Отличия память DDR3 от DDR4? DDR3 vs DDR4 — а есть ли разница.

30.07.2019

DDR3 vs DDR4. Кто круче?

Добрый день, уважаемые читатели. У многих возникает вопрос, какую оперативную память выбрать DDR3 или DDR4 ? В чем отличие между ними и что лучше подходит для игр? Сегодня мы разберемся во всех этих вопросах и затронем сопутствующие вопросы по этой теме. Мы, конечно, уже разбирались в вопросе, но сегодня подробнее остановимся именно на этих двух типах памяти. Почему? Потому что не все могут с легкостью определиться в выборе. Мы поможем!

Как известно, технология DDR4 появилась на рынке вместе с процессорами 6-го поколения от Интел под кодовым названием SkyLake (небесное озеро). Соответственно использовать DDR4 желательно только с новыми процессорами 6-го и 7-го поколения (и выше).

А вот с какого поколения процессоры начнут поддерживать пока не известно.

Чем отличается DDR3 от DDR4?

Вы, скорее всего, знаете, что оперативная память развивается не так быстро, как процессоры. Новое поколение процессоров выходит практически каждый год, а вот оперативная память DDR3 прочно оккупировала рынок уже с далекого 2007 года. Точнее в 2007 она появилась, а в 2010 вытеснила DDR2. Теперь давайте поговорим про основные отличия памяти DDR4 от предыдущего поколения.

Технически, конечно же, новое поколение оперативной памяти более совершенно (спасибо кэп =D). Во-первых, снижено энергопотребление (и теплоотдача соответственно). Планка памяти DDR3 имела напряжение 1,5-2 Вольта, а у DDR4 напряжение снижено до 1,05-1,2 Вольта. Хотя это больше ощутимо для серверов, чем для домашних зверьков. Во-вторых, увеличен частотный диапазон. DDR3 работал на частотах от 800Мгц до 2933Мгц, а DDR4 начинает диапазон на частоте 2133Мгц и заканчивает пока на 4400Мгц , но, видимо, это еще не предел. Судите сами, насколько значительнее будет разница в производительности такой памяти.

DDR3 – от 800 до 2933Мгц

DDR4 – от 2133 до 4400Мгц+

Можно ли вставить DDR3 в слот DDR4 или наоборот?

Многие люди задаются вопросом совместимости этих двух типов оперативной памяти. Ну какая может быть совместимость DDR3 и DDR4? О чем вы вообще? Если вы посмотрите внимательно на форму самих планок ОЗУ, то вы увидите, что они немного отличаются. Каждое поколение ОЗУ (DDR, DDR2, DDR3 и DDR4) специального немного отличается от остальных. Выемка (ключ), которая расположена на стороне с контактами, на каждом типе памяти находится в разном месте, тем самым препятствуя попыткам вставить планку не в свое гнездо.

Можно ли вставить DDR3 в слот DDR4?

  • Вставить планку ОЗУ DDR3 в слот DDR4 нельзя!
  • Вставить планку ОЗУ DDR4 в слот DDR3 нельзя, соответственно, тоже!

Есть, правда, один нюанс. Бывает такое, что материнская плата имеет отдельные слоты под память DDR3 и под DDR4. Допустим, вы решили апгрейдить компьютер. Извлекаете память DDR3 из своих слотов и вставляете DDR4 в ДРУГИЕ слоты , в те, которые предназначены именно для оперативки DDR4 . По-другому никак!

Если вы вдруг осознали, что вам не хватает ОЗУ на компьютере, то ознакомьтесь с нашими советами на этот счет в статье, которая поможет физически и не только.

DDR3 или DDR4, что лучше?

Вопрос с подвохом. Вроде бы уже все выяснили, что DDR4 новее, быстрее и экономичнее, а тут такой вопрос. И все же давайте выясним, что лучше?

А подвох тут вот в чем! Если взять, например, DDR3 2400Мгц и DDR4 2400Мгц , то в этой схватке одержит победу….. одержит победу… отгадайте кто?… DDR3 ! Почему так происходит? В ОЗУ существует такая характеристика как тайминг задержки. Выглядит она примерно так 9-9-9-24 или 9-10-10-24. В общем, чем этот показатель ниже, тем выше скорость оперативной памяти.

И случилось так, что в силу своей архитектуры DDR4 имеет тайминги выше, чем у DDR3. Именно поэтому при одинаковых частотах в тестах DDR4 немножко проигрывает памяти DDR3. Но стоит только взять память DDR4 с частотой 3200 или 4000 Мгц, как вы заметите огромную разницу в пользу DDR4!

Вот теперь и думайте, что лучше DDR3 или DDR4? Все зависит от многих факторов. Например, какую частоту оперативной памяти поддерживает ваша , есть ли в ней потенциал для дальнейшего .

Лучшая оперативная память (из DDR3 и DDR4)

Давайте заглянем в несколько интернет магазинов и попробуем определить какие планки (наборы) ОЗУ могут претендовать на звание «Лучшая оперативная память » в текущем 2018 году. Мы рассмотрим лучших представителей из DDR3 и DDR4 типов и приведем в таблице основные параметры и фирму-производителя. Смотрите и анализируйте.

