П, ПД, ПИ, ПИД регуляторы. Они же P, PD, PI, PID регуляторы

16.08.2019

Особенности П, ПИ и ПИД регулирования

Наличие в приборах функции выходного устройства ПИД регулирования подразумевает возможность реализации трех типов регулирования: П-, ПИ- и ПИД регулирования.

П регулирование . Выходная мощность прямопропорциональна ошибке регулирования. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования. Пропорциональное регулирование можно рекомендовать для малоинерционных систем с большим коэффициентом передачи. Для настройки пропорционального регулятора следует сначала установить коэффициент пропорциональности максимальным, при этом выходная мощность регулятора уменьшится до нуля. После стабилизации измеренного значения, следует установить заданное значение и постепенно уменьшать коэффициент пропорциональности, при этом ошибка регулирования будет уменьшаться. Когда в системе возникнут периодические колебания, коэффициент пропорциональности следует увеличить так, чтобы ошибка регулирования была минимальной, а периодические колебания максимально уменьшились.

ПИ регулирование. Выходная мощность равна сумме пропорциона- льной и интегральной составляющих. Чем больше коэффициент пропор- циональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая. ПИ регулирование обеспечивает нулевую ошибку регулирования и нечувствительно к помехам измерительного канала. Недостатком ПИ регулирования является медленная реакция на возмущающие воздействия. Для настройки ПИ регулятора следует сначала установить постоянную времени интегрирования равный нулю, а коэффициент пропорциональности - максимальным. Затем как при настройке пропорционального регулятора, уменьшением коэффициента пропорциональности нужно добиться появления в системе незатухающих колебаний. Близкое к оптимальному значение коэффициента пропорциональности будет в два раза больше того, при котором возникли колебания, а близкое к оптимальному значение постоянной времени интегрирования - на 20% меньше периода колебаний.

ПИД регулирование. Выходная мощность равна сумме трех состав- ляющих: пропорциональной, интегральной и дифференциальной. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая, чем больше постоянная времени дифференцирования, тем сильнее реакция системы на возмущающее воздействие. ПИД-регулятор применяется в инерционных системах с относительно малым уровнем помех измерительного канала. Достоинством ПИД регулятора является быстрый выход на режим, точное удержание заданной температуры и быстрая реакция на возмущающие воздействия. Ручная настройка ПИД является крайне сложной, поэтому рекомендуется использовать функцию автонастройки.

Автонастройка ПИД регулирования в приборах ЧАО “ТЭРА”:

Главное, что определяет качество ПИД регулятора - это его способность точно и быстро выходить на заданную температуру, для чего у всех современных ПИД регуляторов обязательно присутствует функция автонастройки. Стандартных алгоритмов автонастройки ПИД не существуют, на практике каждый производитель применяет свой собственный алгоритм. Поэтому, пользователь, приобретая один и тот же товар под названием “ПИД регулятор” у разных производителей, на своем объекте может получить совсем разные результаты их применения. Основными достоинствами алгоритма автонастройки в ПИД регуляторах ЧАО “ТЭРА” являются:

  • автонастройка и выход на регулирование без перерегулирования (у стандартных ПИД регуляторов перерегулирование может достигать 50-70% от заданной температуры, что на некоторых объектах регулирования технологически нежелательно или вообще запрещено)
  • продолжительность автонастройки в среднем в 2 раза короче, чем у других производителей (крайне важная характеристика для объектов регулирования с часто изменяемыми свойствами, особенно для инерционных объектов)

Автонастройку можно производить при любом стабильном состоянии объекта регулирования. Кроме того, чем больше разность между начальной и заданной температурой, тем точнее определяются коэффициенты ПИД регулятора. Все коэффициенты ПИД хранятся в энергонезависимой памяти прибора.

Автонастройку необходимо повторить, если:

  • изменилась мощность исполнительного устройства
  • изменились физические свойства объекта регулирования (масса, емкость, теплообмен и т.п.)
  • объект регулирования заменен другим неидентичным
  • при значительном изменении заданной температуры

Сегодняшняя статья будет посвящена такой замечательной вещи, как . По определению, пропорционально-интегрально-дифференциальный регулятор - устройство в цепи обратной связи, используемое в системах автоматического управления для поддержания заданного значения измеряемого параметра. Чаще всего можно встретить примеры, где ПИД-регулятор используется для регулировки температуры, и, на мой взгляд, этот пример прекрасно подходит для изучения теории и понимания принципа работы регулятора. Поэтому именно задачу регулировки температуры и будем сегодня рассматривать.

