От чего зависит разрешающая способность изображения. Разрешающая способность оптической системы

05.05.2019

Спектрографах и спектрометрах. Спектральный прибор представляет любое излучение в виде совокупности монохроматических волн. Любая точка предмета вследствие дифракции отображает-ся в виде центрального светлого пятна, окруженного чередующимися темными и светлыми кольцами; радиус пятна зависит от относительных размеров линз оптической системы.

В ряде спектральных приборов используется дисперсия показателя преломления призм (лекция 1), приводящая к пространственному разделению монохроматических компонент излучения: , где угол падения для излучения с длиной волны , угол падения анализируемого света.

Критерий Рэлея - два близлежащих одинаковых точеч-ных источника или две близлежащие спектральные линии с равными интенсивностями условно считаются полностью разрешенными (наблюдаемыми порознь), если максимум интенсивности одного источ-ника (линии) совпадает с первым миниму-мом интенсивности другого (рис. а).

При выполнении критерия Рэлея интенсивность «провала» между максимумами составляет 80% интенсив-ности в максимуме, что является достаточ-ным для разрешения линий и . Если критерий Рэлея нарушен, то наблюдается одна линия (рис.b).

1. Разрешающая способность объекти-ва. Если на объектив падает свет от двух удаленных точечных источников S 1 и S 2 (например, звезд) с некоторым угловым расстоянием , то вследствие дифракции световых волн на краях диафрагмы, огра-ничивающей объектив, в его фокальной плоскости вместо двух точек наблюдаются максимумы, окруженные чередующимися темными и светлыми кольцами. Две близлежащие звезды, наблюдаемые в объективе в моно-хроматическом свете, разрешимы, если уг-ловое расстояние между ними

, (16.1)

где — длина волны света, D — диаметр объектива.

Разрешающей способностью (разре-шающей силой) объектива называется ве-личина (16.2)

где — наименьшее угловое расстоя-ние между двумя точками, при котором они еще разрешаются оптическим прибором. При выполнении критерия Рэлея, угловое расстояние между точками должно быть равно :

Следовательно, разрешающая способ-ность объектива (16.4)

Т.е. для увеличения разрешающей способности оп-тических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны . Для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а получен-ное изображение в данном случае наблю-дается с помощью флуоресцирующего эк-рана либо фиксируется на фотопластинке.


Еще большую разрешающую способность можно было бы получить с помощью рент-геновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломля-ясь; не-возможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излуче-ние. Поэтому электронный микроскоп име-ет очень высокую разрешающую способ-ность.

Разрешающей способностью спек-трального прибора называют безразмер-ную величину (16.5)

где — абсолютное значение минималь-ной разности длин волн двух соседних спектральных линий, при которой эти ли-нии регистрируются раздельно.

Установление длин волн исследуемого излучения в спектральных приборах чаще всего производится путем сравнения длин волн двух близких спектральных линий (одна из которых принадлежит эталонному веществу или излучению). Положение спектральной линии задается углом, определяющим направление лучей.

Угловой дисперсией (16.6) , где — угловое расстоя-ние между двумя линиями (разница в углах на выходе из призмы или решетки для двух лучей с длинами волн и )

Линейной дисперсией спектрального прибора называется величина (16.7) , где — линейное расстоя-ние между линиями, различающимися по длинам волн на .

2. Разрешающая способность дифрак-ционной решетки. В спектральных приборах с дифракционными решетками положение спектральных линий на плоскости наблюдения дается условием максимумов. Пусть максимум т-го порядка для длины волны наблюдается под углом , т.е., согласно (14.6), . При переходе от максимума к соседнему минимуму разность хода ме-няется на (14.7), где -число щелей решетки. Следовательно, ми-нимум , наблюдаемый под углом , удовлетворяет условию . По критерию Рэлея, , т.е., или. Так как и близки между собой, т.е., то,

Таким образом, разрешающая способ-ность дифракционной решетки пропорцио-нальна порядку т спектров и числу N ще-лей, т. е. при заданном числе щелей увели-чивается при переходе к спектрам высших порядков. Современные дифракционные решетки обладают довольно высокой раз-решающей способностью (до 2?10 5).