DDR4

Производитель,

модель

Объем Частота, MHz Производи-тельность на планку Производи-тельность на комплект Цена комплекта, рублей
Corsair Vengeance RGB CMR64GX4M4C3466C16 4 x 16Gb
(64Gb)
3466 216,6 866,5 57998
Corsair Vengeance RGB CMR64GX4M4K3733C17 4 x 16Gb
(64Gb)
3733 219,6 878,4 61083
Corsair Vengeance RGB CMR128GX4M8C3000C16W 8 x 16Gb
(128Gb)
3000 187,5 1500 105319
Corsair Vengeance RGB CMR128GX4M8X3800C19 8 x 16Gb
(128Gb)
3800 200 1600 113621
Corsair Dominator Platinum Special Edition Torque CMD32GX4M4C3200C14T 4 x 8Gb
(32Gb)
3200 228,6 914,3 32850
Kingston HyperX Predator HX430C15PB3K2/32 2 x 16Gb
(32Gb)
3000 200 400 28164
Kingston HyperX Fury HX421C14FR2K4/32 4 x 8Gb
(32Gb)
2133 152,4 609,5 28045
Corsair Vengeance RGB CMR16GX4M2F4000C19 2 x 8Gb
(16Gb)
4000 210,5 421 19325
Corsair CMK16GX4M2F4400C19 2 x 8Gb
(16Gb)
4400 231,6 463,2 29690

DDR3

Исходя из приведенных в таблицах данных, не скажу, что выбор между двумя поколениями оперативной памяти стал более очевиден. Все осталось так же неявно, как и было. В DDR4 увеличились частоты, но вместе с ними увеличились и тайминги задержки. Если не понятно, как вычислялась производительность, то в статье про вы сможете узнать об этом расчете подробнее. Конечно же, этот коэффициент не идеален, но это лучше, чем ничего.

Совместимость и взаимозаменяемость DDR3 и DDR3L

В общем, единственным отличием между DDR3 и DDR3L является то, что DDR3 работает под напряжением 1,5 Вольт, а DDR3L – 1,35 Вольт. То есть она немного экономней. Про совместимость и взаимозаменяемость можно сказать следующее – можно вставить DDR3L в слот DDR3, все подойдет и будет работать. Также в большинстве случаев DDR3 и DDR3L смогут работать одновременно, но не всегда. Если хотите сэкономить, то только на свой страх и риск.

Вы дочитали до самого конца?

Была ли эта статься полезной?

Да Нет

Что именно вам не понравилось? Статья была неполной или неправдивой?
Напишите в клмментариях и мы обещаем исправиться!

Небольшое экспресс-тестирование работы процессоров под LGA1151 с памятью, типа DDR3 и DDR4 мы проводили еще в прошлом году, а в этом немного расширили изученную область в направлении бюджетных моделей для этой платформы. В общем и целом сложилось ощущение, что преимуществ по производительности у нового типа памяти нет, зато она позволяет сэкономить немного энергии, что в последние годы стало основной точкой приложения усилий Intel при разработке новых микроархитектур. Правда, влияние памяти на энергопотребление старших моделей процессоров Intel мы не исследовали. Да и вообще - их тесты проводились еще с использованием старой методики тестирования, причем очень разных системных плат и т. п., так что сделанные в прошлом году выводы могут и устареть. Поэтому мы решили исследовать вопрос более тщательно и подробно.

Конфигурация тестовых стендов

Процессор Intel Celeron G3900 Intel Pentium G4500T Intel Core i3-6100 Intel Core i5-6400 Intel Core i7-6700K
Название ядра Skylake Skylake Skylake Skylake Skylake
Технология пр-ва 14 нм 14 нм 14 нм 14 нм 14 нм
Частота ядра std/max, ГГц 2,8 3,0 3,7 2,7/3,3 4,0/4,2
Кол-во ядер/потоков 2/2 2/2 2/4 4/4 4/8
Кэш L1 (сумм.), I/D, КБ 64/64 64/64 64/64 128/128 128/128
Кэш L2, КБ 2×256 2×256 2×256 4×256 4×256
Кэш L3 (L4), МиБ 2 3 3 6 8
Оперативная память 2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1600 /
2×DDR4-2133
TDP, Вт 51 35 51 65 91
Графика HDG 510 HDG 530 HDG 530 HDG 530 HDG 530
Кол-во EU 12 23 23 24 24
Частота std/max, МГц 350/950 350/950 350/1050 350/950 350/1150
Цена T-13475848 T-12874617 T-12874330 T-12873939 T-12794508

Мы воспользовались пятью процессорами, причем два из них уже были протестированы ранее - именно поэтому сегодня будут использоваться результаты Pentium G4500T, а не несколько более актуальных для розничных покупателей G4500/G4520: обычная экономия временны́х затрат. Все равно в наибольшей степени нас интересуют не они, а процессоры чуть более высокого класса - например, младшие в линейках Core i3-6100 и i5-6400. Почему именно младшие? Как нам кажется, именно у покупателей таковых наиболее вероятно желание сэкономить при модернизации системы, не меняя шило на мыло DDR3 на DDR4. Да и при покупке новой системы то, что на данный момент бюджетные платы с поддержкой DDR3 стоят немного дешевле аналогов со слотами DDR4, важнее всего именно тем, кто собирает бюджетный компьютер. А если уж сможет себе позволить какой-нибудь Core i3-6320, то лучше «дотянет» до «настоящего четырехъядерного» Core i5-6400. Но, тем не менее, не протестировать совместно с DDR3 топовый Core i7-6700K мы тоже не могли - все-таки это самое быстрое (и самое прожорливое) предложение Intel для данной платформы, поэтому и крайне необходимое для оценки максимального потенциального эффекта от перехода на новый стандарт памяти.