Итак, что у нас имеется?

Во-первых, объект, температуру которого необходимо поддерживать на заданном уровне, кроме того, эту температуру необходимо регулировать извне. Во-вторых, наше устройство на базе микроконтроллера, с помощью которого мы и будем решать поставленную задачу. Кроме того, у нас есть измеритель температуры (он сообщит контроллеру текущую температуру) и какое-нибудь устройство для управления мощностью нагревателя. Ну и поскольку необходимо как-то задавать температуру, подключим микроконтроллер к ПК.

Таким образом, у нас есть входные данные – текущая температура и температура, до которой необходимо нагреть/остудить объект, а на выходе мы должны получить значение мощности, которое необходимо передать на нагревательный элемент.

И для такой задачи, да и вообще любой похожей задачи, отличным решением будет использование пропорционально-интегрально-дифференциального регулятора 😉

Пропорциональная составляющая.

Здесь все просто, берем значение нужной нам температуры (уставку) и вычитаем из него значение текущей температуры. Получаем рассогласование (невязку). Умножаем полученную невязку на коэффициент и получаем значение мощности, которое и передаем на нагреватель. Вот и все) Но при использовании только пропорциональной составляющей есть два больших минуса – во-первых, эффект от нашего воздействия наступает не моментально, а с запаздыванием, и, во-вторых, пропорциональная составляющая никак не учитывает воздействие окружающей среды на объект. Например, когда мы добились того, чтобы температуры объекта была равна нужному нам значению, невязка стала равна нулю, а вместе с ней и выдаваемая мощность стала нулевой. Но температура не может просто так оставаться постоянной, поскольку происходит теплообмен с окружающей средой и объект охлаждается. Таким образом, при использовании только пропорциональной составляющей температура будет колебаться около нужного нам значения.

Давайте разбираться, как ПИД-регулятор решает две выявленные проблемы)

Для решения первой используется дифференциальная составляющая . Она противодействует предполагаемым отклонениям регулируемой величины, которые могут произойти в будущем. Каким образом? Сейчас разберемся!

Итак, пусть у нас текущая температура меньше нужного нам значения. Пропорциональная составляющая начинает выдавать мощность и нагревать объект. Дифференциальная составляющая вносит свой вклад в мощность и представляет из себя производную невязки, взятую также с определенным коэффициентом. Температура растет и приближается к нужному значению, а следовательно невязка в предыдущий момент больше текущего значения невязки, а производная отрицательная. Таким образом, дифференциальная составляющая начинает постепенно снижать мощность до того, как температура достигла необходимого значения. С этим вроде разобрались, вспоминаем про вторую проблему регулятора 😉

А с ней нам поможет справиться интегральная составляющая . Как нам в программе получить интеграл? А легко – просто суммированием (накоплением) значений невязки, на то он и интеграл) Возвращаемся к нашему примеру. Температура ниже значения уставки, начинаем подогревать. Пока мы нагреваем, значение невязки положительное и накапливается в интегральной составляющей. Когда температура “дошла” до нужного нам значения, пропорциональная и дифференциальная составляющая стали равны нулю, а интегральная перестала изменяться, но ее значение не стало равным нулю. Таким образом, благодаря накопленному интегралу мы продолжаем выдавать мощность и нагреватель поддерживает нужную нам температуру, не давая объекту охлаждаться. Вот так вот просто и эффективно =)

В итоге мы получаем следующую формулу ПИД-регулятора:

Тут u(t) – искомое выходное воздействие, а e(t) – значение невязки.

Частенько формулу преображают к следующему виду, но суть от этого не меняется:

Пожалуй, на этом закончим, разобрались мы сегодня как работает ПИД-регулятор, а в ближайшее время разберемся еще и как произвести подбор коэффициентов ПИД-регулятора)

В частном случае пропорциональная, интегральная или дифференциальная компоненты могут отсутствовать и такие упрощенные регуляторы называют П, И или ПИ регуляторами.

