Передача информации по каналам связи. Основные характеристики каналов связи

23.08.2019

Тема 1.4: Основы локальных сетей

Тема 1.5: Базовые технологии локальных сетей

Тема 1.6: Основные программные и аппаратные компоненты ЛВС

Локальные сети

1.2. Среда и методы передачи данных в вычислительных сетях

1.2.2. Линии связи и каналы передачи данных

Для построения компьютерных сетей применяются линии связи, использующие различную физическую среду. В качестве физической среды в коммуникациях используются: металлы (в основном медь), сверхпрозрачное стекло (кварц) или пластик и эфир. Физическая среда передачи данных может представлять собой кабель "витая пара", коаксиальные кабель, волоконно-оптический кабель и окружающее пространство.

Линии связи или линии передачи данных - это промежуточная аппаратура и физическая среда, по которой передаются информационные сигналы (данные).

В одной линии связи можно образовать несколько каналов связи (виртуальных или логических каналов), например путем частотного или временного разделения каналов. Канал связи - это средство односторонней передачи данных. Если линия связи монопольно используется каналом связи, то в этом случае линию связи называют каналом связи.

Канал передачи данных - это средства двухстороннего обмена данными, которые включают в себя линии связи и аппаратуру передачи (приема) данных. Каналы передачи данных связывают между собой источники информации и приемники информации.

В зависимости от физической среды передачи данных линии связи можно разделить на:

  • проводные линии связи без изолирующих и экранирующих оплеток;
  • кабельные, где для передачи сигналов используются такие линии связи как кабели "витая пара", коаксиальные кабели или оптоволоконные кабели;
  • беспроводные (радиоканалы наземной и спутниковой связи), использующие для передачи сигналов электромагнитные волны, которые распространяются по эфиру.

Проводные линии связи

Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям "простой старой телефонной линии" (POST - Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся помехозащищенность и возможность простого несанкционированного подключения к сети.

Кабельные линии связи

Кабельные линии связи имеют довольно сложную структуру. Кабель состоит из проводников, заключенных в несколько слоев изоляции. В компьютерных сетях используются три типа кабелей.

Витая пара (twisted pair) - кабель связи, который представляет собой витую пару медных проводов (или несколько пар проводов), заключенных в экранированную оболочку. Пары проводов скручиваются между собой с целью уменьшения наводок. Витая пара является достаточно помехоустойчивой. Существует два типа этого кабеля: неэкранированная витая пара UTP и экранированная витая пара STP.

Характерным для этого кабеля является простота монтажа. Данный кабель является самым дешевым и распространенным видом связи, который нашел широкое применение в самых распространенных локальных сетях с архитектурой Ethernet, построенных по топологии типа “звезда”. Кабель подключается к сетевым устройствам при помощи соединителя RJ45.

Кабель используется для передачи данных на скорости 10 Мбит/с и 100 Мбит/с. Витая пара обычно используется для связи на расстояние не более нескольких сот метров. К недостаткам кабеля "витая пара" можно отнести возможность простого несанкционированного подключения к сети.

Коаксиальный кабель (coaxial cable) - это кабель с центральным медным проводом, который окружен слоем изолирующего материала для того, чтобы отделить центральный проводник от внешнего проводящего экрана (медной оплетки или слой алюминиевой фольги). Внешний проводящий экран кабеля покрывается изоляцией.

Существует два типа коаксиального кабеля: тонкий коаксиальный кабель диаметром 5 мм и толстый коаксиальный кабель диаметром 10 мм. У толстого коаксиального кабеля затухание меньше, чем у тонкого. Стоимость коаксиального кабеля выше стоимости витой пары и выполнение монтажа сети сложнее, чем витой парой.

Коаксиальный кабель применяется, например, в локальных сетях с архитектурой Ethernet, построенных по топологии типа “общая шина”.

Коаксиальный кабель более помехозащищенный, чем витая пара и снижает собственное излучение. Пропускная способность – 50-100 Мбит/с. Допустимая длина линии связи – несколько километров. Несанкционированное подключение к коаксиальному кабелю сложнее, чем к витой паре.

Кабельные оптоволоконные каналы связи . Оптоволоконный кабель (fiber optic) – это оптическое волокно на кремниевой или пластмассовой основе, заключенное в материал с низким коэффициентом преломления света, который закрыт внешней оболочкой.