Что касается собственно модулей памяти, то в обоих случаях мы использовали пару таковых, суммарной емкостью 8 ГБ. Частота соответствовала поддерживаемой по стандарту - 1600 МГц для DDR3 и 2133 МГц для DDR4. В принципе, некоторые производители системных плат предлагают возможности разгона памяти и для DDR3, но тут есть один деликатный момент - для достижения высоких частот обычно используется повышенное до 1,65 В (вместо стандартных 1,5 В) напряжение питания. При этом Intel не рекомендует так поступать еще со времен LGA1156, предупреждая, что повышенное напряжение может привести и к повреждению процессора. А ведь официально устройствам для LGA1151 разрешено работать даже не с DDR3, а с DDR3L, работающей на напряжении 1,35 В, т. е. для них эта проблема может оказаться и более выраженной. Впрочем, справедливости ради, за прошедшие семь лет мы ни разу не сталкивались с выходом процессоров из строя, даже при использовании «оверклокерских» модулей. Более того - и не слышали о ситуациях, в которых можно было однозначно заявить о наличии таких проблем. Но береженого известно кто бережет:) Тем более, под концепцию минимизации цены системы разнообразные «хай-енд»-модули с декоративными радиаторами и прочими светодиодами все равно никак не подходят, поскольку и стоят уже дороже массовой DDR4. А вот банальная DDR3-1600 все еще может оказаться полезной.

Системных плат потребовалось две. В идеале, конечно, такое тестирование стоило проводить на универсальной модели, тройка каковых уже есть в ассортименте ASRock, но к нам в руки они пока не попадали. Поэтому мы просто взяли две платы, максимально-сходные по конструкции и даже назначению: ASRock Fatal1ty B150 Gaming K4 и Asus B150 Pro Gaming D3 . И основанные на одном и том же чипсете, что тоже может оказаться немаловажным, равно как и сходная (десятиканальная) схема питания процессора.

Методика тестирования

Методика подробно описана в отдельной статье . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования

А подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97-2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности, это относится к тестам приложений, где все нормируется относительно референсной системы (как и в прошлом году, ноутбука на базе Core i5-3317U с 4 ГБ памяти и SSD, емкостью 128 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2016

Первая же группа программ преподнесла сюрприз - на трех процессорах из пяти DDR3 оказалась быстрее, чем DDR4. Изучение подробных результатов показывает, что «благодарить» за это нужно одну программу, а именно Adobe After Effects CC 2015. Предыдущая ее версия, помнится, испортила нам немало крови из-за своих требований к емкости памяти (причем зависящих от прочего аппаратного окружения), теперь вот новая напасть - и связанная именно с памятью. На медленных процессорах, впрочем, незаметная - там доверительные интервалы разных измерений существенно пересекаются. Но вот при возможности использовать четыре или более потоков вычисления, на погрешность разницу уже не спишешь: на Core i3-6100 и i5-6400 она превышает 10%. А для i7-6700K - немного уменьшается: судя по всему, благодаря большей емкости кэш-памяти. В общем, «прогресс» иногда может оказаться и таким. Локально - остальные программы группы работают на системе с DDR4 либо также, либо немного быстрее, что и приводит в конечном итоге к почти равным результатам. Для разных типов памяти, но не процессоров, разумеется, т. е. перед нами как раз тот случай, когда экономия посредством сохранения старой памяти может позволить приобрести более быстрый процессор, что окупится сторицей.

В данном случае, напротив, имеем некоторый прирост результатов при использовании DDR4, причем, чем быстрее процессор, тем он выше. Но даже в крайнем случае не превышает 3%, т. е. бежать менять память только лишь из-за производительности не стоит.

Формально - новая память лучше, фактически же разница в доли процента интересна может оказаться только любителям бенчмарков, но не для практического использования.

Аналогичный случай. Нет, конечно, результаты стабильно выше. Но такой прирост производительности без фотофиниша не зафиксируешь, так что лучше просто не обращать на него внимания.

Опять отличия в пределах 1%. Даже там, где они вообще есть. Покупателям же систем начального уровня тем более имеет смысл не волноваться, а попробовать сэкономить. Даже при покупке нового компьютера об этом можно пока поразмыслить, не говоря уже о том случае, когда достаточный объем DDR3 остался от старого.

При упаковке данных Core i7-6700K все-таки сумел героически «выжать» целых 2% разницы за счет большей ПСП. Остальным же более чем достаточно и DDR3-1600, а DDR4 может даже помешать из-за пока еще больших задержек.

Файловые операции последние лет пять умеют активно «нагружать» память, однако мы не склонны в данном случае относить эффект на счет ее производительности. Скорее, прочие сторонние факторы, типа работы контроллера в том режиме, на который он в основном и рассчитан.

Глядя на результаты младших процессоров Intel, мы посчитали, что этой программе вообще противопоказаны более высокие задержки DDR4. Однако воспользовавшись более быстрыми моделями можно увидеть, что, по мере роста их производительности, требования к пропускной способности памяти тоже растут. В итоге удается «выжать» до 3-4%. Что, впрочем, неплохо смотрится только на фоне остальных групп приложений, но слишком мало для практической значимости.

В конечном итоге приходим к практически полной эквивалентности двух типов памяти, поскольку разница между ними находится в пределах погрешности. Впрочем, как мы видели выше, есть программы, которые «жестко голосуют» за один из вариантов, но настолько странным образом, что это вообще можно списать на какие-то ошибки (или, что то же самое, неумеренную и ненужную оптимизацию), которые со временем будут исправлены. А вот такого, чтоб результаты взяли и выросли на треть (пропорционально эффективной частоте) - и близко нет.

