенсивностях j -го производственного процесса потребляется вектор продуктов a j и производится продуктов b j . Векторы (1) рассматриваются в натуральных единицах или в постоянных ценах.

Из векторов затрат и выпуска образуются матрицы затрат А и выпусков

В с неотрицательными коэффициентами затрат a ij и выпусков b ij :

Матрицы А и В обладают следующими свойствами:

1) a ij ≥0 ,b ij ≥0,т.е. все элементы матриц неотрицательны;

2) что означает: в каждом из m способов

производства потребляется хотя бы один продукт;

3) что означает: каждый продукт

производится хотя бы одним способом производства;

Таким образом, каждый столбец матрицы А и каждая строка матрицы В

должны иметь по крайней мере один положительный элемент.

Через Х (t ) обозначим вектор-столбец интенсивностей

Тогда AX (t ) – вектор затрат, BX (t ) – вектор выпусков при заданном

векторе Х (t ) интенсивностей процессов.

Модель Неймана является обобщением динамической модели

межотраслевого баланса Леонтьева, поскольку допускает производство одного продукта несколькими способами производства, и совпадает с ней, если В = Е.

В модели Неймана имеют место следующие соотношения:

(2)

Соотношения (2) означают, что при производстве продукции в году

(t + 1) расходуется продукция, произведенная в году t.

Вектор p (t )=(p 1 (t ), p 2 (t ),..., p n (t ))≥0 называется вектором цен

продуктов, произведенных в году t , если он удовлетворяет следующим соотношениям:

(3)

Если коэффициенты матриц А и В – стоимостные величины в постоянных ценах, то р (t ) будет вектором индексов цен.

Первое векторное неравенство в (3) означает, что стоимость выпуска

продукции для каждого технологического способа производства в году t + 1 не может быть больше стоимости затрат в ценах года t.

Из (2) и (3) следует, что имеют место следующие соотношения:

(4)

Первое соотношение в (4) означает, что цена i -го продукта в году t равна нулю, если его выпуск в году t будет больше его затрат в году (t + 1).

Второе соотношение (4) означает, что j -й технологический процесс в году t не будет применяться (интенсивность равна нулю), если стоимость затрат по нему в году t больше стоимости его выпуска в году (t + 1).

Определение. Векторы Х (t ) и p (t ), t = 1, 2, …, T называются траекторией

сбалансированного роста в модели Неймана, если они удовлетворяют

условиям:

(5)

Здесь λ − темп, ρ − норма процента сбалансированного роста.

Из (5) следует, что в состоянии сбалансированного роста значения компонент вектора Х (t ) пропорционально возрастают, а вектора p (t ) снижаются. При этом имеют место соотношения:

(6)

где Х (0) и р (0) – начальные значения векторов в году t = 0.

Из (5), (6) следует, что на траектории сбалансированного роста должны выполняться соотношения.

(7)

Вопрос о существовании траекторий сбалансированного роста решается

следующими теоремами.

Первая теорема Неймана . Если матрицы А и В удовлетворяют

свойствам 1-3, то система неравенств (7) имеет решение X (t), p (t),λ ,ρ ,

т.е. в модели Неймана существуют траектории сбалансированного роста.

Вторая теорема Неймана. Существует решение X * (t ), p * (t ),λ * ,ρ *

системы (7), у которого будет максимальный темп роста λ * ≥λ и

минимальная норма процента ρ * ≤ ρ по сравнению с другими решениями.

При этом выполняется соотношение:

(8)

Данное решение называется магистралью , или траекторией

максимального сбалансированного роста в модели Неймана.

Модель Неймана является невычислимой, чисто теоретической моделью. Выход к практическим результатам осуществляется через динамическую модель В. Леонтьева, являющуюся частным случаем модели Неймана. Цены, полученные на основе динамического баланса, обладают свойствами цен модели Неймана. Модель Леонтьева использует данные динамического межотраслевого баланса. На основе динамического баланса также возможно построение неймановского луча максимального сбалансированного роста экономики и вычисление цен, соответствующих этому лучу, которые отражают альтернативную стоимость. Отличие динамической межотраслевой модели от модели Неймана состоит в том, что она базируется на предположении, что в каждой отрасли возможен один и только один производственный процесс. Таким образом, выбор решения по каждой отрасли сводится лишь к определению интенсивности производственного способа.