Оптическое волокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. На передающем конце оптоволоконного кабеля требуется преобразование электрического сигнала в световой, а на приемном конце обратное преобразование.

Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно. Скорость передачи данных 3Гбит/c. Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям.

Беспроводные (радиоканалы наземной и спутниковой связи) каналы передачи данных

Радиоканалы наземной (радиорелейной и сотовой) и спутниковой связи образуются с помощью передатчика и приемника радиоволн и относятся к технологии беспроводной передачи данных.

Радиорелейные каналы передачи данных

Радиорелейные каналы связи состоят из последовательности станций, являющихся ретрансляторами. Связь осуществляется в пределах прямой видимости, дальности между соседними станциями - до 50 км. Цифровые радиорелейные линии связи (ЦРРС) применяются в качестве региональных и местных систем связи и передачи данных, а также для связи между базовыми станциями сотовой связи.

Спутниковые каналы передачи данных

В спутниковых системах используются антенны СВЧ-диапазона частот для приема радиосигналов от наземных станций и ретрансляции этих сигналов обратно на наземные станции. В спутниковых сетях используются три основных типа спутников, которые находятся на геостационарных орбитах, средних или низких орбитах. Спутники запускаются, как правило, группами. Разнесенные друг от друга они могут обеспечить охват почти всей поверхности Земли. Работа спутникового канала передачи данных представлена на рисунке


Рис. 1.

Целесообразнее использовать спутниковую связь для организации канала связи между станциями, расположенными на очень больших расстояниях, и возможности обслуживания абонентов в самых труднодоступных точках. Пропускная способность высокая – несколько десятков Мбит/c.

Сотовые каналы передачи данных

Радиоканалы сотовой связи строятся по тем же принципам, что и сотовые телефонные сети. Сотовая связь - это беспроводная телекоммуникационная система, состоящая из сети наземных базовых приемо-передающих станций и сотового коммутатора (или центра коммутации мобильной связи).

Базовые станции подключаются к центру коммутации, который обеспечивает связь, как между базовыми станциями, так и с другими телефонными сетями и с глобальной сетью Интернет. По выполняемым функциям центр коммутации аналогичен обычной АТС проводной связи.

LMDS (Local Multipoint Distribution System) - это стандарт сотовых сетей беспроводной передачи информации для фиксированных абонентов. Система строится по сотовому принципу, одна базовая станция позволяет охватить район радиусом несколько километров (до 10 км) и подключить несколько тысяч абонентов. Сами БС объединяются друг с другом высокоскоростными наземными каналами связи либо радиоканалами. Скорость передачи данных до 45 Мбит/c.

Радиоканалы передачи данных WiMAX (Worldwide Interoperability for Microwave Access) аналогичны Wi-Fi. WiMAX, в отличие от традиционных технологий радиодоступа, работает и на отраженном сигнале, вне прямой видимости базовой станции. Эксперты считают, что мобильные сети WiMAX открывают гораздо более интересные перспективы для пользователей, чем фиксированный WiMAX, предназначенный для корпоративных заказчиков. Информацию можно передавать на расстояния до 50 км со скоростью до 70 Мбит/с.

Радиоканалы передачи данных MMDS (Multichannel Multipoint Distribution System). Эти системы способна обслуживать территорию в радиусе 50-60 км, при этом прямая видимость передатчика оператора является не обязательной. Средняя гарантированная скорость передачи данных составляет 500 Кбит/с - 1 Мбит/с, но можно обеспечить до 56 Мбит/с на один канал.

Радиоканалы передачи данных для локальных сетей . Стандартом беспроводной связи для локальных сетей является технология Wi-Fi. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении.

Радиоканалы передачи данных Bluetooht - это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с.

Государственный экзамен

(State examination)

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».

(Пляскин )


Канал связи. 3

Классификация. 5

Характеристики (параметры) каналов связи. 10

Условие передачи сигналов по каналам связи. 13

Литература. 14


Канал связи

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

1) передающее устройство;

2) приемное устройство;

3) среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) - техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.



По типу среды распространения каналы связи делятся на:

Проводные;

Акустические;

Оптические;

Инфракрасные;

Радиоканалы.