Энергопотребление и энергоэффективность

Чтобы не перебарщивать с размерами диаграмм, мы решили ограничиться тремя точками - крайними и средней (результаты остальных двух систем желающие могут посмотреть в сводном файле). В принципе, они хорошо демонстрируют - зачем все это затевалось. А также и то, что для младших конфигураций эффектом можно, в принципе, и пренебречь: какая-то экономия наблюдается и в случае Celeron G3900, но с учетом его очень малого «аппетита» вообще... Плюс-минус пять ватт в настольной системе проблем не составят. Вот 10-15 при использовании топовых процессоров - уже что-то, однако в относительном исчислении тоже не стоит внимания.

Но, разумеется, большому любителю «зеленых» может и принести небольшое моральное удовлетворение. Как и в целом LGA1151 - согласно тестам, даже при использовании DDR3 это все равно самая «энергоэффективная» на сегодня настольная платформа, причем не уступающая даже суррогатным системам, но при несравнимо более высокой производительности. Впрочем, и LGA1150 в этом качестве была неплоха, да и «старенькая» уже LGA1155 при продлении ей жизни и отсутствии новых разработок выглядела бы неплохо. Фактически среди настольных платформ конкуренции в плане энергоэффективности давно уже не наблюдается. Так что «усиление и углубление» работы в данном направлении - отголоски событий на совсем других рынках.

Однако нераскрытым пока еще остается другой вопрос, а именно влияние разных типов памяти на энергопотребление самого процессора. «Платформенная» экономичность - понятно: все-таки и сами модули памяти имеют разное энергопотребление. А сказывается ли это непосредственно на работу контроллера, интегрированного в процессор? Заранее и не скажешь. К примеру, дискретная видеокарта тоже «портит» показатели энергоэффективности, но непосредственно на процессоре не сказывается никак. Значит, надо измерять. Тем более, для новых платформ это проблем не составляет - еще со времен LGA1150 компания «перевела» систему питания процессора непосредственно на выделенную линию БП целиком и полностью.

Эффект, как видим, есть - более скромный, чем для «платформы», но лояльным к памяти старого типа его не назовешь. Опять же - для младших моделей в ассортименте Intel им можно и пренебречь, а вот для старших можно получить и лишний десяток ватт «под крышкой». И это даже для стандартных модулей DDR3 с напряжением питания 1,5 В - увеличение последнего (при попытках повысить частоту памяти), разумеется, положение дел только усугубит. Таким образом, рекомендации «не задирать» напряжение питания модулей памяти можно верить - ничего хорошего это не принесет. Плохого, вполне возможно, что тоже. Но рисковать или нет - каждый пусть решает для себя сам. Во всяком случае, влияние использования памяти типа DDR3 на собственное энергопотребление (и, соответственно, тепловыделение) центрального процессора - задокументированный факт. Равно как и небольшой размер этого «влияния» в случае процессоров бюджетного сегмента. Или даже моделей среднего уровня.

iXBT Game Benchmark 2016

Чтобы не перегружать статью большим количеством в общем-то однотипных диаграмм, мы в очередной раз решили обойтись интегральным баллом (напомним: он отражает не абсолютные показатели, а способность систем как-то «вытягивать» хотя бы 30 кадров в секунду в разных играх).

Собственно, все очевидно. Разумеется, большая ПСП благотворно сказывается на интегрированном GPU, но принципиально положение дел измениться не может. Кое-где это позволяет, например, увеличить частоту кадров с 28 до 31, что сказывается на общем результате, однако никаких вау-эффектов не наблюдается. Это в очередной раз подтверждает, что при приобретении компьютера игрового назначения «танцевать» надо от видеокарты. Потом уже можно задуматься о процессоре, а все остальное - по вкусу. Если деньги останутся:) Но запросы современных (и даже уже не очень) игр таковы, что вряд ли останутся уже после первого шага. Так что если использование «старой» памяти позволит приобрести чуть более быструю видеокарту - этим в обязательном порядке стоит воспользоваться. А все попытки повысить производительность интегрированной графики без кардинальных ее изменений не стоят даже затраченного времени, не говоря уже о деньгах.

Итого

Итак, мы уточнили ранее полученные результаты и пришли к выводу, что пока эффект от перехода к DDR4 даже скромнее, чем казался ранее. Из чего, впрочем, не следует, что этому переходу надо как-то специально противодействовать. Во-первых, новая память позволяет сэкономить немного энергии. Причем (что тоже немаловажно) речь идет не только о большей экономичности всей системы, но и потребление процессора оказывается немного более низким, так что и работать последний будет в более щадящем режиме, и с охлаждением все проще решать. Во-вторых же, отгрузки DDR3 довольно быстро сокращаются, так что эта память дешеветь не будет наверняка, в отличие от DDR4. На которую все равно рано или поздно придется переходить, причем мы не удивимся, если поддержка DDR3 исчезнет со временем и из новых процессоров уже в рамках LGA1151. C другой стороны, если таковая память уже есть, причем в достаточном количестве, которое в ближайшем будущем увеличивать не планируется - момент перехода можно и отложить до более удачного в финансовом плане. Каких-то проблем это не составит, даже при покупке топового процессора, не говоря уже об устройствах среднего и нижнего уровня. Но, естественно, не стоит увлекаться чрезмерным повышением напряжения на модулях, поскольку определенное отрицательное значение для процессора это имеет.

Итак, процессоры Intel Skylake работают и с DDR3-памятью, и с DDR4. Но не все так просто. Встроенный контроллер официально поддерживает память DDR4-1866/2133 при напряжении 1,2 В или DDR3L-1333/1600. Буква L в названии означает Low Power. То есть напряжение не должно превышать 1,35 В. Большинство «старой» DDR3-памяти работает при 1,5/1,65 В. Получается, что такие «мозги» не подходят для чипов Skylake. Вот и Intel рекомендует использовать исключительно DDR3L-1333/1600. Применение обычной DDR3, по заявлению чипмейкера, со временем выведет центральный процессор из строя.