В заключение отметим, что с помощью межотраслевого баланса решают

следующие задачи:

1. По таблице межотраслевого баланса найти матрицу прямых и полных затрат.

2. Задав вектор конечной продукции, определить вектор валовой продукции.

3. Задав вектор валовой продукции, определить вектор конечной продукции.

4. При новых значениях добавленной стоимости найти индексы цен и построить новую таблицу межотраслевого баланса.

5. Найти векторы валового выпуска, добавленной стоимости, затрат,

доли затрат и добавленной стоимости в валовом продукте, межотраслевые

поставки продукции, составить таблицу межотраслевого баланса.

Аналитический метод «затраты-выпуск» наполнил практическим содержанием теорию общего экономического равновесия, он способствовал усовершенствованию математического аппарата. Метод Леонтьева отличает ясность и простота, универсальность и глобальность, другими словами пригодность для экономики отдельных стран и регионов, для мирового хозяйства в целом.

Модель Леонтьева "Затраты-выпуск" строится на основе схемы межотраслевого баланса в предположении о том, что каждая отрасль выпускает один и только свой продукт с использованием продуктов остальных отраслей и посредством линейной технологии. Она помогает анализировать перетоки товаров между отраслями и отвечает на вопрос: можно ли в условиях данной технологии удовлетворить конечный спрос населения на товары?

Магистральная траектория - это луч Неймана. Основным вопросом магистральной теории является анализ близости траекторий оптимизационных моделей к соответствующим магистралям. Оптимальные траектории в динамических моделях Леонтьева и Неймана обладают такими свойствами при выполнении некоторых дополнительных условий.

1. Колемаев В.А. "Экономико-математическое моделирование" ЮНИТИ-ДАНА, 2005 295 с.

2. Поттосина С. А., ЖуравлевВ. А. " Экономико-математические модели и методы" Учебное пособие для студентов экономических специальностей, 2003. – 94 с.

3. Экономико-математические модели и методы / Под общей ред. А.В. Кузнецова. – Мн.: БГЭУ, 2000.

4. http://slovari.yandex.ru/dict/lopatnikov/article/lop/lop-0879.htm

5. http://www.sseu.ru/edumat/v_mat/course2/razd10_2/par10_4k2.htm

Непрерывные и дискретные модели

Непрерывные модели отражают непрерывные процессы, протекающие, в частности, во времени. Значения независимой переменной (аргумента) принадлежат континуальному множеству. Континуальное множество обладает свойством, соответственно которому между любыми сколь угодно близкими точками множества всегда можно найти еще более близкие точки. Очень часто такой характер изменения приписывается времени.

Непрерывными моделями достаточно точно описываются такие реальные процессы, как изменение силы тока в определенной точке электрической схемы, изменение угловой скорости на выходе электропривода, набор линейной скорости при разгоне автомобиля, истечение газа или жидкости из резервуара и т.п.

Дискретные модели описывают дискретные, т.е. прерывистые процессы. Такие процессы происходят, например, в дискретных СУ, содержащих импульсный элемент (ключ), периодически замыкающий цепь через постоянный тактовый период Т .

Дискретными моделями достаточно точно описываются такие реальные процессы, как штамповка деталей, продажа мелких товаров с помощью автомата, работа микропроцессора и т.п.

Существуют также комбинированные – дискретно-непрерывные модели, в которых обычно можно отделить непрерывную часть от дискретной.

Статической называется модель объекта, отражающая оригинал в какой-то отдельный момент времени, т.е. «моментальная фотография» объекта. Например, буквально фотография или схема.

С фотографией (рис. 1.11) все ясно, что же касается схемы, то даже если это структурная схема с указанием передаточных функций звеньев, по ней явно не видно, как модель изменяется с течением времени (рис. 1.12).

Рис.1.11. Фотография как пример статической модели

Рис. 1.12. Структурная схема системы

Другой очевидный и знакомый пример статической модели –статическая характеристика, т.е. зависимость выходной переменной объекта (системы) от входной переменной в установившемся режиме , т.е. при t®∞: y(∞)=F (рис. 1.13).