Угловая дисперсия дифрак-ционной решетки: , где положение m- го максимума.

линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количественной мерой Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем ) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете , радужно окрашенными - в белом свете ). Теория дифракции позволяет вычислить наименьшее расстояние, разрешаемое системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображения раздельно. Согласно Рэлею (1879), изображения двух точек одинаковой яркости ещё можно видеть раздельно, если центр дифракционного пятна каждого из них пересекается краем 1-го тёмного кольца другого (рис. ). В случае самосветящихся точек, испускающих некогерентные лучи, при выполнении этого критерия Рэлея наименьшая освещённость между изображениями разрешаемых точек составит 74% своего максимального значения, а угловое расстояние между центрами дифракционных пятен (максимумами освещённости) Dj = 1,21 lID, где l - длина волны света, D - диаметр входного зрачка оптической системы (см. Диафрагма в оптике). Если f - фокусное расстояние оптической системы, то линейная величина рэлеевского предела разрешения s = 1,21 lflD. Предел разрешения телескопов и зрительных труб выражают в угловых секундах (см. Разрешающая сила телескопа ), для длины волны l @ 560 нм , соответствующей максимальной чувствительности человеческого глаза, он равен a"= 140/D (D в мм ). Для фотообъективов Разрешающая способность (в оптике) обычно определяют как максимальное количество раздельно видимых линий на 1 мм изображения стандартного тест-объекта (см. Мира ) и вычисляют по формуле = 1470e, где e - относительное отверстие объектива (см. также Разрешающая способность фотографирующей системы; о Разрешающая способность (в оптике) микроскопов см. в ст. Микроскоп ). Приведённые соотношения справедливы лишь для точек, находящихся на оси идеальной оптической системы. Наличие аберраций и погрешностей изготовления увеличивает размеры дифракционных пятен и снижает Разрешающая способность (в оптике) реальных систем, которая, кроме того, уменьшается по мере удаления от центра поля зрения . Разрешающая способность (в оптике) оптического прибора R oп, в состав которого входят оптическая система с Разрешающая способность (в оптике) R oc и приёмник света (фотослой, катод электроннооптического преобразователя и пр.) с Разрешающая способность (в оптике) R п, определяется приближённой формулой 1/R oп = 1/R oc + 1/R п, из неё следует, что целесообразно использовать лишь сочетания, в которых R oc и R п - величины одного порядка. Разрешающая способность (в оптике) прибора может быть оценена по его аппаратной функции , отражающей все факторы, влияющие на качество изображения (дифракцию, аберрации и т.д.). Наряду с оценкой качества изображения по Разрешающая способность (в оптике) широко распространён метод его оценки с помощью частотно-контрастной характеристики . О Разрешающая способность (в оптике) спектральных приборов см. в ст. Спектральные приборы .

Лит.: Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1, М. - Л., 1948; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Волосов Д. С., Фотографическая оптика, М., 1971.

Статья про слово "Разрешающая способность (в оптике) " в Большой Советской Энциклопедии была прочитана 16228 раз