Как вы сами понимаете, в краткосрочной перспективе проверить этот факт не представляется возможным. Тем не менее некоторые материнские платы поддерживают установку обыкновенной DDR3-памяти с напряжением 1,5 В и выше. Существуют подводные камни. Например, ASUS Z170-P D3 при установке кита DDR3-2133 (1,65 В) автоматически выставила этому набору напряжение 1,48 В. Разность потенциалов в размере 1,5 В и выше BIOS платы помечает ярко-красным цветом - сигнализирует, что достигнут критический параметр, способный повредить железо. Одновременно в списке поддерживаемой памяти ASUS Z170-P D3 есть большое количество модулей, работающих с напряжением 1,5/1,65 В. У MSI нет плат на чипсете Z170 Express с поддержкой DDR3. У ASRock и GIGABYTE, подобно решениям ASUS, тоже есть устройства с гарантированно совместимой высоковольтной памятью.

Так кто же лукавит: Intel, которая всевозможными способами старается склонить покупателя к покупке DDR4, или производители материнских плат, цепляющиеся за любую возможность продать еще немного технологичного текстолита? Боюсь, что на этот вопрос ответит лишь время.

DDR4 является последним поколением памяти на данный момент. При этом подавляющее большинство компьютеров работают на DDR3. С аппаратной точки зрения, понятно, что они отличаются, и должны отличатся, а иначе какой смысл делать новое поколение. Мы рассмотрим с точки зрения функциональных изменений.

Если посмотреть на рыночный сегмент DDR4, то он предназначен только для чипсета Intel X99. Данная платформа предназначена, только для очень производительный рабочих станций, и стоимость DDR4 (на момент написания статьи) почти в два раза больше чем DDR3.

Напряжение и энергопотребление

Память DDR3 работает на 1,5 В (1.35 В в энергосберегающем режиме), а память ddr4 работает на 1.2 В. Это означает, что RAM стандарта ddr4 будет использовать намного меньше энергии по сравнению с памятью DDR3. Только при использовании одной или двух модулей, особой разницы не заметите, но когда речь идет о сервере ( рассматривали, что сервера отличаются большими объемами оперативной памяти, до 500 и выше Гб), или о сотни серверов под управлением того же оборудования, модернизация оперативной памяти до ddr4 сделает весомый вклад в энергосбережение.

Скорость и пропускная способность

Типичный DDR3 характеризуются частотой от 800 МГц до 2133 МГц. 800 МГц означает, что ОЗУ обрабатывает 800 миллионов операций в секунду. У DDR4 частота начинается с 1600 МГц и до 3200 МГц. Увеличение частоты предполагает увеличение пропускной способности оперативной памяти.

Стоит отметить, что некоторые модели (энтузиасты) DDR3 могут разгонятся до 2400 или 2866 Мгц, это наверное предел возможностей. В свою очередь четвертое поколение предусматривает создание модулей с частотой до 4166.

Это что касается самих цифр. Даст или нет прироста производительности повышенная частота зависит от многого, от материнской платы, процессора и характера выполняемых операций. Этот прирост точно не имеет линейного значения, т.е. увеличив в два раза частоту, вы не получите двукратного увеличения производительности. В целом при грамотном подходе улучшение есть.
При упоминании частоты нельзя не сказать о таймингах (задержках между подачей сигнала и непосредственно выдачей данных) оперативной памяти. Эти задержки измеряются в наносекундах, в характеристиках указываются в количествах тактов. Обозначается как CL. Известно, что при увеличении частоты возрастают тайминги.
Например, имеем типичные параметры, в соответствии со стандартом JEDEC с одной стороны — 1600 Мгц и тайминг 10 тактов (CL10). С другой стороны, память DDR4 — 2400 с задержкой 15 тактовых циклов (CL15). Может показаться, что все же задержка то больше. На самом деле, давайте посчитаем.
Память DDR3 — 1600 имеет реальную частоту шины 800 МГц. А все потому, что DDR (double-data-rate) – это удвоенная скорость передачи данных. То есть получается при реальной частоте шины 800 МГц – рабочая скорость в два раза выше 1600.

Вычисляем длину такта 1/800 000 000 = 1,25 нс (наносекунд)
Вычисляем длительность задержки 1,25 * 10 = 12,5 нс

Теперь тоже самое для 2400
1/1 200 000 000 = 0,83333 нс (наносекунд)
0,83333 * 15 = 12,499 нс

Получили такую же величину. В итоге хоть и в количествах тактовых циклов возрастает значение тайминга, реально в абсолютном выражении задержка DDR3 и 4 не меняются (только для этого случая)

Емкость и обработка ошибок

На одном модуле DDR4 может вместить минимум 2 Гб и теоретический максимум 512 гб. У третьего поколения — это 128 Гб. Получается при меньшем количестве слотов, можем организовать больший объем памяти, или при таком же количестве, намного больше. Выгода очевидна.
В дополнение к огромной емкости, памяти DDR4 способен гораздо лучше обнаруживать ошибки и способность к их коррекции. Обработка ошибок становится очень важным, при использовании большого объема памяти в система, которая контролирует операции в режиме реального времени, такие как спутники, транспортные систем и т.д.