Распространены также следующие модификации выражения (5.36):

,
.

Между параметрами выражений (5.36) - (5.38) существует простая связь. Однако отсутствие общепринятой системы параметров часто приводит к путанице. Это нужно помнить при замене одного ПИД контроллера на другой, при задании его параметров или использовании программ настройки параметров. Мы будем пользоваться выражением (5.36).

Следует подчеркнуть, что входом объекта управления на всех рисунках является выход регулятора, т.е. величина u , которая в соответствии c (5.36)-(5.38) и рис. 5.34 имеет ту же размерность, что и рассогласование e , выходная величина y и уставка r . Т.е., если объект управляется, например, ШИМ-регулятором, током, или частотой вращения вала, во всех этих случаях управляющей величиной является u , а в модель объекта управления P следут ввести преобразователь величины u в ширину импульса ШИМ-регулятора, в ток или в частоту вращения вала соответственно. Это надо учитывать также при задании входного воздействия в экспериментах для настройки регулятора (см. раздел "Расчет параметров"). Таким воздействием во всех случаях должна быть величина u (выходная величина регулятора).

Используя преобразование Лапласа при нулевых начальных условиях u (0)=0 , выражение (5.36) можно представить в операторной форме:

Амплитудно-частотная и фазо-частотная характеристика передаточной функции (5.40) при параметрах =1 с, =1 с, =10 показаны на рис. 5.36 . Переходная характеристика ПИД-регулятора (реакция на единичный скачок) представляет собой сумму постоянной составляющей , прямой линии , полученной при интегрировании единичного скачка и дельта-функции Дирака , полученной при дифференцировании единичного скачка.

Рассмотрим теперь несколько частных случаев.

5.2.1. П-регулятор

Пусть интегральная и дифференциальная компоненты отсутствуют, т.е. . Тогда из (5.40) получим и (5.42) можно преобразовать к виду

.

В установившемся режиме, при или передаточная функция процесса равна коэффициенту передачи . При этом выражение (5.43) преобразуется к виду

.

Как следует из полученной формулы, влияние возмущений d снижается с ростом петлевого усиления и при обратно пропорционально коэффициенту регулятора . Однако проблема устойчивости не позволяет выбирать как угодно большим.

Влияние помехи n также уменьшается с ростом петлевого усиления и пропорционального коэффициента регулятора. Дополнительно влияние помехи можно уменьшить применением экранирования, правильного заземления, витых пар, уменьшением длины проводников в цепи обратной связи и др., см. [Денисенко ]).

При пренебрежимо малых помехах и внешних возмущениях погрешность П-регулятора , как следует из (5.44), определяется величиной пропорционального коэффициента усиления:

.

Эта погрешность обычно не может быть сделана как угодно малой путем увеличения усиления регулятора, поскольку с ростом сначала падает запас по фазе и усилению системы с обратной связью, что ухудшает ее робастность и качество регулирования, затем возникают периодические колебания (система теряет устойчивость), см. рис. 5.37 . Поэтому в П-регуляторах для снижения погрешности используют метод компенсации. Для этого к входу объекта регулирования прикладывают компенсирующее воздействие , которое аддитивно добавляется к возмущению d , чтобы суммарное воздействие возмущения и компенсирующего воздействия стало равно . Отметим, что при изменении значения уставки компенсацию нужно выполнить заново, поскольку погрешность (5.45) пропорциональна (т.е. является мультипликативной), а компенсация в виде является аддитивной (не зависит от ).

Скомпенсировать погрешность можно также с помощью коррекции величины . Для этого управляющее воздействие после коррекции (обозначим его ), как следует из (5.44) и (5.45), должно иметь вид

.

Рис. 5.37. Изменение переменной во времени при подаче единичного скачка на вход системы при разных

Переходный процесс в контуре с П-регулятором при и разных показан на рис. 5.37 . При малых система имеет малое перерегулирование, но большую статическую погрешность (50%). С ростом погрешность уменьшается, но возрастает перерегулирование.