Каналы связи также классифицируют на:

· непрерывные (на входе и выходе канала – непрерывные сигналы),

· дискретные или цифровые (на входе и выходе канала – дискретные сигналы),

· непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),

· дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

1. Классификация по диапазону используемых частот

Ø Километровые (ДВ) 1-10 км, 30-300 кГц;

Ø Гектометровые (СВ) 100-1000 м, 300-3000 кГц;

Ø Декаметровые (КВ) 10-100 м, 3-30 МГц;

Ø Метровые (МВ) 1-10 м, 30-300 МГц;

Ø Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;

Ø Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;

Ø Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;

Ø Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.

2. По направленности линий связи

- направленные (используются различные проводники):

Ø коаксиальные,

Ø витые пары на основе медных проводников,

Ø волоконнооптические.

- ненаправленные (радиолинии);

Ø прямой видимости;

Ø тропосферные;

Ø ионосферные

Ø космические;

Ø радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).


3. По виду передаваемых сообщений:

Ø телеграфные;

Ø телефонные;

Ø передачи данных;

Ø факсимильные.

4. По виду сигналов:

Ø аналоговые;

Ø цифровые;

Ø импульсные.

5. По виду модуляции (манипуляции)

- В аналоговых системах связи :

Ø с амплитудной модуляцией;

Ø с однополосной модуляцией;

Ø с частотной модуляцией.

- В цифровых системах связи :

Ø с амплитудной манипуляцией;

Ø с частотной манипуляцией;

Ø с фазовой манипуляцией;

Ø с относительной фазовой манипуляцией;

Ø с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).

6. По значению базы радиосигнала

Ø широкополосные (B>> 1);

Ø узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений

Ø одноканальные;

Ø многоканальные (частотное, временное, кодовое разделение каналов);


8. По направлению обмена сообщений

Ø односторонние;

Ø двусторонние.
9. По порядку обмена сообщения

Ø симплексная связь - двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;

Ø дуплексная связь - передача и прием осуществляется одновременно (наиболее оперативная);

Ø полудуплексная связь - относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

Ø открытая связь;

Ø закрытая связь (засекреченная).

11. По степени автоматизации обмена информацией

Ø неавтоматизированные - управление радиостанцией и обмен сообщениями выполняется оператором;

Ø автоматизированные - вручную осуществляется только ввод информации;

Ø автоматические - процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

Радиовещательные

2. По направлению передачи

Симплексные (передача только в одном направлении)

Полудуплексные (передача поочередно в обоих направлениях)

Дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

Электрические (проводные)

Радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

Аналоговые (непрерывные)

Дискретные по времени

Дискретные по уровню сигнала

Цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) ипоказывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

-- отношение спектра выходного сигнала к входному
- полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

2. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.

3. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

Мощность сигнала на выходе канала,

Мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

4. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду - бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.

5. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.

6. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.

7. Помехозащищенность: это помехозащищенность, т.е. помехозащищенность.

Распространение информации происходит в процессе ее передачи.

При передаче информации всегда есть два объекта – источник и приемник информации. Эти роли могут меняться, например, во время диалога каждый из участников выступает то в роли источника, то в роли приемника информации.

Информация проходит от источника к приемнику через канал связи, в котором она должна быть связана с каким-то материальным носителем. Для передачи информации свойства этого носителя должны изменяться со временем. Так лампочка, которая все время горит, передает информацию только о том, что какой-то процесс идет. Если же включать и выключать лампочку, можно передавать самую разную информацию, например, с помощью азбуки Морзе.

При разговоре людей носитель информации – это звуковые волны в воздухе. В компьютерах информация передается с помощью электрических сигналов или радиоволн (в беспроводных устройствах). Информация может передаваться с помощью света, лазерного луча, системы телефонной или почтовой связи, компьютерной сети и др.

Информация поступает по каналу связи в виде сигналов, которые приемник может обнаружить с помощью своих органов чувств (или датчиков) и «понять» (раскодировать).

Сигнал – это изменение свойств носителя, которое используется для передачи информации.

Примеры сигналов – это изменение частоты и громкости звука, вспышки света, изменение напряжения на контактах и т.п.

Человек может принимать сигналы только с помощью своих органов чувств. Чтобы передавать информацию, например, с помощью радиоволн, нужны вспомогательные устройства: радиопередатчик, преобразующий звук в радиоволны, и радиоприемник, выполняющий обратное преобразование. Они позволяют расширить возможности человека.