Разрешающая Способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количеств. мерой разрешающей способности. Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным -кольцами (попеременно темными и светлыми в монохроматическом свете , радужно окрашенными - в белом свете). Теория дифракции позволяет вычислить наименьшее расстояние, разрешаемое системой, если известно, при каких распределениях освещенности приемник (глаз, фотослой) воспринимает изображения раздельно. Согласно Рэлею (1879), изображения двух точек одинаковой яркости еще можно видеть раздельно, если центр дифракционного пятна каждого из них пересекается краем 1-го темного кольца другого (рис.). В случае самосветящихся точек, испускающих некогерентные лучи, при выполнении этого критерия Рэлея наименьшая освещенность между изображениями разрешаемых точек составит 74% своего максимального значения, а угловое расстояние между центрами дифракционных пятен (максимумами освещенности) Δφ = 1,21 λ/D где λ - длина волны света, D - диаметр входного зрачка оптической системы (см. Диафрагма в оптике). Если f - фокусное расстояние оптической системы, то линейная величина рэлеевского предела разрешения σ = 1,21 λf/D. Предел разрешения телескопов и зрительных труб выражают в угловых секундах (см. Разрешающая сила телескопа); для длины волны λ ~ 560 нм, соответствующей максимальной чувствительности человеческого глаза, он равен α" = 140/D (D в мм). Для фотообъективов разрешающая способность обычно определяют как максимальное количество раздельно видимых линий на 1 мм изображения стандартного тест-объекта (см. Мира) и вычисляют по формуле N = 1470ε, где ε - относительное отверстие объектива (см. также Разрешающая способность фотографирующей системы; о разрешающей способности микроскопов см. в ст. Микроскоп). Приведенные соотношения справедливы лишь для точек, находящихся на оси идеальной оптической системы. Наличие аберраций и погрешностей изготовления увеличивает размеры дифракционных пятен и снижает разрешающую способность реальных систем, которая, кроме того, уменьшается по мере удаления от центра поля зрения . Разрешающая способность оптического прибора R оп, в состав которого входят оптическая система с разрешающей способностью R oc и приемник света (фотослой, катод электроннооптического преобразователя и пр.) с разрешающей способностью R п, определяется приближенной формулой 1/R оп = 1/R oc + 1/R п; из нее следует, что целесообразно использовать лишь сочетания, в которых R ос и R п - величины одного порядка. Разрешающая способность прибора может быть оценена по его аппаратной функции, отражающей все факторы, влияющие на качество изображения (дифракцию, аберрации и т. д.). Наряду с оценкой качества изображения по разрешающей способности широко распространен метод его оценки с помощью частотно-контрастной характеристики. О разрешающей способности спектральных приборов см. в ст. Спектральные приборы.

Распределение освещенности Е в изображении двух точечных источников света, расположенных так, что угловое расстояние Δφ между максимумами освещенности равно угловой величине Δθ радиуса центрального дифракционного пятна (Δφ = Δθ - условие Рэлея).

Cтраница 1


Разрешающая способность оптических приборов и, в частности, микроскопов ограничивается явлением дифракции. Изображение частиц меньших размеров будет иметь вид дифракционного кружка, форма которого практически не зависит от формы частиц. При специальном способе наблюдения эти дифракционные картины, однако, могут быть замечены и, следовательно, факт существования частиц, их положение и движение могут быть установлены. Вопросы наблюдения и исследования таких малых частиц в коллоидных растворах и аэрозолях и составляют предмет ультрамикроскопии.  


Ограничения разрешающей способности оптических приборов связаны с дифракционными явлениями и аберрациями элементов оптических систем.  


На разрешающую способность оптического прибора влияет кроме разрешающей способности глаза степень коррекции системы.  

Чем определяется разрешающая способность оптических приборов.  

Об увеличении разрешающей способности оптических приборов: Докл.  

Обычно под разрешающей способностью оптического прибора понимают способность различать (шит разрешать) в изображении объекта два близких элемента - две близкие светящиеся точки Б обычном оптическом приборе или две близкие монохроматические линии в спектре, полученном с помощью спектрального прибора.  

Что понимают под разрешающей способностью оптического прибора и от чего она зависит.  

Почему явление дифракции ограничивает разрешающую способность оптических приборов, например телескопа.  