Объясняется поведение П-регулятора следующим образом. С ростом усиления вся АЧХ разомкнутой системы (АЧХ петлевого усиления , рис. 5.19) сдвигается вверх, в том числе возрастает усиление на частоте , где фазовый сдвиг в контуре с обратной связью равен 180˚. Это приводит к уменьшению запаса по фазе и усилению, возрастает колебательность и перерегулирование. Если петлевое усиление на частоте достигает 1, в системе устанавливаются незатухающие колебания. Подробнее описание этого процесса см. в разделе "Частотная идентификация в режиме релейного регулирования"

5.2.2. И-регулятор

Рассмотрим теперь случай, когда в ПИД-регуляторе остается только интегральный член, т.е. и . Из (5.39) получим

АЧХ И-регулятора в логарифмическом масштабе представляет собой прямую линию с наклоном ‑20дб/дек во всем диапазоне частот, от 0 до , которая пересекает ось частот (проведенную при ) в точке . ФЧХ представляет собой горизонтальную линию с ординатой .

На низких частотах, при , коэффициент передачи регулятора (5.48) больше единицы и стремится к бесконечности при . Поскольку случаю во временной области соответствует , или установившийся (равновесный) режим для асимптотически устойчивых систем, то передаточная функция любого устойчивого объекта (за исключением объектов с интегрирующими процессами, см. раздел "Модели интегрирующих процессов") при будет равна статическому коэффициенту передачи . Поэтому, подставляя в (5.42) и , получим для системы с И-регулятором

.

Это означает, что система с И-регулятором не имеет ошибки в установившемся режиме.

Отметим аналогию между И-регулятором и операционным усилителем. Операционный усилитель (ОУ) имеет передаточную функцию вида , параметры которой для типовых микросхем ОУ равны , . Поэтому практически во всем рабочем диапазоне частот и передаточная функция ОУ описывается упрощенным выражением , т.е. совпадает с передаточной функцией И-регулятора. Схемы включения ОУ также подобны структурам систем управления с И-регулятором.

На рис. 5.38 показаны переходные характеристики замкнутой системы с И-регулятором и объектом второго порядка вида

, где .

При больших постоянных интегрирования переходная характеристика имеет вид, сходный с характеристикой апериодического звена. С уменьшением растет усиление регулятора в соответствии с (5.48) и когда на частоте петлевое усиление контура с обратной связью приближается к 1, в системе появляются колебания (рис. 5.38 , кривая ).

Вторым фактором, влияющим на устойчивость замкнутой системы, является дополнительный сдвиг фаз величиной -, вносимый И-регулятором в контур регулирования. Поэтому объект 1‑го порядка с малой транспортной задержкой, или объект 2-го порядка, устойчивый в контуре с П-регулятором, может потерять устойчивость в контуре с И-регулятором.

5.2.3. ПИ-регулятор

В ПИ-регуляторе только постоянная дифференцирования равна нулю, :

.

Рис. 5.39. Реакция замкнутой системы с ПИ регулятором на скачок при для объекта вида (5.50) при

Рис. 5.40. Реакция замкнутой системы с ПИ регулятором на скачок при для объекта вида (5.50) при

АЧХ ПИ-регулятора можно получить из рис. 5.36 , если отбросить правую ветвь АЧХ с наклоном +20 дБ/дек. При этом сдвиг фаз на частотах выше 1 Гц (на рис. 5.36) не превысит уровень 0˚. Таким образом, ПИ-регулятор имеет два существенных положительных отличия от И-регулятора: во-первых, его усиление на всех частотах не может стать меньше , следовательно, увеличивается динамическая точность регулирования, во-вторых, по сравнению с И-регулятором, он вносит дополнительный сдвиг фаз только в области низких частот, что увеличивает запас устойчивости замкнутой системы. Оба фактора дают дополнительные степени свободы для оптимизации качества регулирования. В то же время, как и в И-регуляторе, модуль коэффициента передачи регулятора с уменьшением частоты стремится к бесконечности, обеспечивая тем самым нулевую ошибку в установившемся режиме. Отсутствие сдвига фаз на высоких частотах позволяет увеличить скорость нарастания управляемой переменной (по сравнению с И-регулятором) без снижения запаса устойчивости. Однако это справедливо до тех пор, пока пропорциональный коэффициент не станет настолько большой, что увеличит усиление контура до единицы на частоте .