С помощью одного сигнала невозможно передать много информации. Поэтому чаще всего используется не одиночный сигнал, а последовательность сигналов, то есть сообщение. Важно понимать, что сообщение – это только «оболочка» для передачи информации, а информация – это содержание сообщения. Приемник должен сам «извлечь» информацию из полученной последовательности сигналов. Можно принять сообщение, но не принять информацию, например, услышав речь на незнакомом языке или перехватив шифровку.

Одна и та же информация может быть передана с помощью разных сообщений, например, через устную речь, с помощью записки или с помощью флажного семафора, который используется на флоте. В то же время одно и то же сообщение может нести разную информацию для разных приемников. Так фраза «В Сантьяго идет дождь», переданная в 1973 году на военных радиочастотах, для сторонников генерала А. Пиночета послужила сигналом к началу государственного переворота в Чили.

Таким образом, информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Передача информации возможна с помощью любого языка кодирования информации, понятного как источнику, так и приёмнику.

Кодирующее устройство – устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи.

Декодирующее устройство – устройство для преобразования кодированного сообщения в исходное.

Пример. При телефонном разговоре: источник сообщения – говорящий человек; кодирующее устройство – микрофон – преобразует звуки слов (акустические волны) в электрические импульсы; канал связи – телефонная сеть (провод); декодирующее устройство – та часть трубки, которую мы подносим к уху, здесь электрические сигналы снова преобразуются в слышимые нами звуки; приёмник информации – слушающий человек.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума. Существует наука, разрабатывающая способы защиты информации – криптология, широко применяющаяся в теории связи.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи. Иными словами, чтобы содержание сообщения, искаженного помехами, можно было восстановить, оно должно быть избыточным, то есть, в нем должны быть «лишние» элементы, без которых смысл все равно восстанавливается. Например, в сообщении «Влг впдт в Кспск мр» многие угадают фразу «Волга впадает в Каспийское море», из которой убрали все гласные. Этот пример говорит о том, что естественные языки содержат много «лишнего», их избыточность оценивается в 60-80%.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.

Каналы передачи, их классификация и основные характеристики

Основные понятия и определения: канал передачи, его динамический диапазон, эффективно передаваемая полоса частот, время, в течении которого канал предоставлен для передачи первичного сигнала, пропускная способность канала. Основные параметры и характеристики канала. Принципы нормирования отклонения остаточного затухания, частотная характеристика, понятие «шаблона» . Фазо-частотная характеристика. Амплитудная характеристика и различные ее формы. Типовые каналы и их основные характеристики.

Ключевыми понятиями техники телекоммуникационных систем и сетей являются канал передачи и канал электросвязи.

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью передачи между оконечными или промежуточными пунктами телекоммуникационных сетей.

По методам передачи сигналов электросвязи различают аналоговые ицифровые каналы.

1) Аналоговые каналы, в свою очередь, подразделяются на непрерывные идискретные в зависимости от изменения информационного параметра сигнала.

2)Цифровые каналы делятся на каналы с использование импульсно-кодовой модуляции (ИКМ ) , каналы с использованиемдифференциальной ИКМ и каналы на основедельта-модуляции . Каналы, в которых на одних участка используются аналоговые, а на других цифровые методы передачи сигналов, называютсясмешанными каналами передачи.

В зависимости от ширины полосы пропускания, в которой передаются сигналы электросвязи, и соответствия параметров каналов установленным нормам, различают аналоговые типовые каналы тональной частоты, типовые первичный, вторичный, третичный и четверичный широкополосные каналы. Типовые каналы передачи сигналов звукового вещания, сигналов изображения и звукового сопровождения телевидения ;

В зависимости от скорости передачи и соответствия параметров каналов установленным нормам различают: основной цифровой канал, первичный, вторичный, третичный, четверичный и пятеричный цифровые каналы ;

По виду среды распространения сигналов электросвязи различают: проводные каналы , организованные по кабельным и, реже, воздушным линиям связи иканалы радиосвязи , организованные по радиорелейным и спутниковым линиям связи.

Каналом электросвязи называется комплекс технических средств и среды распространения, обеспечивающий передачу первичных сигналов электросвязи от преобразователя сообщения в первичный сигнал до преобразователя первичного сигнала в сообщение.