Конструктивные отличия

Физическая конструкция DDR4 немного отличается по сравнению с памятью DDR3.
На миллиметр больше высота, расположение выемки на модуле после 284-ого контакта вместо 240 — ого. Очень интересной новинкой является разные по высоте контакты, по краям они меньше и увеличиваются смещаясь к центру. Благодаря этому нововведению установка памяти требует использования меньшего давления.

Вывод

На мой взгляд, если у вас уже есть оборудование с DDR3, не стоит специально менять материнскую плату и процессор, для того чтобы просто воткнуть последнее поколение ОЗУ. На данный момент, вы можете иметь такую же производительность и с DDR3. Через годик другой, когда задумаете купить новый девайс, DDR4 будет уже повсеместно распространен, и просто не будет вопроса стоять в выборе

Вот и вышли процессоры Intel Haswell-E. сайт уже успела протестировать топовый 8-ядерник Core i7-5960X , а также материнскую плату ASUS X99-DELUXE . И, пожалуй, главной «фишкой» новой платформы стала поддержка стандарта оперативной памяти DDR4.

Начало новой эпохи, эпохи DDR4

О стандарте SDRAM и модулях памяти

Первые модули SDRAM появились еще в 1993 году. Их выпустила компания Samsung. А уже к 2000 году память SDRAM за счет производственных мощностей корейского гиганта полностью вытеснила с рынка стандарт DRAM.

Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory. Дословно это можно перевести как «синхронная динамическая память с произвольным доступом». Поясним значение каждой характеристики. Динамической память является потому, что в силу малой емкости конденсаторов она постоянно требует обновления. К слову, кроме динамической, также существует и статическая память, которая не требует постоянного обновления данных (SRAM). SRAM, например, лежит в основе кэш-памяти. Помимо динамической, память также является синхронной, в отличие от асинхронной DRAM. Синхронность заключается в том, что память выполняет каждую операцию известное число времени (или тактов). Например, при запросе каких-либо данных контроллер памяти точно знает, сколько времени они будут до него добираться. Свойство синхронности позволяет управлять потоком данных и выстраивать их в очередь. Ну и пару слов о «памяти с произвольным доступом» (RAM). Это означает, что единовременно можно получить доступ к любой ячейке по ее адресу на чтение или запись, причем всегда за одно и то же время вне зависимости от расположения.

Модуль памяти SDRAM

Если говорить непосредственно о конструкции памяти, то ее ячейками являются конденсаторы. Если заряд в конденсаторе есть, то процессор расценивает его как логическую единицу. Если заряда нет - как логический ноль. Такие ячейки памяти имеют плоскую структуру, а адрес каждой из них определяется как номер строки и столбца таблицы.

В каждом чипе находится несколько независимых массивов памяти, которые представляют собой таблицы. Их называют банками. В единицу времени можно работать только с одной ячейкой в банке, однако существует возможность работы сразу с несколькими банками. Записываемая информация необязательно должна храниться в одном массиве. Зачастую она разбивается на несколько частей и записывается в разные банки, причем процессор продолжает считать эти данные единым целым. Такой способ записи называется interleaving. В теории, чем больше в памяти таких банков, тем лучше. На практике модули с плотностью до 64 Мбит имеют два банка. С плотностью от 64 Мбит до 1 Гбит - четыре, а с плотностью 1 Гбит и выше - уже восемь.

Что такое банк памяти

И несколько слов о строении модуля памяти. Сам по себе модуль памяти представляет собой печатную плату с распаянными на ней чипами. Как правило, в продаже можно встретить устройства, выполненные в форм-факторах DIMM (Dual In-line Memory Module) или SO-DIMM (Small Outline Dual In-line Memory Module). Первый предназначается для использования в полноценных настольных компьютерах, а второй - для установки в ноутбуки. Несмотря на один и тот же форм-фактор, модули памяти разных поколений отличаются количеством контактов. Например, решение SDRAM имеет 144 пина для подключения к материнской плате, DDR - 184, DDR2 - 214 пинов, DDR3 - 240, а DDR4 - уже 288 штук. Конечно, речь в данном случае идет о DIMM-модулях. Устройства, выполненные в форм-факторе SO-DIMM, само собой имеют меньшее число контактов в силу своих меньших размеров. Например, модуль памяти DDR4 SO-DIMM подключается к «материнке» за счет 256 пинов.

Модуль DDR (внизу) имеет больше пинов, чем SDRAM (вверху)

Вполне очевидно и то, что объем каждого модуля памяти высчитывается как сумма емкостей каждого распаянного чипа. Чипы памяти, конечно, могут отличаться своей плотностью (или, проще говоря, объемом). К примеру, прошедшей весной компания Samsung наладила серийное производство чипов с плотностью 4 Гбит. Причем в обозримом будущем планируется выпуск памяти с плотностью 8 Гбит. Также модули памяти имеют свою шину. Минимальная ширина шины составляет 64 бит. Это означает, что за такт передается 8 байт информации. При этом нужно отметить, что также существуют 72-битные модули памяти, в которых «лишние» 8 бит отведены для технологии коррекции ошибок ECC (Error Checking & Correction). Кстати, ширина шины модуля памяти также является суммой ширин шин каждого отдельно взятого чипа памяти. То есть, если шина модуля памяти является 64-битной и на планке распаяно восемь чипов, то ширина шины памяти каждого чипа равна 64/8=8 бит.

Чтобы рассчитать теоретическую пропускную способность модуля памяти, можно воспользоваться следующей формулой: A*64/8=ПС, где «А» - это скорость передачи данных, а «ПС» - искомая пропускная способность. В качестве примера можно взять модуль памяти типа DDR3 с частотой 2400 МГц. В таком случае пропускная способность будет равняться 2400*64/8=19200 Мбайт/с. Именно это число имеется в виду в маркировке модуля PC3-19200.