Переходный процесс в ПИ-регуляторе при разных сочетаниях и показан на рис. 5.39 , рис. 5.40 . При (рис. 5.39) получаем И-регулятор. С ростом пропорционального коэффициента появляется дополнительная ошибка во время переходного процесса (см. также рис. 5.37 и (5.45)), которая уменьшается с ростом , однако при этом снижается запас устойчивости системы, поскольку с ростом увеличивается усиление на частоте . Это приводит к появлению затухающих колебаний в начале переходного процесса (рис. 5.39). Когда величина становится достаточно большой для компенсации ослабления сигнала в объекте на частоте , в системе появляются незатухающие колебания. полюс

,

откуда следует, что на высоких частотах (в начале переходного процесса) ПД-регулятор имеет высокое усиление и, следовательно, точность, а в установившемся режиме (при ) он вырождается в П-регулятор со свойственной ему статической ошибкой. Если статическую ошибку скомпенсировать, как это делается в П-регуляторах, то возрастет ошибка в начале переходного процесса. Таким образом, ПД-регулятор по своим потребительским свойствам оказывается хуже П-регулятора, поэтому на практике он используется крайне редко. П-регулятор имеет только одно положительное свойство: он вносит в контур регулирования положительный фазовый сдвиг (рис. 5.36), что повышает запас устойчивости системы при малых . Однако с увеличением рис. 5.36), затем, при дальнейшем увеличении , система переходит в колебательный режим.

П, ПД, ПИ, ПИД регуляторы. Они же P, PD, PI, PID регуляторы.

Во первых, упомянем, что сами понятия П, ПД, ПИ, ПИД (P, PD, PI, PID) регуляторы являются неким сокращением от понятия: "устройство регулирования () обеспечивающие на своем выходе регулируемого параметра, или его изменения, описываемую типа П, ПИ и т.д....... ". При этом:

  • П, (P) - означает "пропорциональный"
  • И(I) - "интегральный"
  • Д(D) - "дифференциальный"
  • ПИ (PI) - "пропорциональный и интегральный"
  • ПД (PD) - "пропорциональный и дифференциальный"
  • ПИД (PID) - "пропорциональный, интегральный и дифференциальный"

Очень важное замечание - в подавляющем большинстве случаев эти регуляторы обеспечивают изменения регулируемого параметра на регулирующий параметр (воздействие). Для ясности в данной статье мы будем говорить о регулировании комнатной температуры (поддержании ее значения X градусов) с помощью некоего комнатного электронагревателя, выходная мощность которого зависит от уровня входного сигнала. Т.е. при изменении температуры на некую положительную величину e (при повышении температуры до уровня X+e ) к стандартному входному сигналу U нагревателя будет добавлен отрицательный сигнал регулятора u . Результирующим сигналом на входе нагревателя будет, таким образом, U-u , что уменьшит выходную мощность нагревателя, и, следовательно, комнатную температуру.

Очень часто e называют "ошибкой" или "отклонением", Х - "заданным уровнем" или "заданным значением", причем Х , в общем случае, может быть и регулируемым сигналом в каком-то другом контуре регулирования. ! Во избежания автоколебательных явлений желательно, чтобы "верхний" контур регулирования был "медленным" по отношению к нижнему!

Рассмотрим работу ПИД (PID) регулятора , как наиболее универсального представителя класса. Любой другой может быть получен путем обнуления коэффициента передачи при соответствующем слагаемом передаточной функции. Итак,

Передаточная функция ПИД регулятора описывается уравнением:

где "тау" - время с того момента, как изменение e регулируемой величины стало отличным от нуля (значимо отличным), а жаргон инженеров-автоматчиков еще требует нижеследующих названий для компонент уравнения и их производных величин:

  • Kp - пропорциональный коэффициент усиления
  • Pb=1/Kp - относительный диапазон регулирования
  • Ki - интегральный коэффициент усиления
  • Ti=1/Ki - постоянная интегрирования (размерность - время)
  • Kd - дифференциальный коэффициент усиления
  • Td=Kd - постоянная дифференицирования (размерность - время)

Очевидно, что функция содержит 3 слагаемых, первое - пропорциональное к изменению заданного параметра, второе - интегральное, а третье - дифференциальное. В дальнейшем будем использовать в рассуждениях обозначения из уравнения (2). Рассмотрим, что это такое по порядку:

Пропорциональное регулирование (П или P регуляторы) : - величина поправки в регулирующее воздействие пропорциональна величине отклонения. Логично, чем больше отклонение температуры в компате от заданного уровня, тем сильнее следует изменить мощность нагревателя для компенсации изменения. u(t)=P (коэффициенты Kd и Ki уравнения (2) равны нулю).