Помимо приведенной классификации, каналы электросвязи подразделяются

По виду передаваемых первичных сигналов (или сообщений) различают телефонные каналы, каналы звукового вещания, телевизионные каналы, теле-

графные каналы иканалы передачи данных ;

По способам организации двусторонней связи различают двухпроводный однополосный канал, двухпроводный двухполосный канал ичетырехпроводный однополосный канал;

По территориальному признаку каналы электросвязи подразделяются на международные, междугородные, магистральные, зоновые и местные .

Рассмотренная классификация каналов передачи и электросвязи (далее просто каналы) соответствует сложившейся практике их организации и разработке требований к их основным параметрам и характеристикам, которые принято увязывать с соответствующими параметрами и характеристиками первичных сигналов.

Канал может характеризоваться тремя параметрами:

1) эффективно передаваемой полосой частот D F к , которую канал способен пропустить с выполнением требований к качеству передачи сигналов;

2) временем Т к , в течение которого канал предоставлен для передачи сигналов или сообщений;

3) динамическим диапазоном D к , под которым понимается отношение вида

где P кмакс – максимальная неискаженная мощность, которая может быть передана по каналу; P кмин – минимальная мощность сигнала, при которой обеспечивается необходимая защищенность от помех.

Очевидно, что передача сигнала с параметрами D F c ,Т с , иD c по каналу с параметрами D F к ,Т к иD к возможна при условии

Произведение трех параметров канала V к = D к × F к × T к называется егоемкостью . Сигнал может быть передан по каналу, если его емкость не менее объема сигнала (см. лекция 2). Если система неравенств (3.2) не выполняется, то возможнадеформация одного из параметров сигнала, позволяющих согласовать его объем с емкостью канала. Следовательно, условие возможности передачи сигнала по каналу можно представить в более общем виде

V к ³ V с . (3.3)

Канал характеризуется защищенностью

, (3.4)

где P п – мощность помех в канале.

Пропускная способность канала описывается следующим выражением

, (3.5)

где P ср – средняя мощность передаваемого по каналу сигнала.

Канал передачи как четырехполюсник

Канал передачи, как совокупность технических средств и среды распространения электрического сигнала, представляет каскадное соединение различных четырехполюсников , осуществляющих фильтрацию, преобразование сигналов, их усиление и коррекцию. Следовательно, канал можно представитьэквивалентным четырехполюсником, параметры и характеристики которого определяют качество передачи сигналов, рис. 3.1.

Рис. 3.1. Канал передачи как четырехполюсник

На рис.3.1 приняты следующие обозначения: 1-1 и 2-2 -входные и выходные зажимы соответственно;I вх (j w ) иI вых (j w ) – комплексные входной и выходной токи;U вх (j w ) иU вых (j w ) – комплексные входное и выходное напряжения;Z вх (j w ) иZ вых (j w ) – комплексные входное и выходное сопротивления (как правило, величины чисто активные и равные, т.е.Z вх = R вх = Z вых = R вых );K (j w ) =U вых (j w ) /U вх (j w ) =К (w е jb (w ) – комплексный коэффициент передачи по напряжению,К (w ) – модуль коэффициента передачи иb (w ) – фазовый сдвиг между входным и выходными сигналами; если берется отношение выходного тока к входному, то говорят о коэффициенте передачи по току;u вх (t ), u вых (t ) – мгновенные значения напряжения входного и выходного сигналов ир вх и р вых – входной и выходной уровни напряжения или мощности сигналов.

Каналы передачи работают между реальными нагрузками Z н1 (j w ) и Z н2 (j w ), подключаемыми соответственно к зажимам 1-1 и 2-2.

Свойства каналов и их соответствия требованиям к качеству передачи сообщений определяется рядом параметров и характеристик.

Первым и одним из основных параметров каналов является остаточное затухание А r , под которым понимаетсярабочее затухание канала, измеренное или рассчитанное в условиях подключения к зажимам 1-1и 2-2 (рис. 3.1)активных сопротивлений, соответствующих номинальным значениям R вх и R вых соответственно. Входные и выходные сопротивления отдельных устройств канала передачи достаточно хорошо согласуются между собой. При этом условии рабочее затухание канала можно считать равным суммехарактеристических (собственных)затуханий отдельных устройств, не учитывая отражений. Тогда остаточное затухание канала может быть определено по формуле;

, (3.1)

где р вх и р вых – уровни на входе и выходе канала (см. рис. 3.1);A r – затуханиеi - го иS j - усилениеj - го четырехполюсников, составляющих канал передачи.