Как же происходит непосредственно чтение информации из памяти? Сначала подается адресный сигнал в соответствующую строку (Row), а уже затем считывается информация из нужного столбца (Column). Информация считывается в так называемый усилитель (Sense Amplifiers) - механизм подзарядки конденсаторов. В большинстве случаев контроллер памяти считывает сразу целый пакет данных (Burst) с каждого бита шины. Соответственно, при записи каждые 64 бита (8 байт) делятся на несколько частей. К слову, существует такое понятие как длина пакета данных (Burst Length). Если эта длина равна 8, то за один раз передается сразу 8*64=512 бит.

Модули и чипы памяти также имеют такую характеристику, как геометрия, или организация (Memory Organization). Геометрия модуля показывает его ширину и глубину. Например, чип с плотностью 512 Мбит и разрядностью (шириной) 4 имеет глубину чипа 512/4=128М. В свою очередь, 128М=32М*4 банка. 32М - это матрица, содержащая 16000 строк и 2000 столбцов. Она может хранить 32 Мбит данных. Что касается самого модуля памяти, то почти всегда его разрядность составляет 64 бита. Глубина же легко высчитывается по следующей формуле: объем модуля умножается на 8 для перевода из байтов в биты, а затем делится на разрядность.

На маркировке без труда можно найти значения таймингов

Необходимо сказать несколько слов и о такой характеристике модулей памяти, как тайминги (задержки). В самом начале статьи мы говорили о том, что стандарт SDRAM предусматривает такой момент, что контроллер памяти всегда знает, сколько времени выполняется та или иная операция. Тайминги как раз и указывают время, требующееся на исполнение определенной команды. Это время измеряется в тактах шины памяти. Чем меньше это время, тем лучше. Самыми важными являются следующие задержки:

  • TRCD (RAS to CAS Delay) - время, которое необходимо для активации строки банка. Минимальное время между командой активации и командой чтения/записи;
  • CL (CAS Latency) - время между подачей команды чтения и началом передачи данных;
  • TRAS (Active to Precharge) - время активности строки. Минимальное время между активацией строки и командой закрытия строки;
  • TRP (Row Precharge) - время, необходимое для закрытия строки;
  • TRC (Row Cycle time, Activate to Activate/Refresh time) - время между активацией строк одного и того же банка;
  • TRPD (Active bank A to Active bank B) - время между командами активации для разных банков;
  • TWR (Write Recovery time) - время между окончанием записи и подачей команды закрытия строки банка;
  • TWTR (Internal Write to Read Command Delay) - время между окончанием записи и командой чтения.

Конечно, это далеко не все существующие в модулях памяти задержки. Можно перечислить еще добрый десяток всевозможных таймингов, но лишь указанные выше параметры существенно влияют на производительность памяти. Кстати, в маркировке модулей памяти и вовсе указываются только четыре задержки. Например, при параметрах 11-13-13-31 тайминг CL равен 11, TRCD и TRP - 13, а TRAS - 31 такту.

Со временем потенциал SDRAM достигла своего потолка, и производители столкнулись с проблемой повышения быстродействия оперативной памяти. Так на свет появился стандарт DDR.1

Пришествие DDR

Разработка стандарта DDR (Double Data Rate) началась еще в 1996 году и закончилась официальной презентацией в июне 2000 года. С приходом DDR уходящую в прошлое память SDRAM стали называть попросту SDR. Чем же стандарт DDR отличается от SDR?

После того как все ресурсы SDR были исчерпаны, у производителей памяти было несколько путей решения проблемы повышения производительности. Можно было бы просто наращивать число чипов памяти, тем самым увеличивая разрядность всего модуля. Однако это отрицательно сказалось бы на стоимости таких решений - уж очень дорого обходилась эта затея. Поэтому в ассоциации производителей JEDEC пошли иным путем. Было решено вдвое увеличить шину внутри чипа, а передачу данных осуществлять также на вдвое повышенной частоте. Кроме этого, в DDR предусматривалась передача информации по обоим фронтам тактового сигнала, то есть два раза за такт. Отсюда и берет свое начало аббревиатура DDR - Double Data Rate.

Модуль памяти DDR производства Kingston

С приходом стандарта DDR появились такие понятия, как реальная и эффективная частота памяти. К примеру, многие модули памяти DDR работали на скорости 200 МГц. Эта частота называется реальной. Но из-за того, что передача данных осуществлялась по обоим фронтам тактового сигнала, производители в маркетинговых целях умножали эту цифру на 2 и получали якобы эффективную частоту 400 МГц, которую и указывали в маркировке (в данном случае - DDR-400). При этом в спецификациях JEDEC указано, что использовать термин «мегагерц» для характеристики уровня производительности памяти и вовсе некорректно! Вместо него необходимо использовать «миллионы передач в секунду через один выход данных». Однако маркетинг - дело серьезное, указанные в стандарте JEDEC рекомендации мало кому были интересны. Поэтому новый термин так и не прижился.

Также в стандарте DDR впервые появился двухканальный режим работы памяти. Использовать его можно было при наличии четного числа модулей памяти в системе. Его суть заключается в создании виртуальной 128-битной шины за счет чередования модулей. В таком случае происходила выборка сразу 256 бит. На бумаге двухканальный режим может поднять производительность подсистемы памяти в два раза, однако на практике прирост скорости оказывается минимален и далеко не всегда заметен. Он зависит не только от модели оперативной памяти, но и от таймингов, чипсета, контроллера памяти и частоты.