Согласно критерию Рэлея, максимальная разрешающая способность оптического прибора соответствует условию, когда главный максимум дифракционной картины от одного точечного объекта точно совпадает с первым минимумом дифракционной картины от другого близко расположенного с первым точечного объекта. Этому условию отвечает минимальное угловое разрешение оптического прибора.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину яолны. Поэтому для наблюдения более мелких деталей предмета используют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Из формулы (183.2) видно, что для увеличения разрешающей способности оптических приборов нужно либо увеличить диаметр объектива, либо уменьшить длину волны. Поэтому для наблюдения более мелких деталей предмета употребляют ультрафиолетовое излучение, а полученное изображение в данном случае наблюдается с помощью флуоресцирующего экрана либо фиксируется на фотопластинке. Еще большую разрешающую способность можно было бы получить с помощью рентгеновского излучения, но оно обладает большой проникающей способностью и проходит через вещество не преломляясь; следовательно, в данном случае невозможно создать преломляющие линзы. Потоки электронов (при определенных энергиях) обладают примерно такой же длиной волны, как и рентгеновское излучение.  

Еще один интересный вопрос, очень важный с технической точки зрения: какова разрешающая способность оптических приборов. Когда мы создаем микроскоп, мы хотим целиком видеть тот объект, который находится в поле нашего зрения. Это означает, например, что, глядя на бактерию, на боках которой имеются два пятнышка, мы хотим различить оба пятнышка на увеличенном изображении. Могут подумать, что для этого нужно только получить достаточное увеличение, ведь всегда можно добавить еще линзы и достичь большего увеличения, а если конструктор ловкий, то он устранит сферические и хроматические аберрации; вот вроде бы и нет причин, почему бы не увеличить желаемое изображение до любых размеров. Но предел возможностей микроскопа связан не с тем, что невозможно добиться увеличения более чем в 2000 раз.  

Независимо от их специфики и предназначения, обязательно имеют одну общую физическую характеристику, которая называется «разрешающая способность». Данное физическое свойство является определяющим для всех без исключения оптических и Например, для микроскопа важнейшим параметром является не только увеличивающая способность его линз, но и разрешение, от которого напрямую зависит качество изображения исследуемого объекта. Если конструкция этого прибора не способна обеспечить раздельное восприятие мельчайших деталей, то полученное изображение будет некачественным даже при значительном увеличении.

Разрешающая способность оптических приборов - это величина, которая характеризует их способность различать наименьшие отдельные детали наблюдаемых или измеряемых объектов. Пределом разрешающей способности называется минимальное расстояние между соседними деталями (точками) объекта, при котором их изображения уже не воспринимаются в качестве отдельных элементов объекта, сливаясь воедино. Чем меньше это расстояние, тем, соответственно, выше разрешающая способность прибора.

Обратная пределу разрешения величина служит количественным показателем разрешающей способности. Этот важнейший параметр и определяет качество прибора и, соответственно, его цену. Вследствие дифракционного свойства световых волн, все изображения мелких элементов объекта имеют вид светлых пятен, окруженных системой концентрических интерференционных окружностей. Именно данное явление служит ограничением разрешающей способности любых оптических приборов.

Согласно теории английского физика 19-го века Рэлея, изображение двух близлежащих мелких элементов объекта еще могут быть различимы при совпадении их дифракционного максимума. Но даже такая разрешающая способность имеет свой предел. Она определяется расстоянием между этими мельчайшими деталями объектов. обычно определяется максимальным количеством раздельно воспринимаемых линий на один миллиметр изображения. Этот факт был установлен опытным путем.

Разрешающая способность приборов понижается при наличии аберраций (отклонений светового луча от заданного направления) и различных погрешностей изготовления оптических систем, что увеличивает габариты дифракционных пятен. Таким образом, чем меньше величина дифракционных пятен, тем выше разрешающая способность любой оптики. Это немаловажный показатель.

Разрешающая способность любого оптического прибора оценивается по его аппаратным функциям, отражающим все факторы, которые оказывают влияние на качество предоставляемого этим прибором изображения. К таким влияющим факторам, безусловно, следует в первую очередь отнести аберрацию и дифракцию - огибание световыми волнами препятствий и, как следствие, отклонение их от прямолинейного направления. Для определения разрешающей способности различных оптических приборов применяются специальные испытательные прозрачные или непрозрачные пластинки со стандартным рисунком, называемые мирами.