Это означает, что остаточное затухание (ОЗ) канала представляет собой алгебраическую сумму затуханий и усилений и удобна при расчетахА r , когда известны затухания усилительных участков и усиления усилителей. ОЗ измеряется на определенной для каждогоканала измерительной частоте .

В процессе эксплуатации ОЗ канала не остается величиной постоянной, а отклоняется от номинального значения под воздействием различных дестабилизирующих факторов. Эти изменения ОЗ называютсянестабильностью , которая оценивается по максимальному и среднеквадратическому значениям отклонений ОЗ от номинального значения или величиной их дисперсии.

Остаточное затухание канала связано с его полосой пропускания. Полоса частот канала, в пределах которой остаточное затухание отличается от номинального не более, чем на некоторую величину DA r , называется эффективно передаваемой полосой частот (ЭППЧ). В пределах ЭППЧ нормируются допустимые отклонения ОЗDA r от номинального значения. Наиболее распространенным способом нормирования является использование “шаблонов” допустимых отклонений ОЗ Примерный вид такого шаблона приведен на рис. 3.2.

Рис. 3.2. Примерный шаблон допустимых отклонений остаточного затухания канала передачи

На рис. 3.2 приняты следующие обозначения f 0 – частота, на которой определяется номинальное значение ОЗ; f н , f в – нижняя и верхняя граничные частоты ЭППЧ; 1,2 – границы допустимых отклонений ОЗ; 3 – вид измеренной частотной характеристики ОЗ. Отклонения ОЗ от номинального определяются по формуле

, (3.2)

где f - текущая частота иf 0 частота определения номинального значения ОЗ.

С понятием ЭППЧ тесно связана амплитудно-частотная характеристика -АЧХ (или просточастотная характеристика ) канала, под которой понимаетсязависимость остаточного затухания от частоты А r =j ч (f ) при постоянном уровне на входе канала, т.е. р вх = const . Эта характеристика оценивает амплитудно-частотные (просто частотные) искажения, вносимые каналом за счет зависимости его ОЗ от частоты. Допустимые искажения определяются шаблоном отклонений ОЗ в пределах ЭППЧ. Примерный вид АЧХ канала показан на рис. 3.3.

Для передачи ряда сигналов электросвязи важной является фазо-частотная характеристика – ФЧХ (простофазовая характеристика ) канала, под которой понимается зависимость фазового сдвига между выходным и входным сигналами от частоты, т.е.b=j ф (f). Общий вид фазовой характеристики канала приведен на рис. 3.4

(линия 1).

Рис.3. 3. Частотная характеристика канала. Рис.3. 4. Фазовая характеристика канала.

В средней части ЭППЧ указанная характерситика близка к линейной, а на ее границах наблюдается заметная нелинейность, обусловленная фильтрами, входящими в состав канала передачи. В связи с тем, что непосредственное измерение фазового сдвига, вносимого каналом, затруднительно, для оценки фазовых искажений рассматривают частотную характеристику группового времени прохождения – ГВП (или замедления – ГВЗ)

t (w ) = db (w) /d w , (3.3)

где b (w ) – фазо-частотная характеристика. Примерный вид частотной характеристики ГВП показан на рис.3.4 (линия 2).

Частотные характеристики остаточного затухания, фазового сдвига или группового времени прохождения определяют линейные искажения , вносимые каналами передачи при прохождении по ним сигналов электросвязи.

Зависимость мощности, напряжения, тока или их уровней на выходе канала от мощности, напряжения, тока или их уровней на входе канала называется амплитудной характеристикой АХ . Под АХ канала понимается также зависимость остаточного затухания канала от уровня сигнала на его входе, т.е.A r =j а (р вх ), измеренная на некоторой обусловленной постоянной частоте измерительного сигнала на входе канала, т.е.f изм =const.

Амплитудная характеристика канала может быть представлена различными зависимостями, показанными на рис.3.5: U вых =j н (U вх ) (рис.3.5 а, линии 1 и 2), А r = j А (р вх ) (рис. 3.5 б, линия 1),р вх =j р (р вых ) (рис. 3.5 б, линии 2 и 3), где приняты следующие обозначения:U вх , U вых – напряжения сигнала на входе и выходе канала соответственно;р вх , р вых – уровни (напряжения, мощности) сигналов на входе и выходе канала соответственно;A r – остаточное затухание канала передачи.