Интегральное регулирование: - величина поправки в регулирующее воздействие зависит от накопленного действия отклонения регулируемой величины. Спокойно, тут ничего нет сложного. Рассмотрим наш пример -если в комнате низкая температура недопустима, ибо на подоконнике находятся ценные теплолюбивые кактусы, а какой-то клоун открыл окно зимой, то пропорциональное регулирование в силу разумности своих настроек попросту не позволяет прогреть комнату. Если накопленное действие пониженной температуры растет (интеграл от изменения) , то это слагаемое даст дополнительное приращение мощности нагревателя.

Дифференциальное регулирование: - величина поправки в регулирующее воздействие зависит от скорости изменения регулируемого параметра. Тут ничего сложного нет, поскольку - если, например, температура на улице резко упала, то лучше поскорее прогреть комнату и стены, и не дать им набрать влажность. ! В гидравлических системах и в системах, имеющих собственные частоты колебаний близкие к характерным временам запуска процессов регулирования, данный вид регулирования малоприменим, так как легко вызывает гироудары или резонансы!

ПД или PD регуляторы, описать просто: Передаточная функция П (P) регулятора описывается уравнением: u(t)=P+D

ПИ или PI регуляторы описываются тоже просто: Передаточная функция П (P) регулятора описывается уравнением: u(t)=P+I (коэффициент Ki уравнения (2) равен нулю).

Уравнение (2), для целей упрощения настройки часто может быть записано как:

тут нет никакого подвоха, все то же самое, просто другая запись.

ПИ-регулятор является одним из наиболее универсальных регуляторов. Фактически ПИ-регулятор – это с дополнительной интегральной составляющей. И-составляющая, дополняющая алгоритм, в первую очередь нужна для устранения статической ошибки, которая характерна для пропорционального регулятора. По сути, интегральная часть является накопительной, и таким образом позволяет осуществить то, что ПИ-регулятор учитывает в данный момент времени предыдущую историю изменения входной величины. Если добавить к алгоритму дифференциальную составляющую - он трансформируется в .

ПИ-регулятор. Формула выходного сигнала:

  • U(t) – выходной сигнал
  • P – пропорциональная часть
  • I – интегральная часть
  • K – коэффициент пропорциональности
  • Tи – постоянная интегрирования (время изодрома).
  • ?(t) – сигнал рассогласования, разница между сигналом обратной связи и заданием (может быть заменен другими сигналами, в зависимости от структурной схемы системы, но суть та же.)

ПИ-регулятор. Передаточная функция:

W(p)= K(1+1/Tи*s) или W(p)= K+1/Tи*s;

Из формулы видно, что п-составляющая складывается с накопленной и-составляющей за время t. Фактически, ПИ-регулятор «учится» на предыдущем опыте. Если система не испытывает внешних возмущений – регулируемая величина стабилизируется на заданном значении: П-составляющая будет равняться 0, а интегральная составляющая полностью обеспечит выходной сигнал.

ПИ-регулятор можно получить – параллельным. Составим в MatLab схему из двух параллельно соединенных звеньев – к и 1/Ти. Дадим запаздывание в 1 секунду, чтобы увидеть выход в начальный момент времени.

Рассмотрим ПИ-регулятора. Переходная характеристика – реакция на единичное ступенчатое возмущение. Смоделируем в среде MatLab несколько переходных процессов для различных ситуаций.

  • ПИ-регулятор. H(t).

С графика видно, что переходная характеристика ПИ-регулятора состоит из сложенных пропорциональной и интегральной. Чем больше к, тем больше будет пропорциональный заброс на графике.

  • ПИ-регулятор. Влияние Ти.

Рассмотрим на примере нескольких Ти на ПИ-регулятор, его выход и вид переходного процесса. Смоделируем несколько параллельных процессов с выводом на один Scope с помощью Mux.