Рис. 1.13. Статическая характеристика системы ”System

Динамическая модель, в отличие от статической, учитывает изменения, происходящие в системе с течением времени. Это может выражаться в зависимости входной, выходной и промежуточных переменных от времени. Примером могут служить переходные функции – реакции систем на единичное ступенчатое входное воздействие (рис. 1.14).

Рис. 1.14. Переходная функция h(t) системы “System

Обычно переходные функции получаются в результате: 1) аналитического решения; 2) численного интегрирования дифференциальных уравнений, описывающих исследуемую систему; 3) обратного преобразования Лапласа от передаточной функции системы, деленной на s . Модельв виде дифференциальных уравнений (ДУ) является широко распространенной динамической моделью.



Пример. Пусть система описывается моделью в виде дифференциального уравнения:

входное воздействие x(t)= 1[t] – единичное ступенчатое (как на рис. 1.14), а начальные условия имеют вид: y(t= 0) = 0, т.е. процесс начинается из начала координат.

Аналитическое решение. Это линейное дифференциальное уравнение первого порядка с постоянными коэффициентами (стационарное). Его решение складывается из двух слагаемых – общего и частного решения:

Общее решение ищется в виде:

где А – неизвестный коэффициент, определяемый из начальных условий;

l – корень характеристического уравнения, которое в данном случае выглядит так:

откуда l=– 2.

В стандартной форме исходное уравнение должно иметь при y(t) коэффициент, равный единице. Для этого исходное уравнение разделим на 4 и получим:

Частное решение зависит от вида правой части ДУ; в данном примере, поскольку x(t)= 1[t] , частное решение будет равно константе:

Суммарное решение будет выглядеть так:

Теперь, подставив в решение y(t) начальное условие (для уравнения 1-го порядка оно одно), можно найти значение коэффициента А :

откуда А = – 1,25. Окончательно решение имеет вид:

Поскольку входным воздействием было единичное ступенчатое, то полученное решение является переходной функцией и обозначается, как обычно, h(t) . График этой функции показан на рис. 1.15.

Рис. 1.15. Переходная функция h(t) – решение ДУ из примера

Подобный h(t) характер (с разной погрешностью) имеют такие процессы, как разгон автомобиля, нагрев жидкости, накопление знаний в некоторой предметной области, увеличение численности популяции животных, рост производства (при определенных условиях) и многие другие. В этом заключается одно из важнейших свойств математическихмоделей – их универсальность.

Создание некоторой универсальной модели, отвечающей различным аспектам ее применения, практически невозможно. Для получения информации, отражающей те или иные свойства управляемого объекта, необходима классификация моделей. В основе классификации лежат особенности оператора φ. Все многообразие объектов управления, исходя из временного и пространственного признаков, можно разделить на следующие классы: статические или динамические; линейные или нелинейные; непрерывные или дискретные во времени; стационарные или нестационарные; процессы, в ходе которых их параметры изменяются в пространстве, и процессы без пространственного изменения параметров. Так как математические моделии являются отражением соответствующих объектов, то для них характерны те же классы. Полное наименование модели может включать в себя совокупность перечисленных признаков. Эти признаки послужили основой названия соответствующих типов моделей.

В зависимости от характера изучаемых процессов в системе все модели могут быть разделены на следующие виды:

Детерминированные модели – отображают детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий.

Стохастические модели – отображают вероятностные процессы и события; в этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

Стационарные и нестационарные модели. Модель называется стационарной, если вид оператора φ и его параметры p не изменяются во времени, то есть, когда справедливо

φ= φ, т.е. y= φ(p,x).

Если же параметры модели изменяются во времени, то модель является

параметрически нестационарной

Самый общий вид нестационарности – когда от времени зависит и вид функции. Тогда в запись функции добавляется еще один аргумент

Статические и динамические модели. В основе такого разделения типов моделей лежат особенности движения исследуемого объекта как материальной системы.