Из рассмотрения графиков, представленных на рис.3.5 видно, что АХ имеет три участка:

1) нелинейный участок при малых значениях напряжения или уровней сигнала на входе канала. Нелинейность АХ при этом объясняется соизмеримостью напряжения или уровня сигнала с шумами самого канала;

2) линейный участок при значениях напряжения или уровня входного сигнала, для которого характерна прямая пропорциональная зависимость между напряжением (уровнем) сигнала на входе канала и напряжением (уровнем) сигнала на выходе канала;

Рис.3. 5. Амплитудные характеристики канала передачи

3) участок с существенной нелинейностью при значениях входного напряжения (уровня) сигнала выше максимального U макс (р макс ), для которого характерно появлениенелинейных искажений. Если угол наклона прямой, соответствующей линейному участку АХ, равен 45 0 , то напряжение (уровень) сигнала на выходе канала равно напряжению (уровню) на его входе. Если угол наклона меньше 45 0 , то в канале имеет место затухание, а если угол наклона больше 45 0 , то в канале имеет место усиление. ЕслиA r > 0, то канал вносит затухание (ослабление), еслиA r <0, то канал передачи вноситостаточное усиление.

Незначительная нелинейность АХ при малых значениях входного напряжения или уровня сигнала не влияет на качество передачи и ею можно пренебречь. Нелинейность АХ при значительных значениях напряжения или уровня входного сигнала, выходящих за пределы линейного участка АХ, проявляются в возникновении гармоник иликомбинационных частот выходного сигнала. По АХ можно лишь приблизительно оценить величину нелинейных искажений. Более точно величина нелинейных искажений в каналах оцениваетсякоэффициентом нелинейных искажений илизатуханием нелинейности.

или
, (3.4)

где U – действующее значение напряжения первой (основной гармоники измерительного сигнала; U ,U и т.д. – действующие значения напряжений второй, третьей и т.д. гармоник сигнала, возникших из-за нелинейности АХ канала передачи. Кроме того, в технике многоканальных телекоммуникационных систем передачи широко пользуются понятиемзатухания нелинейности по гармоникам

А нг = 20lg(U / U n г ) =р - р n г ,n = 2, 3 …, (3.5)

где р – абсолютный уровеньпервой гармоники измерительного сигнала,р n г – абсолютный уровеньn –ой гармоники , обусловленной нелинейностью АХ канала.

Цифровые каналы характеризуются скоростью передачи, а качество передачи сигналов оценивается коэффициентом ошибки , под которым понимаетсяотношение числа элементов цифрового сигнала, принятых с ошибками к общему числу элементов сигнала, переданных в течение времени измерения

К ош = N ош / N =N ош / ВТ , (3.6)

где N ош – число ошибочно принятых элементов;N – общее число переданных элементов;В – скорость передачи в бодах;Т – время измерения (наблюдения).

Телекоммуникационные системы должны быть построены таким образом, чтобы каналы обладали бы определенной универсальностью и были бы пригодны для передачи различного вида сообщений. Такими свойствами обладают типовые каналы , параметры и характеристики которых нормированы. Типовые каналы могут бытьпростыми, т.е. не проходящим через оборудование транзита, и составными , т.е. проходящими через оборудование транзита.

Типовые каналы передачи

Канал тональной частоты . Типовой аналоговый канал передачи с полосой частот 300…3400 Гц и с нормированными параметрами и характеристиками называетсяканалом тональной частоты – КТЧ.

Нормированная (номинальная величина) относительного (измерительного) уровня на входе КТЧ равна р вх = - 13дБм 0, на выходе КТЧр вых = + 4дБм 0. Частота измерительного сигнала принимается равнойf изм = 1020 Гц (ранее 800 Гц ). Таким образом, номинальное остаточное затухание КТЧ равноA r = - 17 дБ , т.е. КТЧ вносит усиление равное 17дБ .

Эффективно передаваемой полосой частот КТЧ (составного и максимальной протяженности) называется полоса, на крайних частотах которой (0,3 и 3,4 кГц) остаточное затуханиеA r на 8,7 дБ превышает величину остаточного затухания на частоте 1020 Гц (ранее 800 Гц).

Частотная характеристика отклонений остаточного затухания D А r от номинального значения (- 17дБ ) должна оставаться в пределахшаблона , приведенного на рис. 3.6.