Четыре модуля памяти работают в двухканальном режиме

Еще одним нововведением в DDR стало наличие сигнала QDS. Он располагается на печатной плате вместе с линиями данных. QDS был полезен при использовании двух и более модулей памяти. В таком случае данные приходят к контроллеру памяти с небольшой разницей во времени из-за разного расстояния до них. Это создает проблемы при выборе синхросигнала для считывания данных, которые успешно решает как раз QDS.

Как уже говорилось выше, модули памяти DDR выполнялись в форм-факторах DIMM и SO-DIMM. В случае DIMM количество пинов составляло 184 штуки. Для того чтобы модули DDR и SDRAM были физически несовместимы, у решений DDR ключ (разрез в области контактной площадки) располагался в ином месте. Кроме этого, модули памяти DDR работали с напряжением 2,5 В, тогда как устройства SDRAM использовали напряжение 3,3 В. Соответственно, DDR обладала меньшим энергопотреблением и тепловыделением в сравнении с предшественником. Максимальная частота модулей DDR составляла 350 МГц (DDR-700), хотя спецификациями JEDEC предусматривалась лишь частота 200 МГц (DDR-400).

Память DDR2 и DDR3

Первые модули типа DDR2 появились в продаже во втором квартале 2003 года. В сравнении с DDR, оперативная память второго поколения не получила существенных изменений. DDR2 использовала всю ту же архитектуру 2 n -prefetch. Если раньше внутренняя шина данных была вдвое больше, чем внешняя, то теперь она стала шире в четыре раза. При этом возросшую производительность чипа стали передавать по внешней шине с удвоенной частотой. Именно частотой, но не удвоенной скоростью передачи. В итоге мы получили, что если у DDR-400 чип работал на реальной частоте 200 МГц, то в случае DDR2-400 он функционировал со скоростью 100 МГц, но с вдвое большей внутренней шиной.

Также DDR2-модули получили большее количество контактов для присоединения к материнской плате, а ключ был перенесен в другое место для физической несовместимости с планками SDRAM и DDR. Вновь было снижено рабочее напряжение. Если модули DDR работали при напряжении 2,5 В, то решения DDR2 функционировали при разности потенциалов 1,8 В.

По большому счету, на этом все отличия DDR2 от DDR заканчиваются. Первое время модули DDR2 в отрицательную сторону отличались высокими задержками, из-за чего проигрывали в производительности планкам DDR с одинаковой частотой. Однако вскоре ситуация вернулась на круги своя: производители снижали задержки и выпускали более быстрые наборы оперативной памяти. Максимальная частота DDR2 достигала отметки эффективных 1300 МГц.

Различное положение ключа у модулей DDR, DDR2 и DDR3

При переходе от стандарта DDR2 к DDR3 использовался тот же самый подход, что и при переходе от DDR к DDR2. Само собой, сохранилась передача данных по обоим концам тактового сигнала, а теоретическая пропускная способность выросла в два раза. Модули DDR3 сохранили архитектуру 2 n -prefetch и получили 8-битную предвыборку (у DDR2 она была 4-битной). При этом внутренняя шина стала в восемь раз больше, чем внешняя. Из-за этого в очередной раз при смене поколений памяти увеличились ее тайминги. Номинальное рабочее напряжение для DDR3 было снижено до 1,5 В, что позволило сделать модули более энергоэффективными. Заметим, что, кроме DDR3, существует память типа DDR3L (буква L означает Low), которая работает с пониженным до 1,35 В напряжением. Также стоит отметить, что модули DDR3 оказались ни физически, ни электрически несовместимы с любым из предыдущих поколений памяти.

Конечно, чипы DDR3 получили поддержку некоторых новых технологий: например, автоматическую калибровку сигнала и динамическое терминирование сигналов. Однако в целом все изменения носят преимущественно количественный характер.

DDR4 - очередная эволюция

Наконец, мы добрались до совершенно новой памяти типа DDR4. Ассоциация JEDEC начала разработку стандарта еще в 2005 году, однако лишь весной этого года первые устройства появились в продаже. Как говорится в пресс-релизе JEDEC, при разработке инженеры пытались достичь наибольшей производительности и надежности, увеличив при этом энергоэффективность новых модулей. Что ж, такое мы слышим каждый раз. Давайте посмотрим, какие конкретно изменения получила память DDR4 в сравнении с DDR3.

На этой картинке можно проследить эволюцию технологии DDR: как менялись показатели напряжения, частоты и емкости

Один из первых прототипов DDR4. Как ни странно, это ноутбучные модули

В качестве примера рассмотрим 8-гигабайтный DDR4-чип с шиной данных шириной 4 бита. Такой девайс содержит 4 группы банков по 4 банка в каждой. Внутри каждого банка находятся 131 072 (2 17) строки емкостью 512 байт каждая. Для сравнения можно привести характеристики аналогичного DDR3-решения. Такой чип содержит 8 независимых банков. В каждом из банков находятся 65 536 (2 16) строк, а в каждой строке - 2048 байт. Как видите, длина каждой строки чипа DDR4 в четыре раза меньше длины строки DDR3. Это означает, что DDR4 осуществляет «просмотр» банков быстрее, нежели DDR3. При этом переключение между самими банками также происходит гораздо быстрее. Тут же отметим, что для каждой группы банков предусмотрен независимый выбор операций (активация, чтение, запись или регенерация), что позволяет повысить эффективность и пропускную способность памяти.

Основные преимущества DDR4: низкое энергопотребление, высокая частота, большой объем модулей памяти