Говоря о моделях с позиций задач управления, надо отметить, что под пространством здесь понимается не геометрическое пространство, а пространство состояний – координат состояний выходных переменных у . Элементами вектора y являются обычно контролируемые технологические параметры (расход, давление, температура, влажность, вязкость и т.д.). Состав элементов вектораy для самого объекта может быть шире, чем для модели этого объекта, так как при моделировании требуется изучение только части свойств реальной системы. Движение объекта управления в пространстве состояний и во времени оценивается с помощью векторного процесса y(t).


Модель системы называется статической , если состояние системы не изменяется, то есть система находится в равновесии, но движение связано со статичным состоянием объекта, находящегося в равновесии. Математическое описание в статических моделях не включает время как переменную и состоит из алгебраических уравнений либо дифференциальных уравнений в случае объектов с распределенными параметрами. Статические модели обычно являются нелинейными. Они точно отражают состояние равновесия, вызванное переходом объекта от одного режима к другому.

Динамическая модель отражает изменение состояния объекта во времени. Математическое описание таких моделей обязательно включает производную во времени. Динамические модели используют дифференциальные уравнения. Точные решения этих уравненийизвестны только для некоторого класса дифференциальных уравнений. Чаще приходится прибегать к использованию численных методов, являющихся приближенными.

Для целей управления динамическую модель представляют в виде передаточной функции, связывающей входные и выходные переменные.

Линейные и нелинейные модели. Математически функция L(x) – линейна, если

L(λ 1 x 1 +λ 2 x 2)=λ 1 L(x 1)+λ 2 L(x 2).

Аналогично и для функций многих переменных. Линейной функции присуще использование только операций алгебраического сложения и умножения переменной на постоянный коэффициент. Если в выражении для оператора моделиесть нелинейные операции, то модель является нелинейной , в противном случае модель – линейна .

Модели с сосредоточенными и распределенными параметрами. Следует отметить, что с учетом введенной терминологии было бы корректнее в названии модели вместо слова «параметры» употреблять понятие «координата состояния». Однако это сложившееся название, которое часто встречается во всех работах по моделированию технологических процессов.

Если основные переменные процесса изменяются как во времени, так и в пространстве (или только в пространстве), то модели, описывающие такие процессы, называются моделями с распределенными параметрами. В этом случае вводится геометрическое пространство z=(z 1 ,z 2 ,z 3 ) и уравнения имеют вид:

y(z)=φ, p(z)=ψ.

Их математическое описание включает обычно дифференциальные уравнения в частных производных, либо обыкновенные дифференциальные уравнения в случае стационарных процессов с одной пространственной координатой.

Если можно пренебречь пространственной неравномерность значений координат состояний объекта, т.е. градиент , то соответствующая модель – модель с сосредоточенными параметрами. Для них масса и энергия как бы сосредоточены в одной точке.

Трехмерность пространства не всегда обязательна. Например, модель змеевика с нагреваемым рабочим телом и с тонкостенной оболочкой обычно исходит из одномерности объекта – учитывается только длина змеевика. В то же время процесс передачи тепла в ограниченный объем рабочего тела через толстую стенку может быть описан одномерной моделью, учитывающей только толщину оболочки и т.п. Для конкретных объектов форма соответствующих уравнений требует обоснований.

Модели непрерывные и дискретные во времени. Непрерывные модели отражают непрерывные процессы в системах. Модели, описывающие состояние объектов относительно времени как непрерывного аргумента – непрерывные (по времени):

y(t)=φ, p(t)=ψ.

Дискретные модели служат для описания процессов, которые предполагаются дискретными. Дискретная модель не может дать прогноз поведения объекта на интервале между дискретными отсчетами времени. Если введем квантование по времени с шагом ∆t, то рассматривается дискретная шкала , где i=0,1,2…- приобретает смысл относительного времени. И дискретная модель:

y(i)=φ; p(i)=ψ.

При правильном выборе шага ∆t можно ожидать от дискретной модели результата с наперед заданной точностью. При изменении ∆t должны быть пересчитаны и коэффициенты разностного уравнения.

Дискретно-непрерывные модели используются для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

Требования, предъявляемые к математическим моделям: точность – свойство, отражающее степень совпадения предсказанных с помощью модели значений параметров объекта с их истинными значениями; экономичность затрат машинного времени; универсальность – применимость к анализу группы однотипных объектов.