Рис. 3.6. Шаблон допустимых отклонений остаточного затухания КТЧ

Чтобы выполнить требования к частотной характеристики остаточного затухания, ее неравномерность для простого канала длиной 2500 км должна укладываться в переделы, указанные в табл. 3.1.

Таблица 3.1

f , кГц

D A r , дБ

Фазо-частотные искажения мало влияют на качество передачи речевых сигналов, но так как КТЧ используется для передачи и других первичных сигналов, большие фазо-частотные искажения или неравномерность частотной характеристики группового времени прохождения (ГВП) недопустимы. Поэтому нормируются отклонения ГВП от его значения на частоте 1900 Гц для простого канала длиной 2500 км, табл.3.2.

Таблица 3.2

f , кГц

Dt ,мс

Естественно, что для составных каналов отклонения ГВП будут во столько раз больше, сколько простых каналов организуют составной.

Амплитудная характеристика КТЧ нормируется следующим образом: остаточное затухание простого канала должно быть постоянным с точностью до 0,3 дБ при изменении уровня измерительного сигнала от –17,5 до +3,5дБ в точке с нулевым измерительным уровнем на любой частоте в переделах ЭППЧ. Коэффициент нелинейных искажений для простого канала не должен превышать 1,5% (1% по 3-й гармонике) при номинальном уровне передачи на частоте 1020Гц .

Нормирование касается и степени согласования входного и выходного сопротивлений КТЧ с сопротивлениями внешних цепей – нагрузок: внутренним сопротивлением источника передаваемых сигналов и сопротивлением нагрузки. Входное и выходное сопротивление КТЧ должны быть чисто активные и равны R вх = R вых = 600Ом . Вход и выход канала должны бытьсимметричными , коэффициент отражения d или затухание несогласованности (отражения ) А d равные соответственно не должны превышать 10% или 20дБ .

(3.7)

не должны превышать 10% или 20 дБ . ЗдесьZ н - номинальное, аZ р – реальное значение сопротивления.

Важным показателем качества передачи по КТЧ является мощность помех, которые измеряются специальным прибором, называемым псофометром (“псофос” – по гречески означает шум). Псофометр представляет вольтметр с квадратичной характеристикой выпрямления. Выбор такой характеристики объясняется тем, что ухо складывает шумы от отдельных источников по мощности, а мощность пропорциональна квадрату напряжения или тока. От обычных квадратичных вольтметров псофометры отличаются наличием у них частотной зависимости чувствительности. Эта зависимость учитывает различную чувствительность уха на отдельных частотах, входящих в состав спектра помех и шумов, и формируется взвешивающимпсофометрическим фильтром.

При подаче на вход псофометра напряжения частотой 800 Гц с нулевым измерительным уровнем его показание будет равно 775мВ . Для получения того же значения при иных частотах уровни должны быть большей частью выше. Напряжение помех, измеренное псофометромU псоф , связано с эффективным напряжениемU эфф соотношениемU псоф = k п × U эфф , здесьk п = 0,75 называетсяпсофометрическим коэффициентом.

Напряжение помех или шумов, измеренное псофометром, называется псофометрическим напряжением . Мощность, определяемая псофометрическим напряжением на некотором сопротивленииR , называетсяпсофометрической мощностью, которая равнаP псоф = k п × U 2 эфф / R = 0,56U 2 эфф R .

Средний уровень мощности помех с равномерным спектром оказывается при псофометрических измерениях в полосе частот 0,3…3,4 кГц на 2,5дБ (или в 1,78 раза) меньше, чем при измерениях действующих (эффективных) значений. Величина 2,5дБ называетсялогарифмическим псофометрическим коэффициентом.

Псофометрическая мощность помех в точке с нулевым измерительным уровнем КТЧ максимальной протяженности, состоящего из максимального числа простых каналов, не должна превышать 50000 пВтп 0 (пиковаттпсофометрических в точке нулевого относительного уровня). Соответствующее значение эффективной (невзвешенной ) допустимой мощности помех составляет 87000пВт. Псофометрическая мощность помех простого канала длиной 2500км не должна превышать 10000пВтп 0.

Нормируются также допустимые величины средней и пиковой мощности телефонных сигналов на входе КТЧ: в точке нулевого относительного уровня среднее значение мощности составляет 32 мкВт , а пиковое – 2220мкВт.